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A B S T R A C T

The 𝑘-step Lanczos bidiagonalization reduces a matrix 𝐴 ∈ R𝑚×𝑛 into a bidiagonal form
𝐵𝑘 ∈ R(𝑘+1)×𝑘 while generating two orthonormal matrices 𝑈𝑘+1 ∈ R𝑚×(𝑘+1) and 𝑉𝑘+1 ∈ R𝑛×(𝑘+1).
However, any practical implementation of the algorithm suffers from loss of orthogonality of
𝑈𝑘+1 and 𝑉𝑘+1 due to the presence of rounding errors, and several reorthogonalization strategies
are proposed to maintain some level of orthogonality. In this paper, we make a backward error
analysis of the Lanczos bidiagonalization with reorthogonalization (LBRO) by writing various
reorthogonalization strategies in a general form. Our results show that the computed 𝐵𝑘 by
the 𝑘-step LBRO of 𝐴 with starting vector 𝑏 is the exact one generated by the 𝑘-step Lanczos
bidiagonalization of 𝐴+𝐸 with starting vector 𝑏+ 𝛿𝑏 (denoted by LB(𝐴+𝐸 , 𝑏+ 𝛿𝑏)), where the
2-norm of perturbation vector/matrix 𝛿𝑏 and 𝐸 depend on the roundoff unit and orthogonality
levels of 𝑈𝑘+1 and 𝑉𝑘+1. The results also show that the 2-norm of 𝑈𝑘+1− 𝑈̄𝑘+1 and 𝑉𝑘+1−𝑉𝑘+1 are
controlled by the orthogonality levels of 𝑈𝑘+1 and 𝑉𝑘+1, respectively, where 𝑈̄𝑘+1 and 𝑉𝑘+1 are
the two orthonormal matrices generated by the 𝑘-step LB(𝐴+𝐸 , 𝑏+𝛿𝑏) in exact arithmetic. Thus,
the 𝑘-step LBRO is mixed forward–backward stable as long as the orthogonality of 𝑈𝑘+1 and
𝑉𝑘+1 are good enough. We use this result to investigate the backward stability of LBRO based
SVD computation algorithm and LSQR algorithm. Numerical experiments confirm our results.

1. Introduction

In [1], Golub and Kahan proposed an algorithm for reducing an arbitrary rectangle matrix to upper bidiagonal form, which is the
first step for computing the singular value decomposition(SVD) of the given matrix. Later in [2], Paige and Saunders proposed an
algorithm which reduces a matrix to lower bidiagonal form iteratively, based on which they proposed the most widely used LSQR
algorithm for solving large sparse least squares problems. Although both the upper and lower bidiagonal reductions can be directly
achieved by Householder transformations [3], it is advantageous to reduce the matrix to a partial upper or lower bidiagonal form
iteratively by using Lanczos-type procedures for large sparse or structured matrices. Such two procedures are proposed in [2], which
are called BIDIAG-1 and BIDIAG-2 corresponding to the lower and upper bidiagonal reductions, respectively. For these reasons, the
two above procedures are usually called Golub–Kahan–Lanczos bidiagonalizations or simply Lanczos bidiagonalizations, and we
focus on the lower Lanczos bidiagonalization in this paper.

Given a matrix 𝐴 ∈ R𝑚×𝑛 with 𝑚 ≥ 𝑛. First choose a nonzero 𝑏 ∈ R𝑚 as the starting vector and compute

𝛽1𝑢1 = 𝑏, 𝛼1𝑣1 = 𝐴𝑇 𝑢1 (1.1)
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such that ‖𝑢1‖ = ‖𝑣1‖ = 1 and 𝛽1, 𝛼1 > 0, where ‖ ⋅ ‖ denotes the 2-norm of a vector or matrix. Then for 𝑖 = 1, 2,… , the Lanczos
bidiagonalization computes vectors 𝑢𝑖+1 and 𝑣𝑖+1 of unit length using the recurrences

𝛽𝑖+1𝑢𝑖+1 = 𝐴𝑣𝑖 − 𝛼𝑖𝑢𝑖, (1.2)

𝛼𝑖+1𝑣𝑖+1 = 𝐴𝑇 𝑢𝑖+1 − 𝛽𝑖+1𝑣𝑖, (1.3)

where 𝛼𝑖+1, 𝛽𝑖+1 > 0. If 𝛼𝑖+1 or 𝛽𝑖+1 is zero, then the procedure terminates, having found an invariant singular subspace of 𝐴, and
this is usually called ‘‘lucky terminate’’ [1]. In the paper we suppose that the procedure does not terminate after 𝑘 steps. In exact
arithmetic the Lanczos bidiagonalization computes two group of mutual orthogonal vectors {𝑢1,… , 𝑢𝑘+1} and {𝑣1 … , 𝑣𝑘+1} which
are called Lanczos vectors, and a lower bidiagonal matrix

𝐵𝑘 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1
𝛽2 𝛼2

𝛽3 ⋱
⋱ 𝛼𝑘

𝛽𝑘+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R(𝑘+1)×𝑘.

It is proved that {𝑢1,… , 𝑢𝑘+1} and {𝑣1,… , 𝑣𝑘+1} are orthonormal bases of Krylov subspaces 𝑘+1(𝐴𝐴𝑇 , 𝑏) and 𝑘+1(𝐴𝑇𝐴, 𝐴𝑇 𝑏),
espectively [4]. The fundamental relations of the 𝑘-step Lanczos bidiagonalization can be written in the matrix form

𝑈𝑘+1(𝛽1𝑒
(𝑘+1)
1 ) = 𝑏, (1.4)

𝐴𝑉𝑘 = 𝑈𝑘+1𝐵𝑘, (1.5)

𝐴𝑇𝑈𝑘+1 = 𝑉𝑘𝐵
𝑇
𝑘 + 𝛼𝑘+1𝑣𝑘+1(𝑒

(𝑘+1)
𝑘+1 )𝑇 , (1.6)

where 𝑒(𝑘+1)𝑖 is the 𝑖th column of the identity matrix of order 𝑘 + 1, and 𝑈𝑘+1 = (𝑢1,… , 𝑢𝑘+1) and 𝑉𝑘+1 = (𝑣1,… , 𝑣𝑘+1) are two
orthonormal matrices.

The Lanczos bidiagonalization is widely used for designing efficient algorithms for many type of large sparse or structured
atrix problems. Note that 𝐵𝑘 is the Ritz–Galerkin projection of 𝐴 on the subspaces 𝑘+1(𝐴𝐴𝑇 , 𝑏) and 𝑘(𝐴𝑇𝐴, 𝐴𝑇 𝑏). Therefore, the

extreme singular values and corresponding vectors of 𝐴 can be well approximated by the SVD of 𝐵𝑘 [1,4]. It is shown in [5] that
good low-rank approximations of matrices can be directly obtained from the Lanczos bidiagonalization applied to the given matrix
without computing any SVD. The LSQR solver, which is most commonly used for large sparse least squares problems of the form
min𝑥∈R𝑛 ‖𝐴𝑥 − 𝑏‖, is also based on the Lanczos bidiagonalization [2]. Furthermore, for discrete linear ill-posed inverse problems,
everal Lanczos bidiagonalization based iterative regularization algorithms are developed for solving large sparse problems, where

a regularized solution is obtained by a proper early stopping criterion or by a hybrid regularization method; see [6–8] for further
discussions.

In finite precision arithmetic, due to the influence of rounding errors, the Lanczos vectors computed by the Lanczos bidiago-
nalization gradually lose their mutual orthogonality as the iteration progresses [1,4]. This is a typical phenomenon that appears
in the Lanczos-type algorithms, which is first observed in the symmetric Lanczos process used for computing some extreme
igenvalues and eigenvectors of a symmetric matrix [9]. The loss of orthogonality of Lanczos vectors will lead to a delay of

convergence for approximating eigenvalues and eigenvectors, and sometimes it is also difficult to determine whether some computed
approximations are additional copies or genuine close eigenvalues [10–12]. The above properties can be adapted to handle the
Lanczos bidiagonalization since the Lanczos bidiagonalization of 𝐴 with starting vector 𝑏 can be written as the symmetric Lanczos

process of
(

𝑂 𝐴
𝐴𝑇 𝑂

)

with starting vector
(

𝑏
0

)

[4,13]. On the other hand, when using the LSQR to solve least squares problems, the

oss of orthogonality may cause the algorithm to require much more iterations to converge; the finite precision behavior of LSQR is
very similar to the closely related conjugate gradient (CG) algorithm based on symmetric Lanczos process, and we refer to [14–16].
For discrete linear inverse problems, the Lanczos bidiagonalization based regularization algorithms also suffers from the delay of
onvergence of regularized solutions, which can make the propagation of noise during iterations rather irregular [17]. For these

reasons, the Lanczos bidiagonalization is often performed with reorthogonalization for solving least squares problems and discrete
inear inverse problems. There are several reorthogonalization strategies proposed to maintain some level of orthogonality, such as
artial reorthogonalization [4] and one-sided reorthogonalization [5].

It is well known that algorithms based on a sequence of Householder transformations have very good stability properties [18], and
hese properties have been used to show that the Householder (upper) bidiagonal reduction is mixed forward–backward stable [19,

Theorem A2]. For Lanczos bidiagonalization with a reorthogonalization strategy, however, very little is known about the numerical
stability of it. As far as we know, the only one result is about the one-sided reorthogonalization, which states that the process
applied to a matrix 𝐶 in finite precision arithmetic produces Krylov subspaces generated by a nearby matrix 𝐶 + 𝐸1, where 𝐸1 is
a perturbation matrix [20]. In this paper, we write those various types of reorthogonalization strategies in a general form, where
t each iteration 𝑢𝑘 and 𝑣𝑘 are reorthogonalized against some previous vectors among {𝑢1,… , 𝑢𝑘−1} and {𝑣1,… , 𝑣𝑘−1}, respectively.
ote that some vectors may not be included, which means that they are not used in the reorthogonalization step. We analyze
umerical stability of the Lanczos bidiagonalization with reorthogonalization (LBRO) by using this form. This is a key feature of
his paper.

In this paper, we give a backward error analysis of the LBRO and generalize the result of [20]. Denote the roundoff unit by
. We first establish a relationship between the LBRO and Householder transformation based bidiagonal reduction. Based on this
2 
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result, we show that for the 𝑘-step LBRO of 𝐴 with starting vector 𝑏 (denoted by LBRO(𝐴, 𝑏)): (1). the computed 𝐵𝑘 is the exact
one generated by the 𝑘-step LB(𝐴 + 𝐸 , 𝑏 + 𝛿𝑏), where the perturbation quantity ‖𝛿𝑏‖∕‖𝑏‖ = 𝑂(𝐮) and ‖𝐸‖∕‖𝐴‖ is controlled by
𝐮 and orthogonality levels of 𝑈𝑘+1 and 𝑉𝑘+1; (2). if we denote the two orthonormal matrices generated by LB(𝐴 + 𝐸 , 𝑏 + 𝛿𝑏) in
exact arithmetic by 𝑈̄𝑘+1 and 𝑉𝑘+1, respectively, then ‖𝑈𝑘+1 − 𝑈̄𝑘+1‖ and ‖𝑉𝑘+1 − 𝑉𝑘+1‖ are controlled by the orthogonality levels
of 𝑈𝑘+1 and 𝑉𝑘+1, respectively. Compared with [20, Theorem 5.2] that can only deal with the 𝑛-step procedure with one-sided
reorthogonalization, our result can apply to the 𝑘-step LBRO for 1 ≤ 𝑘 ≤ 𝑛. Following Higham [18, §1.5], our result implies that the
-step LBRO is mixed forward–backward stable as long as the orthogonality of 𝑈𝑘+1 and 𝑉𝑘+1 are good enough. We then use this
esult to investigate backward stability of LBRO based algorithms including SVD computation and LSQR.

The paper is organized as follows. In Section 2, we review reorthogonalization strategies for the Lanczos bidiagonalization and
give some properties. In Section 3, we first establish a relationship between the LBRO and Householder transformation based
idiagonal reduction, then we derive mixed backward–forward error bounds for the LBRO. In Section 4, our result is applied to

discuss backward stability of LBRO based SVD computation algorithm and LSQR. In Section 5, we use some numerical examples to
illustrate the results. Finally, we conclude the paper in Section 6.

Throughout the paper, we denote by 𝐼𝑘 and 𝑂𝑘×𝑙 the identity matrix of order 𝑘 and zero matrix of order 𝑘 × 𝑙, respectively, by
𝑒(𝑘)𝑖 the 𝑖th column of 𝐼𝑘 and by 0𝑙 the zero vector of dimension 𝑙. The notation ‖ ⋅ ‖ always denotes either the vector or matrix
2-norm.

2. The Lanczos bidiagonalization and reorthogonalization strategies

In this section, we review the Lanczos bidiagonalization in finite precision arithmetic and reorthogonalization strategies. From
now on, quantities 𝛼𝑖, 𝑢𝑖, 𝐵𝑘, etc. denote the computed ones in finite precision arithmetic. Several types of reorthogonalization
strategies have been proposed for maintaining some level of orthogonality of Lanczos vectors [4,5,20], all of which can be written
in the following form.

Suppose that at the 𝑖th step, the bidiagonalization procedure have computed

𝛽′𝑖+1𝑢
′
𝑖+1 = 𝐴𝑣𝑖 − 𝛼𝑖𝑢𝑖 − 𝑓 ′

𝑖 , (2.1)

where 𝑢′𝑖+1 and 𝛽′𝑖+1 are two temporary quantities and 𝑓 ′
𝑖 is a rounding error term. A reorthogonalization strategy applied to 𝑢′𝑖+1

means that we choose 𝑖 real numbers 𝜉1𝑖,… , 𝜉𝑖𝑖 and form

𝛽𝑖+1𝑢𝑖+1 = 𝛽′𝑖+1𝑢
′
𝑖+1 −

𝑖
∑

𝑗=1
𝜉𝑗 𝑖𝑢𝑗 − 𝑓 ′′

𝑖 , (2.2)

where 𝑓 ′′
𝑖 is a rounding error term. Then the algorithm will be continued with 𝑢𝑖+1 and 𝛽𝑖+1 instead of 𝑢′𝑖+1 and 𝛽′𝑖+1. The

eorthogonalization step of 𝑢𝑖+1 aims to maintain some level of orthogonality among 𝑢𝑖+1 and 𝑢𝑗 for 𝑗 = 1,… , 𝑖. In (2.2), the choice
of coefficients 𝜉1𝑖,… , 𝜉𝑖𝑖 varies from different types of reorthogonalization strategies, and some values of the coefficients may be
ero, which means that the corresponding Lanczos vectors are not used in the reorthogonalization step.

Combining (2.1) and (2.2), the reorthogonalization step of 𝑢𝑖+1 can be written as the recurrence

𝐴𝑣𝑖 = 𝛼𝑖𝑢𝑖 + 𝛽𝑖+1𝑢𝑖+1 +
𝑖

∑

𝑗=1
𝜉𝑗 𝑖𝑢𝑗 + 𝑓𝑖, (2.3)

where 𝑓𝑖 = 𝑓 ′
𝑖 + 𝑓 ′′

𝑖 is the rounding error term. The reorthogonalization step of 𝑣𝑖 is similar to that of 𝑢𝑖+1 and can be written as the
recurrence

𝐴𝑇 𝑢𝑖 = 𝛼𝑖𝑣𝑖 + 𝛽𝑖𝑣𝑖−1 +
𝑖−1
∑

𝑗=1
𝜂𝑗 𝑖𝑣𝑖 + 𝑔𝑖, (2.4)

where 𝑔𝑖 is the rounding error term. Note that for 𝑖 = 1 reorthogonalization of 𝑣1 is not needed and 𝑣0 is a zero vector.

Remark 2.1. For matrix 𝐴 ∈ R𝑚×𝑛 with 𝑚 = 𝑛, the Lanczos bidiagonalization must terminate at 𝑘 = 𝑛 in exact arithmetic. In
finite precision arithmetic, however, 𝛽𝑛+1 is usually nonzero. In this case, the computation of 𝑢𝑛+1 does not make any sense since
𝑈𝑛+1 = (𝑈𝑛, 𝑢𝑛+1) ∈ R𝑛×(𝑛+1) has deficient column rank, and thus the LBRO should not reorthogonalize 𝑢𝑛+1 if 𝑚 = 𝑛. In practice, the
Lanczos bidiagonalization is usually performed in 𝑘 ≪ 𝑛 steps.

Now we state a set of properties and assumptions on the finite precision behaviors of the Lanczos bidiagonalization, which are
rom the results of rigorous analysis of the symmetric Lanczos process and Lanczos bidiagonalization [4,5,11,21,22]. They constitute

a model for the actual computations and include essential features while discard irrelevant ones. First, by (2.3) and (2.4) the Lanczos
bidiagonalization with reorthogonalization can be written in matrix form

𝐴𝑉𝑘 = 𝑈𝑘+1(𝐵𝑘 + 𝐶𝑘) + 𝐹𝑘, (2.5)

𝐴𝑇𝑈𝑘+1 = 𝑉𝑘(𝐵𝑇
𝑘 +𝐷𝑘) + 𝛼𝑘+1𝑣𝑘+1(𝑒

(𝑘+1)
𝑘+1 )𝑇 + 𝐺𝑘+1, (2.6)

where
3 
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𝐶𝑘 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜉11 𝜉12 … 𝜉1𝑘
0 𝜉22 ⋯ 𝜉2𝑘

0 ⋱ ⋮
⋱ 𝜉𝑘𝑘

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R(𝑘+1)×𝑘, 𝐷𝑘 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝜂12 𝜂13 ⋯ 𝜂1𝑘 𝜂1𝑘+1
0 𝜂23 𝜂24 ⋯ 𝜂2𝑘+1

⋱ ⋱ ⋱ ⋮
⋱ 𝜂𝑘−1,𝑘 𝜂𝑘−1,𝑘+1

0 𝜂𝑘,𝑘+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑘×(𝑘+1),

and 𝐹𝑘 = (𝑓1,… , 𝑓𝑘) and 𝐺𝑘+1 = (𝑔1,… , 𝑔𝑘+1), satisfying ‖𝐹𝑘‖, ‖𝐺𝑘+1‖ = 𝑂(‖𝐴‖𝐮) [21,22]. Note that the rounding error terms in
(2.1) and (2.2) are also satisfied ‖𝑓 ′

𝑖 ‖, ‖𝑓
′′
𝑖 ‖ = 𝑂(‖𝐴‖𝐮) [22]. Then, we always assume that the computed Lanczos vectors are of unit

length in order to simplify rounding error analysis. Finally, we assume that

no 𝛼𝑖 and 𝛽𝑖 ever become negligible,

which is almost always true in practice, and the rare cases where 𝛼𝑖 or 𝛽𝑖 do become very small are actually the lucky ones, since
hen the algorithm should be terminated, having found an invariant singular subspace [22].

Following [20,23], we define the orthogonality level of Lanczos vectors as follows.

Definition 2.1. Let 𝐒𝐔𝐓(⋅) denotes the strictly upper triangular part of a matrix. The orthogonality level of Lanczos vectors
𝑢1,… , 𝑢𝑘} or the corresponding matrix 𝑈𝑘 = (𝑢1,… , 𝑢𝑘) is

𝜇𝑘 = ‖𝐒𝐔𝐓(𝐼𝑘 − 𝑈𝑇
𝑘 𝑈𝑘)‖, (2.7)

while the orthogonality level of {𝑣1,… , 𝑣𝑘} or 𝑉𝑘 = (𝑣1,… , 𝑣𝑘) is

𝜈𝑘 = ‖𝐒𝐔𝐓(𝐼𝑘 − 𝑉 𝑇
𝑘 𝑉𝑘)‖. (2.8)

By the Cauchy’s interlacing theorem for singular values, it can be verified that 𝜇𝑖 ≤ 𝜇𝑖+1 and 𝜈𝑖 ≤ 𝜈𝑖+1. Let 𝜎𝑖(⋅) denote the 𝑖th
largest singular value of a matrix. It is shown in [20] that

𝜎1(𝑉𝑘) ≤ 1 + 𝜈𝑘, (2.9)

and

𝜎𝑘(𝑉𝑘) ≥ (1 − 2𝜈𝑘)1∕2 = 1 − 𝜈𝑘 + 𝑂(𝜈2𝑘) (2.10)

if 𝜈𝑘 < 1∕2. Similarly, for 𝑈𝑘 we have

𝜎1(𝑈𝑘) ≤ 1 + 𝜇𝑘, (2.11)

and

𝜎𝑘(𝑈𝑘) ≥ (1 − 2𝜇𝑘)1∕2 = 1 − 𝜇𝑘 + 𝑂(𝜇2
𝑘) (2.12)

if 𝜇𝑘 < 1∕2. In the rest of the paper, we always assume 𝜇𝑖 < 1∕2 and 𝜈𝑖 < 1∕2.
Rewrite (2.3) as

𝐴𝑣𝑘 = 𝑈𝑘+1𝑐𝑘 + 𝑓𝑘, (2.13)

where 𝑐𝑘 = (𝜉1𝑘,… , 𝜉𝑘−1,𝑘, 𝛼𝑘 + 𝜉𝑘𝑘, 𝛽𝑘+1)𝑇 . Then using (2.12) we obtain

‖𝑐𝑘‖ = ‖𝑈†
𝑘+1(𝐴𝑣𝑘 − 𝑓𝑘)‖ ≤ 𝜎𝑘+1(𝑈𝑘+1)−1(‖𝐴‖ + ‖𝑓𝑘‖)

≤ [1 + 𝜇𝑘+1 + 𝑂(𝜇2
𝑘+1)][‖𝐴‖ + 𝑂(‖𝐴‖𝐮)]

= ‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1)), (2.14)

where we neglect high order terms of 𝐮 and 𝜇𝑘+1. Thus, by (2.14) we have

𝛽𝑘+1 ≤ ‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1)). (2.15)

Similarly, if we rewrite (2.4) as

𝐴𝑇 𝑢𝑘 = 𝑉𝑘𝑑𝑘 + 𝑔𝑘, (2.16)

where 𝑑𝑘 = (𝜂1𝑘,… , 𝜂𝑘−2,𝑘, 𝛽𝑘 + 𝜂𝑘−1𝑘, 𝛼𝑘)𝑇 , then we can obtain

‖𝑑𝑘‖ ≤ ‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘)) (2.17)

and thus

𝛼𝑘 ≤ ‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘)). (2.18)

The next result is about an upper bound on the coefficients of reorthogonalization step of 𝑢𝑘+1, which will be used later in the
backward error analysis.
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Proposition 2.1. Let 𝑐𝑘 = (𝜉1𝑘,… , 𝜉𝑘𝑘)𝑇 . Then

‖𝑐𝑘‖ = 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1 + 𝜈𝑘)). (2.19)

Proof. At the 𝑘th step, recurrence (2.3) can be written as

𝑈𝑘𝑐𝑘 = 𝐴𝑣𝑘 − 𝛼𝑘𝑢𝑘 − 𝛽𝑘+1𝑢𝑘+1 − 𝑓𝑘. (2.20)

Therefore, we get

𝑈𝑇
𝑘 𝑈𝑘𝑐𝑘 = 𝑈𝑇

𝑘 𝐴𝑣𝑘 − 𝛼𝑘𝑈
𝑇
𝑘 𝑢𝑘 − 𝛽𝑘+1𝑈

𝑇
𝑘 𝑢𝑘+1 − 𝑈𝑇

𝑘 𝑓𝑘,

which can also be written as

𝑈𝑇
𝑘 𝑈𝑘𝑐𝑘 = (𝐵𝑇

𝑘−1 +𝐷𝑘−1)𝑇 𝑉 𝑇
𝑘−1𝑣𝑘 − 𝛼𝑘(𝑈𝑇

𝑘 𝑢𝑘 − 𝑒(𝑘)𝑘 ) − 𝛽𝑘+1𝑈
𝑇
𝑘 𝑢𝑘+1 + 𝐺𝑇

𝑘 𝑣𝑘 − 𝑈𝑇
𝑘 𝑓𝑘, (2.21)

where we use the relation 𝑈𝑇
𝑘 𝐴𝑣𝑘 = [𝑉𝑘−1(𝐵𝑇

𝑘−1 +𝐷𝑘−1) + 𝛼𝑘𝑣𝑘(𝑒
(𝑘)
𝑘 )𝑇 + 𝐺𝑘]𝑇 𝑣𝑘 derived from (2.6).

Now we give an upper bound on ‖𝐵𝑇
𝑘−1 +𝐷𝑘−1‖. Using (2.6) we have

𝑉 𝑇
𝑘−1𝑉𝑘−1(𝐵

𝑇
𝑘−1 +𝐷𝑘−1) = 𝑉 𝑇

𝑘−1𝐴
𝑇𝑈𝑘 − 𝛼𝑘𝑉

𝑇
𝑘−1𝑣𝑘(𝑒

(𝑘)
𝑘 )𝑇 − 𝑉 𝑇

𝑘−1𝐺𝑘,

which leads to
‖𝐵𝑇

𝑘−1 +𝐷𝑘−1‖ ≤ ‖(𝑉 𝑇
𝑘−1𝑉𝑘−1)

−1
‖ ⋅ ‖𝑉 𝑇

𝑘−1𝐴
𝑇𝑈𝑘 − 𝛼𝑘𝑉

𝑇
𝑘−1𝑣𝑘𝑒

𝑇
𝑘 − 𝑉 𝑇

𝑘−1𝐺𝑘‖

≤ (1 − 2𝜈𝑘−1)−1[‖𝐴‖(1 + 𝜈𝑘−1)(1 + 𝜇𝑘) + 𝛼𝑘𝜈𝑘 + (1 + 𝜈𝑘−1)‖𝐺𝑘‖]

= [1 + 2𝜈𝑘−1 + 𝑂(𝜈2𝑘−1)] ⋅ [‖𝐴‖(1 + 𝜈𝑘−1 + 𝜇𝑘 + 𝜈𝑘−1𝜇𝑘)+

(‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘))𝜈𝑘 + (1 + 𝜈𝑘−1)𝑂(‖𝐴‖𝐮)]

= ‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘 + 𝜇𝑘)) (2.22)

by neglecting high order terms, where we use the inequality

‖(𝑉 𝑇
𝑘−1𝑉𝑘−1)

−1
‖ = (𝜎𝑘−1(𝑉𝑘−1))−2 ≤ (1 − 2𝜈𝑘−1)−1 = 1 + 2𝜈𝑘−1 + 𝑂(𝜈2𝑘−1)

derived from (2.10).
By using upper bounds on 𝛼𝑘 and 𝛽𝑘+1 in (2.15) and (2.18), we get

‖ − 𝛼𝑘(𝑈𝑇
𝑘 𝑢𝑘 − 𝑒(𝑘)𝑘 ) − 𝛽𝑘+1𝑈

𝑇
𝑘 𝑢𝑘+1 + 𝐺𝑇

𝑘 𝑣𝑘 − 𝑈𝑇
𝑘 𝑓𝑘‖

≤ 𝛼𝑘𝜇𝑘 + 𝛽𝑘+1𝜇𝑘+1 + (1 + 1 + 𝜇𝑘)𝑂(‖𝐴‖𝐮)
= 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1)).

Using the inequality derived from (2.12)

‖(𝑈𝑇
𝑘 𝑈𝑘)−1‖ = (𝜎𝑘(𝑈𝑘))−2 ≤ (1 − 2𝜇𝑘)−1 = 1 + 2𝜇𝑘 + 𝑂(𝜇2

𝑘)

and neglecting high order terms, we finally obtain from (2.21) that

‖𝑐𝑘‖ ≤ ‖(𝑈𝑇
𝑘 𝑈𝑘)−1‖ ⋅ [‖𝐵𝑇

𝑘−1 +𝐷𝑘−1‖‖𝑉
𝑇
𝑘−1𝑣𝑘‖ + 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1))]

≤ [1 + 2𝜇𝑘 + 𝑂(𝜇2
𝑘)] ⋅ [(‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘 + 𝜇𝑘−1)))𝜈𝑘 + 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1))]

= 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1 + 𝜈𝑘)),

which is the desired result. □

At the end of this section, we briefly investigate the orthogonality level between two contiguous Lanczos vectors. It is shown
from [11] that the property of local orthogonality holds for Lanczos vectors of symmetric Lanczos process. In fact, this property also
pplies to the Lanczos bidiagonalization (without reorthogonalization; see (2.1)), which can be written in the following form:

𝛽′𝑖+1|𝑢
𝑇
𝑖 𝑢

′
𝑖+1| = 𝑂(𝑐1(𝑚, 𝑛)‖𝐴‖𝐮), (2.23)

where 𝑐1(𝑚, 𝑛) is a moderate constant depending on 𝑚 and 𝑛 [11,22]. The property of local orthogonality for 𝑣𝑖 is similar and we omit
t. For this reason, in some literature it is proposed that 𝑢𝑖 is not needed in the reorthogonalization step of 𝑢𝑖+1; see e.g. [22,24]. This

case corresponds to choose 𝜉𝑖𝑖 = 0 in (2.2). In fact, the orthogonality among 𝑢𝑖 and 𝑢𝑖+1 will not be bad as long as the orthogonality
between 𝑢𝑖+1 and {𝑢1,… , 𝑢𝑖−1} is in a desired level. If we use

𝜔𝑖+1 = max
1≤𝑗≤𝑖−1

|𝑢𝑇𝑗 𝑢𝑖+1| (2.24)

to measure the orthogonality level between 𝑢𝑖+1 and {𝑢1,… , 𝑢𝑖−1}, then we have the following result.

Proposition 2.2. Suppose that 𝑢𝑖 is not used in the reorthogonalization step of 𝑢𝑖+1. If 𝜇𝑖 ≪ 𝑖−1, Then we have

𝛽𝑖+1|𝑢
𝑇
𝑖 𝑢𝑖+1| = 𝑂(𝑐1(𝑚, 𝑛)‖𝐴‖𝐮) + 𝑂(‖𝐴‖(𝜈𝑖𝜇𝑖 + 𝜇2

𝑖 + 𝜔𝑖+1𝜇𝑖)). (2.25)
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Proof. Since 𝜉𝑖𝑖 = 0, from (2.2) we obtain

𝛽𝑖+1𝑢
𝑇
𝑖 𝑢𝑖+1 = 𝛽′𝑖+1𝑢

𝑇
𝑖 𝑢

′
𝑖+1 −

𝑖−1
∑

𝑗=1
𝜉𝑗 𝑖𝑢𝑇𝑖 𝑢𝑗 − 𝑢𝑇𝑖 𝑓

′′
𝑖 .

Using (2.23), it follows that

𝛽𝑖+1|𝑢
𝑇
𝑖 𝑢𝑖+1| ≤ 𝑂(𝑐1(𝑚, 𝑛)‖𝐴‖𝐮) + max

1≤𝑗≤𝑖−1
|𝜉𝑗 𝑖| ⋅ 𝑖𝜇𝑖 + 𝑂(‖𝐴‖𝐮). (2.26)

In order to get the desired result we need to find an upper bound on 𝑀 = max1≤𝑗≤𝑖−1 |𝜉𝑗 𝑖|. Again from (2.2), after some rearranging
we obtain

𝜉𝑙 𝑗 = 𝛽′𝑖+1𝑢
𝑇
𝑙 𝑢

′
𝑖+1 − 𝛽𝑖+1𝑢

𝑇
𝑙 𝑢𝑖+1 −

𝑖−1
∑

𝑗=1,𝑗≠𝑙
(𝑢𝑇𝑙 𝑢𝑗 )𝜉𝑗 𝑖 − 𝑢𝑇𝑙 𝑓

′′
𝑖

for 𝑙 = 1,… , 𝑖 − 1. Premultiplying (2.1) by 𝑈𝑇
𝑖 , we have

𝛽′𝑖+1𝑈
𝑇
𝑖 𝑢

′
𝑖+1 = 𝑈𝑇

𝑖 𝐴𝑣𝑖 − 𝛼𝑖𝑈
𝑇
𝑖 𝑢𝑖 − 𝑈𝑇

𝑖 𝑓
′
𝑖

= (𝐵𝑖−1 +𝐷𝑇
𝑖−1)𝑉

𝑇
𝑖−1𝑣𝑖 + 𝑒(𝑖)𝑖 𝛼𝑖𝑣

𝑇
𝑖 𝑣𝑖 + 𝐺𝑇

𝑖 𝑣𝑖 − 𝛼𝑖𝑈
𝑇
𝑖 𝑢𝑖 − 𝑈𝑇

𝑖 𝑓
′
𝑖

= (𝐵𝑖−1 +𝐷𝑇
𝑖−1)𝑉

𝑇
𝑖−1𝑣𝑖 − 𝛼𝑖(𝑈𝑇

𝑖 𝑢𝑖 − 𝑒(𝑖)𝑖 ) + 𝐺𝑇
𝑖 𝑣𝑖 − 𝑈𝑇

𝑖 𝑓
′
𝑖 .

By using (2.22), after some calculations, we have

𝛽′𝑖+1|𝑢
𝑇
𝑙 𝑢

′
𝑖+1| ≤ 𝛽′𝑖+1‖𝑈

𝑇
𝑖 𝑢

′
𝑖+1‖ = 𝑂(‖𝐴‖(𝐮 + 𝜇𝑖 + 𝜈𝑖)),

and thus

|𝜉𝑙 𝑖| ≤ 𝑂(‖𝐴‖(𝐮 + 𝜇𝑖 + 𝜈𝑖)) + 𝛽𝑖+1 max
1≤𝑗≤𝑖−1

|𝑢𝑇𝑗 𝑢𝑖+1| + 𝑖𝜇𝑖−1𝑀 + 𝑂(‖𝐴‖𝐮).

Now the right-hand side does not depend on 𝑙 anymore, and we obtain by taking the maximum on the left side that

(1 − 𝑖𝜇𝑖−1)𝑀 ≤ 𝑂(‖𝐴‖(𝐮 + 𝜇𝑖 + 𝜈𝑖)) + 𝛽𝑖+1 max
1≤𝑗≤𝑖−1

|𝑢𝑇𝑗 𝑢𝑖+1| + 𝑂(‖𝐴‖𝐮)

= 𝑂(‖𝐴‖(𝐮 + 𝜇𝑖 + 𝜈𝑖 + 𝜔𝑖+1))

Since 𝜇𝑖−1 ≪ 𝑖−1 we obtain

𝑀 = 𝑂(‖𝐴‖(𝐮 + 𝜇𝑖 + 𝜈𝑖 + 𝜔𝑖+1)).

By (2.26) we finally obtain the desired bound. □

For semiorthogonalization strategy and partial reorthogonalization [4,22,24], the orthogonality levels of 𝑈𝑖 and 𝑉𝑖 are kept below
𝑂(

√

𝐮), thus at the 𝑘th step we have 𝜈𝑘, 𝜇𝑘 = 𝑂(
√

𝐮). It follows from (2.25) that 𝛽𝑖+1|𝑢𝑇𝑖 𝑢𝑖+1| = 𝑂(𝑐1(𝑚, 𝑛)‖𝐴‖𝐮) as long as we keep
𝑘+1 = 𝑂(

√

𝐮). Thus the property of local orthogonality still holds for the semiorthogonalization strategy.

3. Backward error analysis of the LBRO

In this section, we first establish a relationship between the LBRO and Householder transformation based bidiagonal reduction.
hen we give a backward error analysis of the LBRO to show the mixed forward–backward stability property.

3.1. Connections with Householder bidiagonal reduction

Before giving the results in finite precision arithmetic, we first show a connection between the Lanczos bidiagonalization and
Householder QR factorization in exact arithmetic. It is shown in [25] that the modified Gram–Schmidt(MGS) procedure for the QR
actorization of a matrix 𝐶 ∈ R𝑟×𝑙 with 𝑟 ≥ 𝑙 can be interpreted as the Householder QR factorization applied to the augmented matrix

𝐶̄ =
(

𝑂𝑙×𝑙
𝐶

)

, which is not only true in exact arithmetic, but also in the presence of rounding errors as well. To see this equivalence,

let 𝑞1,… , 𝑞𝑙 ∈ R𝑙 be vectors obtained by applying the MGS procedure to 𝐶, and the corresponding compact QR factorization of 𝐶
is 𝐶 = 𝑄𝑅 where 𝑄 = (𝑞1,… , 𝑞𝑙). Then the Householder QR factorization of 𝐶̄ is

(𝑊𝑙 ⋯𝑊1)𝐶̄ =
(

𝑅
𝑂𝑟×𝑙

)

, (3.1)

where 𝑊𝑗 are Householder matrices:

𝑊𝑗 = 𝐼𝑟+𝑙 −𝑤𝑗𝑤
𝑇
𝑗 , 𝑤𝑗 =

(

−𝑒(𝑙)𝑗
𝑞𝑗

)

∈ R𝑟+𝑙 .

Thus the 𝑘th step Householder transformation 𝑊𝑘 ⋯𝑊1𝐶̄ is identical to applying 𝑘 steps MGS procedure to 𝐶 [25].
For the LBRO a similar property holds. We prove the result for 𝑚 > 𝑛, while we discuss the case of 𝑚 = 𝑛 in the remark. In

the subsequent part of the paper, in order to avoid notation confusions, all exact quantities are denoted by appending ⋅̂ to the
corresponding finite precision quantities (e.g. 𝛼̂ is exact and 𝛼 includes rounding errors).
𝑖 𝑖
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Proposition 3.1. For the 𝑘-step Lanczos bidiagonalization in exact arithmetic, let

𝑃𝑖 = 𝐼𝑚+𝑛+1 − 𝑝̂𝑖𝑝̂
𝑇
𝑖 , 𝑝̂𝑖 =

(

−𝑒(𝑛+1)𝑖

𝑢̂𝑖

)

∈ R𝑚+𝑛+1. (3.2)

Then we have
(

𝑂(𝑛+1)×𝑘

𝐴𝑉𝑘

)

= 𝑃1 ⋯𝑃𝑘+1

(

𝐵̂𝑘

𝑂𝑠×𝑘

)

, 𝑠 = 𝑚 + 𝑛 − 𝑘. (3.3)

Proof. After performing the procedure in exact arithmetic 𝑛 steps (if the procedure terminates at some step, we can choose a new
starting vector and continue on), we have

(

𝑏, 𝐴𝑉𝑛
)

= 𝑈̂𝑛+1

(

𝛽1𝑒
(𝑛+1)
1 , 𝐵̂𝑛

)

= 𝑈̂𝑛+1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛽1 𝛼̂1
𝛽2 ⋱

⋱ 𝛼̂𝑛
𝛽𝑛+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

which is the QR factorization of (𝑏, 𝐴𝑉𝑛) ∈ R𝑚×(𝑛+1). Therefore, by (3.1) we have
(

0𝑛+1 𝑂(𝑛+1)×𝑛

𝑏 𝐴𝑉𝑛

)

= 𝑃1 ⋯𝑃𝑛+1

(

𝛽1𝑒
(𝑛+1)
1 𝐵̂𝑛

0𝑚 𝑂𝑚×𝑛

)

.

Equating from the second to (𝑘 + 1)-th column of the above matrix yields
(

𝑂(𝑛+1)×𝑘

𝐴𝑉𝑘

)

= (𝑃1 ⋯𝑃𝑘+1)(𝑃𝑘+2 ⋯𝑃𝑛+1)

(

𝐵𝑘

𝑂𝑠×𝑘

)

= 𝑃1 ⋯𝑃𝑘+1

(

𝐵𝑘

𝑂𝑠×𝑘

)

,

which is the desired result. □

Remark 3.1. If 𝑚 = 𝑛, we have (𝑏, 𝐴𝑉𝑛) ∈ R𝑛×(𝑛+1), and the property (3.1) cannot be directly used. In fact, the procedure must
terminate at step 𝑛, and thus 𝛽𝑛+1 = 0 and 𝑢𝑛+1 = 0. In this case, the form of (3.3) should be rewritten after some adjustments. Let
̂𝑛 be the 𝑛 × 𝑛 lower bidiagonal form by discarding 𝛽𝑛+1 and let 𝑝̂𝑖 =

(

−𝑒(𝑛)𝑖
𝑢̂𝑖

)

∈ R𝑚+𝑛 for 𝑖 = 1,… , 𝑛 and 𝑃𝑛+1 = 𝐼𝑚+𝑛. Then we can

verify that
(

𝑂𝑛×𝑘

𝐴𝑉𝑘

)

= 𝑃1 ⋯𝑃𝑘+1

(

𝐵̂𝑘

𝑂𝑠×𝑘

)

,

where 𝑠 = 𝑚 + 𝑛 − 𝑘 − 1 for 𝑘 = 1,… , 𝑛 − 1 and 𝑠 = 𝑚 for 𝑘 = 𝑛.
Now we give a corresponding version of Proposition 3.1 in finite precision arithmetic. Similar to the above, we prove the result

for 𝑚 > 𝑛 and discuss the case of 𝑚 = 𝑛 in the remark. The following lemma is needed, which is a generalization of [20, Lemma
4.4] for one-sided reorthogonalization for upper Lanczos bidiagonalization.

Lemma 3.1. For the 𝑘th step LBRO, define the orthogonal matrix 𝑃𝑘+1 that is a product of Householder transformations as

𝑃𝑘+1 = 𝑃1 ⋯𝑃𝑘+1, 𝑃𝑖 = 𝐼𝑚+𝑛+1 − 𝑝𝑖𝑝
𝑇
𝑖 , 𝑝𝑖 =

(

−𝑒(𝑛+1)𝑖

𝑢𝑖

)

∈ R𝑚+𝑛+1, (3.4)

then we have

𝑃𝑘+1

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

=
(

0𝑛+1
𝐴𝑣𝑘

)

+ 𝑥𝑘, 𝑠 = 𝑚 + 𝑛 − 𝑘, (3.5)

where 𝑥𝑘 ∈ R𝑚+𝑛+1 and

‖𝑥𝑘‖ = 𝑂(‖𝐴‖(𝑘𝐮 + 𝑘𝜈𝑘 + 𝜇𝑘+1)). (3.6)

Proof. By the definition of 𝑃𝑖 and together with (2.20) we have

𝑃𝑘+1

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

=

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

− 𝑝𝑇𝑘+1

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

𝑝𝑘+1

=

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

+ 𝛽𝑘+1

(

−𝑒(𝑛+1)𝑘+1

𝑢𝑘+1

)

=

(

𝛼𝑘𝑒
(𝑛+1)
𝑘

)

𝛽𝑘+1𝑢𝑘+1

7 
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=

(

𝛼𝑘𝑒
(𝑛+1)
𝑘

𝐴𝑣𝑘 − 𝛼𝑘𝑢𝑘

)

−

(

0𝑛+1
𝑈𝑘𝑐𝑘

)

−

(

0𝑛+1
𝑓𝑘

)

.

We also have

𝑃𝑘

(

𝛼𝑘𝑒
(𝑛+1)
𝑘

𝐴𝑣𝑘 − 𝛼𝑘𝑢𝑘

)

= 𝑃𝑘

(

0𝑛+1
𝐴𝑣𝑘

)

− 𝛼𝑘𝑃𝑘

(

−𝑒(𝑛+1)𝑘

𝑢𝑘

)

=
(

0𝑛+1
𝐴𝑣𝑘

)

− (𝑢𝑇𝑘𝐴𝑣𝑘)𝑝𝑘 + 𝛼𝑘𝑝𝑘

=
(

0𝑛+1
𝐴𝑣𝑘

)

− 𝑢𝑇𝑘 (𝛼𝑘𝑢𝑘 + 𝛽𝑘+1𝑢𝑘+1 + 𝑈𝑘𝑐𝑘 + 𝑓𝑘)𝑝𝑘 + 𝛼𝑘𝑝𝑘

=
(

0𝑛+1
𝐴𝑣𝑘

)

− (𝛽𝑘+1𝑢𝑇𝑘 𝑢𝑘+1 + 𝑢𝑇𝑘𝑈𝑘𝑐𝑘 + (𝑢𝑇𝑘 𝑓𝑘)𝑝𝑘,

and

𝑃𝑘

(

0𝑛+1
𝑈𝑘𝑐𝑘

)

=
(

0𝑛+1
𝑈𝑘𝑐𝑘

)

− 𝑢𝑇𝑘𝑈𝑘𝑐𝑘𝑝𝑘, 𝑃𝑘

(

0𝑛+1
𝑓𝑘

)

=
(

0𝑛+1
𝑓𝑘

)

− (𝑢𝑇𝑘 𝑓𝑘)𝑝𝑘.

Therefore, we obtain

𝑃𝑘𝑃𝑘+1

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

=
(

0𝑛+1
𝐴𝑣𝑘

)

− 𝛽𝑘+1𝑢
𝑇
𝑘 𝑢𝑘+1𝑝𝑘 −

(

0𝑛+1
𝑈𝑘𝑐𝑘

)

−
(

0𝑛+1
𝑓𝑘

)

. (3.7)

Let 𝑤̄𝑘 = −𝛽𝑘+1𝑢𝑇𝑘 𝑢𝑘+1𝑝𝑘 −
(

0𝑛+1
𝑈𝑘𝑐𝑘

)

−
(

0𝑛+1
𝑓𝑘

)

. Notice that ‖𝑝𝑘‖ =
√

2. Using Proposition 2.1 and the upper bound on 𝛽𝑘+1 in (2.15),

we have

‖𝑤̄𝑘‖ = 𝑂(‖𝐴‖(𝐮 + 𝜇𝑘+1 + 𝜈𝑘)).

For 𝑖 = 1,… , 𝑘 − 1, we have

𝑃𝑖

(

0𝑛+1
𝐴𝑣𝑘

)

=
(

0𝑛+1
𝐴𝑣𝑘

)

− (𝑢𝑇𝑖 𝐴𝑣𝑘)𝑝𝑖.

Using (2.17) we get

‖(𝑢𝑇𝑖 𝐴𝑣𝑘)𝑝𝑖‖ ≤
√

2‖𝑣𝑇𝑘 (𝑉𝑖𝑑𝑖 + 𝑔𝑖)‖ =
√

2‖(𝑣𝑇𝑘 𝑉𝑖)𝑑𝑖 + 𝑣𝑇𝑘 𝑔𝑖‖

≤
√

2[𝜈𝑘(‖𝐴‖ + 𝑂(‖𝐴‖(𝐮 + 𝜈𝑖))) + 𝑂(‖𝐴‖𝐮)]
= 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘)),

and we further have

𝑃𝑖

(

0𝑛+1
𝐴𝑣𝑘

)

=
(

0𝑛+1
𝐴𝑣𝑘

)

+ 𝑤̄𝑖, 𝑖 = 1,… , 𝑘 − 1, (3.8)

where 𝑤̄𝑖 = −(𝑢𝑇𝑖 𝐴𝑣𝑘)𝑝𝑖 and ‖𝑤̄𝑖‖ = 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘)).
Therefore, by (3.7) and (3.8), we obtain

𝑃𝑘+1

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

= 𝑃1 ⋯𝑃𝑘−1

(

(

0𝑛+1
𝐴𝑣𝑘

)

+ 𝑤̄𝑘

)

=
(

0𝑛+1
𝐴𝑣𝑘

)

+ 𝑥𝑘,

where 𝑥𝑘 =
∑𝑘

𝑖=1(𝑃1 ⋯𝑃𝑖−1)𝑤̄𝑖. Notice that 𝑃𝑖 are Householder matrices and thus ‖𝑃𝑖‖ = 1. We finally obtain

‖𝑥𝑘‖ ≤
𝑘
∑

𝑖=1
‖𝑤̄𝑖‖ = 𝑂(‖𝐴‖(𝑘𝐮 + 𝑘𝜈𝑘 + 𝜇𝑘+1)),

which is the desired result. □

Remark 3.2. For the one-sided reorthogonalization we have 𝑐𝑘 = 0, which does not hold for a general reorthogonalization strategy.
This makes the proof of [20, Lemma 4.4] cannot be applied to Lemma 3.1. The upper bound on 𝑐𝑘 plays a key role in our proof.

The following theorem is a naturally corollary of Lemma 3.1, which generalizes [20, Theorem 4.1]. The proof is similar and we
omit it.

Theorem 3.1. For the 𝑘-step LBRO, we have
(

𝑂(𝑛+1)×𝑘

𝐴𝑉𝑘

)

+𝑋𝑘 = 𝑃𝑘+1

(

𝐵𝑘
𝑂𝑠×𝑘

)

, 𝑠 = 𝑚 + 𝑛 − 𝑘, (3.9)

where 𝑋𝑘 = (𝑥1,… , 𝑥𝑘) and
√

‖𝑋𝑘‖ = 𝑂(‖𝐴‖ 𝑘(𝑘𝐮 + 𝑘𝜈𝑘 + 𝜇𝑘+1)). (3.10)
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Remark 3.3.
For 𝑚 = 𝑛, let 𝐵𝑛 be the 𝑛 × 𝑛 lower bidiagonal form by discarding 𝛽𝑛+1. Then let 𝑝𝑖 =

(

−𝑒(𝑛)𝑖
𝑢𝑖

)

∈ R𝑚+𝑛 for 𝑖 = 1,… , 𝑛 and

𝑃𝑛+1 = 𝐼𝑚+𝑛. Now for 𝑘 < 𝑛 (3.5) should be rewritten in the following form:

𝑃𝑘+1

(

𝛼𝑘𝑒
(𝑘)
𝑘

𝛽𝑘+1𝑒
(𝑠+1)
1

)

=
(

0𝑛
𝐴𝑣𝑘

)

+ 𝑥𝑘, 𝑠 = 𝑚 + 𝑛 − 𝑘 − 1.

Especially, for 𝑘 = 𝑛 (3.5) should be rewritten as

𝑃𝑛+1

(

𝛼𝑘𝑒
(𝑛)
𝑛

0𝑚

)

=
(

0𝑛
𝐴𝑣𝑛

)

+ 𝑥𝑛,

and the upper bound on ‖𝑥𝑛‖ should be

‖𝑥𝑛‖ = 𝑂(‖𝐴‖(𝑛𝐮 + 𝑛𝜈𝑛 + 𝜇𝑛)).

The result of Theorem 3.1 can also be rewritten similarly. In order to obtain the upper bound on ‖𝑥𝑛‖, we first notice that
𝛽𝑛+1𝑢𝑛+1 = 𝐴𝑣𝑛 − 𝛼𝑛𝑢𝑛 − 𝑓𝑛 since we do not need to reorthogonalize 𝑢𝑛+1. By letting 𝑢𝑛+1 = 𝑈𝑛𝑙 where 𝑙 ∈ R𝑛 and using methods
similar to the proof of Proposition 2.1, we can get 𝛽𝑛+1 = 𝑂(‖𝐴‖(𝐮 + 𝜇𝑛 + 𝜈𝑛)). Then the upper bound on ‖𝑥𝑛‖ can be obtained with
he help of the upper bound on 𝛽𝑛+1.

Notice that Theorem 3.1 is a corresponding version of Proposition 3.1 in finite precision arithmetic. It establish a relationship
etween the 𝑘-step LBRO and Householder transformation based bidiagonal reduction of an augmented matrix of 𝐴𝑉𝑘 with a
erturbation.

3.2. Mixed forward–backward error bound of the 𝑘-step LBRO

There is a deep connection between the orthogonality level of 𝑈𝑘+1 and the detailed structure of 𝑃𝑘+1. In order to reveal it, we
irst state the following theorem which combines the results of [25, Theorem 4.1] and [23, Theorem 2.1 and Corollary 5.1].

Theorem 3.2 ([23,25]). For any arbitrary integer 𝑟 ≥ 𝑙 ≥ 1, let 𝑄𝑙 = (𝑞1,… , 𝑞𝑙) ∈ R𝑟×𝑙 where ‖𝑞𝑗‖ = 1, 𝑗 = 1,… , 𝑙. Define

𝑊𝑗 = 𝐼𝑟+𝑙 −𝑤𝑗𝑤
𝑇
𝑗 , 𝑤𝑗 =

(

−𝑒(𝑙)𝑗
𝑞𝑗

)

∈ R𝑟+𝑙 ,

𝑆𝑙 = (𝐼𝑙 +𝑀𝑙)−1𝑀𝑙 , 𝑀𝑙 = 𝐒𝐔𝐓(𝑄𝑇
𝑙 𝑄𝑙).

Then we have

𝑊1 ⋯𝑊𝑙 =

𝑙 𝑟
( )

𝑆𝑙 (𝐼𝑙 − 𝑆𝑙)𝑄𝑇
𝑙 𝑙

𝑄𝑙(𝐼𝑙 − 𝑆𝑙) 𝐼𝑛 −𝑄𝑙(𝐼𝑙 − 𝑆𝑙)𝑄𝑇
𝑙 𝑟

,

and

‖𝑆𝑙‖ ≤ 1,
‖𝑀𝑙‖

1 + ‖𝑀𝑙‖
≤ ‖𝑆𝑙‖ ≤ 2‖𝑀𝑙‖. (3.11)

Notice that ‖𝑀𝑙‖ = ‖𝐒𝐔𝐓(𝐼𝑙 − 𝑄𝑇
𝑙 𝑄𝑙)‖, which is just the orthogonality level of 𝑄𝑙. The quantity ‖𝑆𝑙‖ ∈ [0, 1] is an another

beautiful measure of the orthogonality level of 𝑄𝑙. The following result reveals a connection between the orthogonality level of
𝑈𝑘+1 and structure of 𝑃𝑘+1. For simplicity, we only prove the result for 𝑚 > 𝑛, for 𝑚 = 𝑛 the result can be proved similarly after
ome adjustments; see Remark 3.3 for related discussions.

Lemma 3.2. For the 𝑘-step LBRO, there exist vectors 𝑢̃𝑘+2,… , ̃𝑢𝑛+1 and 𝑣̃𝑘+2,… , 𝑣̃𝑛 with ‖𝑢̃𝑖‖ = ‖𝑣̃𝑖‖ = 1 and nonnegative numbers
̃𝑘+2,… , ̃𝛼𝑛 and 𝛽𝑘+2,… , 𝛽𝑛+1, such that 𝑢̃𝑖 is orthogonal to 𝑈𝑘+1 and 𝑢̃𝑗 , and 𝑣̃𝑖 is orthogonal to 𝑉𝑘+1 and 𝑣̃𝑗 for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 > 𝑘 + 1,
respectively. Furthermore, for matrices 𝑈 = (𝑈𝑘+1, ̃𝑢𝑘+2,… , ̃𝑢𝑛+1), 𝑉 = (𝑉𝑘+1, 𝑣̃𝑘+2,… , 𝑣̃𝑛) and bidiagonal matrix

𝐵 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1
𝛽2 ⋱

⋱ 𝛼𝑘
𝛽𝑘+1 𝛼𝑘+1

𝛽𝑘+2 𝛼̃𝑘+2
𝛽𝑘+3 ⋱

⋱ 𝛼̃𝑛
𝛽𝑛+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ R(𝑛+1)×𝑛,

the following properties hold.
9 
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(𝟏). There exist a matrix 𝑋 ∈ R(𝑚+𝑛+1)×𝑛 such that
(

𝑂(𝑛+1)×𝑛

𝐴𝑉

)

+𝑋 = 𝑃
(

𝐵
𝑂𝑚×𝑛

)

(3.12)

and

‖𝑋‖ = 𝑂(‖𝐴‖
√

𝑛(𝑘𝐮 + 𝑘𝜈𝑘+1 + 𝜇𝑘+1)), (3.13)

where

𝑃 = 𝑃𝑘+1𝑃𝑘+2 ⋯𝑃𝑛+1, 𝑃𝑖 = 𝐼𝑚+𝑛+1 − 𝑝̃𝑖𝑝̃
𝑇
𝑖 , 𝑝̃𝑖 =

(

−𝑒(𝑛+1)𝑖
𝑢̃𝑖

)

. (3.14)

(𝟐). If 𝑃 is partitioned as

𝑃 =

𝑛 + 1 𝑚
( )

𝑃11 𝑃12 𝑛 + 1
𝑃21 𝑃22 𝑚

, (3.15)

then we have

𝑃21 = 𝑈 (𝐼𝑛+1 − 𝑃11), ‖𝑃11‖ ≤ 2𝜇𝑘+1. (3.16)

Proof (1).. We use the following procedure to construct vectors 𝑢̃𝑘+2,… , ̃𝑢𝑛+1 and 𝑣̃𝑘+2,… , 𝑣̃𝑛. After 𝑘 steps of the LBRO, we have
computed 𝐵𝑘, 𝛼𝑘+1, 𝑈𝑘+1 and 𝑉𝑘+1. At step 𝑖 ≥ 𝑘 + 1, vector 𝑢̃𝑖+1 is generated as

𝑟𝑖 = 𝐴 ̃𝑣𝑖 − 𝛼̃𝑖𝑢̃𝑖, 𝛽𝑖+1𝑢̃𝑖+1 = 𝑟𝑖 −
𝑘+1
∑

𝑗=1
(𝑢𝑇𝑗 𝑟𝑖)𝑢𝑗 −

𝑖
∑

𝑗=𝑘+2
(𝑢̃𝑇𝑗 𝑟𝑖)𝑢̃𝑗 (3.17)

such that ‖𝑢̃𝑖+1‖ = 1, where for 𝑖 = 𝑘 + 1 we let 𝑢̃𝑘+1 = 𝑢𝑘+1 and 𝑣̃𝑘+1 = 𝑣𝑘+1. This procedure is equivalent to the one step Lanczos
idiagonalization of 𝑢̃𝑖+1 with full reorthogonalization. The construction of 𝑣̃𝑖+1 is similar:

𝑠𝑖 = 𝐴𝑇 𝑢̃𝑖+1 − 𝛽𝑖+1𝑣̃𝑖, 𝛼̃𝑖+1𝑣̃𝑖+1 = 𝑠𝑖 −
𝑘+1
∑

𝑗=1
(𝑣𝑇𝑗 𝑠𝑖)𝑣𝑗 −

𝑖
∑

𝑗=𝑘+2
(𝑣̃𝑇𝑗 𝑠𝑖)𝑣̃𝑗 , (3.18)

which is identical to the one step Lanczos bidiagonalization of 𝑣̃𝑖+1 with full reorthogonalization. If the procedure terminates at some
tep, it can be continued by choosing a new starting vector. Note that the above procedure can be treated as that of first performing
he 𝑘-step LBRO in finite precision arithmetic then performing the Lanczos bidiagonalization with full reorthogonalization in exact

arithmetic for 𝑖 ≥ 𝑘 + 1.
By the above construction, we know that ‖𝑢̃𝑖‖ = ‖𝑣̃𝑖‖ = 1 and 𝑢̃𝑖 is orthogonal to 𝑈𝑘+1 and 𝑢̃𝑗 while 𝑣̃𝑖 is orthogonal to 𝑉𝑘+1

nd 𝑣̃𝑗 for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 > 𝑘 + 1, respectively. Then we can carry out the same method as that in the proof of Lemma 3.1. For the 𝑖th
step procedure with 𝑖 ≥ 𝑘 + 1, we can prove that 𝑤̄𝑖 = 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘+1 + 𝜇𝑘+1)), and 𝑤̄𝑗 = 0 with 𝑗 = 1,… , 𝑖 − 1 for 𝑖 > 𝑘 + 1 and
̄ 𝑗 = 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘+1)) with 𝑗 = 1,… , 𝑖 − 1 for 𝑖 = 𝑘 + 1. This can be checked easily following the proof method of Lemma 3.1.

Therefore, (3.5) in Lemma 3.1 becomes

𝑃𝑘+1𝑃𝑘+2 ⋯𝑃𝑖+1

(

𝛼̃𝑖𝑒
(𝑖)
𝑖

𝛽𝑖+1𝑒
(𝑠+1)
1

)

=
(

0𝑛+1
𝐴 ̃𝑣𝑖

)

+ 𝑥̃𝑖, 𝑠 = 𝑚 + 𝑛 − 𝑖 (3.19)

with ‖𝑥̃𝑖‖ = 𝑂(‖𝐴‖(𝑘𝐮 + 𝑘𝜈𝑘+1 + 𝜇𝑘+1)) for 𝑖 = 𝑘 + 1 or ‖𝑥̃𝑖‖ = 𝑂(‖𝐴‖(𝐮 + 𝜈𝑘+1 + 𝜇𝑘+1)) for 𝑖 > 𝑘 + 1. Note that for 𝑖 = 𝑘 + 1 we let
̃𝑘+1 = 𝑣𝑘+1 and 𝛼̃𝑘+1 = 𝛼𝑘+1. Therefore, equality (3.9) in Theorem 3.1 becomes (3.12), where 𝑋 = (𝑥1,… , 𝑥𝑘, ̃𝑥𝑘+1,… , ̃𝑥𝑛) and thus

‖𝑋‖ ≤
√

𝑛 max
1≤𝑖≤𝑘

𝑘+1≤𝑗≤𝑛

{‖𝑥𝑖‖, ‖𝑥̃𝑗‖} = 𝑂(‖𝐴‖
√

𝑛(𝑘𝐮 + 𝑘𝜈𝑘+1 + 𝜇𝑘+1)).

(2). Let 𝑀 = 𝐒𝐔𝐓(𝑈𝑇𝑈 ). By Theorem 3.2, we have

𝑃11 = (𝐼𝑛+1 +𝑀)−1𝑀 , 𝑃21 = 𝑈 (𝐼𝑛+1 − 𝑃11).

By inequality (3.11) we obtain

‖𝑃11‖ ≤ 2𝜇𝑘+1,

since the orthogonality level of 𝑈 is ‖𝑀‖ = 𝜇𝑘+1. □

Now we are ready to give a mixed forward–backward error bound of the 𝑘-step LBRO. We only prove the result for 𝑚 > 𝑛, for
the case of 𝑚 = 𝑛 the result can be proved similarly after some adjustments.

Theorem 3.3. For the 𝑘-step LBRO, there exist two orthonormal matrices 𝑈̄𝑘+1 = (𝑢̄1,… , ̄𝑢𝑘+1) ∈ R𝑚×(𝑘+1) and 𝑉𝑘+1 = (𝑣̄1,… , 𝑣̄𝑘+1) ∈ R𝑛×𝑘

such that
10 
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𝑈̄𝑘+1(𝛽1𝑒
(𝑘+1)
1 ) = 𝑏 + 𝛿𝑏, (3.20)

(𝐴 + 𝐸)𝑉𝑘 = 𝑈̄𝑘+1𝐵𝑘, (3.21)

(𝐴 + 𝐸)𝑇 𝑈̄𝑘+1 = 𝑉𝑘𝐵
𝑇
𝑘 + 𝛼𝑘+1𝑣̄𝑘+1(𝑒

(𝑘+1)
𝑘+1 )𝑇 , (3.22)

and

‖𝑈̄𝑘+1 − 𝑈𝑘+1‖ ≤ 2𝜇𝑘+1 + 𝑂(𝜇2
𝑘+1), ‖𝑉𝑘+1 − 𝑉𝑘+1‖ ≤ 𝜈𝑘+1 + 𝑂(𝜈2𝑘+1), (3.23)

where 𝐸 and 𝛿𝑏 are perturbation matrix and vector, respectively, satisfying

‖𝐸‖ = 𝑂(‖𝐴‖
√

𝑛(𝑘𝐮 + 𝑘𝜈𝑘+1 + 𝜇𝑘+1)), ‖𝛿𝑏‖ = 𝑂(‖𝑏‖𝐮). (3.24)

Proof. In finite precision arithmetic, we have 𝑏 + 𝛿0 = 𝛽1𝑢1, where ‖𝛿0‖ = 𝑂(‖𝑏‖𝐮). By the definition of 𝑃 , we have
(

0𝑛+1
𝑏

)

+ 𝛿1 = 𝑃1

(

𝛽1
0𝑚+𝑛

)

= 𝑃
(

𝛽1
0𝑚+𝑛

)

, 𝛿1 =
(

0𝑛+1
𝛿0

)

.

Combining with (3.12), we have
(

0𝑛+1 𝑂(𝑛+1)×𝑛

𝑏 𝐴𝑉

)

+

(

𝑋1

𝑋2

)

=

(

𝑃11 𝑃12

𝑃21 𝑃22

)

(

𝐵̄
𝑂𝑚×𝑛

)

=

(

𝑃11𝐵̄

𝑃21𝐵̄

)

(3.25)

where
(

𝑋1
𝑋2

)

=
(

𝛿0, 𝑋
)

, 𝐵̄ =
(

𝛽1𝑒
(𝑛+1)
𝑛+1 , 𝐵

)

.

Since 𝑃 is orthogonal, we have

𝑃 𝑇
11𝑃11 + 𝑃 𝑇

21𝑃21 = 𝐼𝑛+1. (3.26)

Now we construct two matrices 𝑈̄𝑛+1 and 𝑉𝑛.
Let the compact SVD of 𝑃21 is 𝑃21 = 𝑌1𝛴 𝑍𝑇 , where 𝑌 = (𝑌1, 𝑌2) ∈ R𝑚×𝑚 and 𝑍 ∈ R(𝑛+1)×(𝑛+1) are orthogonal matrices and

𝛴 = diag(𝜎1,… , 𝜎𝑛+1) satisfying 0 ≤ 𝜎𝑛+1 ≤ ⋯ ≤ 𝜎1 ≤ 1. Then by (3.26) we have

𝑍𝑇 𝑃 𝑇
11𝑃11𝑍 = (𝐼𝑛+1 + 𝛴)(𝐼𝑛+1 − 𝛴).

Define 𝑈̄𝑛+1 = 𝑌1𝑍𝑇 ∈ R𝑚×(𝑛+1). Then 𝑈̄𝑛+1 is an orthonormal matrix, and by the above equality we have

𝑈̄𝑛+1 − 𝑃21 = 𝑌1(𝐼𝑛+1 − 𝛴)𝑍𝑇 = 𝑌1(𝐼𝑛+1 + 𝛴)−1𝑍𝑇 𝑃 𝑇
11𝑃11. (3.27)

By (3.16) and (3.27) we obtain

‖𝑈̄𝑛+1 − 𝑈‖ = ‖𝑈̄𝑛+1 − 𝑃21 − 𝑈𝑃11‖

≤ ‖𝑈̄𝑛+1 − 𝑃21‖ + ‖𝑈𝑃11‖

≤ ‖𝑃11‖
2 + ‖𝑃11‖(1 + 𝜇𝑘+1)

≤ 4𝜇2
𝑘+1 + 2𝜇𝑘+1(1 + 𝜇𝑘+1)

= 2𝜇𝑘+1 + 𝑂(𝜇2
𝑘+1). (3.28)

By (3.25) and (3.27) we obtain

𝑈̄𝑛+1𝐵̄ −
(

𝑏, 𝐴𝑉
)

= 𝑈̄𝑛+1𝐵̄ − (𝑃21𝐵̄ −𝑋2) = (𝑈̄𝑛+1 − 𝑃21)𝐵̄ +𝑋2

and

(𝑈̄𝑛+1 − 𝑃21)𝐵̄ = 𝑌1(𝐼𝑛+1 + 𝛴)−1𝑍𝑇 𝑃 𝑇
11𝑃11𝐵̄ = 𝑌1(𝐼𝑛+1 + 𝛴)−1𝑍𝑇 𝑃 𝑇

11𝑋1,

which can be rewritten as

𝑈̄𝑛+1𝐵̄ −
(

𝑏, 𝐴𝑉
)

=
(

𝐶 , 𝐼𝑚
)

(

𝑋1
𝑋1

)

=
(

𝐶 , 𝐼𝑚
) (

𝛿0, 𝑋
)

, (3.29)

where 𝐶 = 𝑌1(𝐼𝑛+1 + 𝛴)−1𝑍𝑇 𝑃 𝑇
11. Define

𝛿𝑏 = 𝛽1𝑢̄1 − 𝑏, 𝐸1 = 𝑈̄𝑛+1𝐵 − 𝐴𝑉 . (3.30)

Then (3.29) implies that

𝛿𝑏 =
(

𝐶 , 𝐼𝑚
)

𝛿0, 𝐸1 =
(

𝐶 , 𝐼𝑚
)

𝑋 .
Notice that
11 
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𝐶 𝐶𝑇 + 𝐼𝑚 = 𝐼𝑚 + 𝑌1(𝐼𝑛+1 − 𝛴)(𝐼𝑛+1 + 𝛴)−1𝑌 𝑇
1 ,

and thus ‖

(

𝐶 , 𝐼𝑚
)

‖ ≤
√

2. Therefore,

‖𝛿𝑏‖ ≤ ‖

(

𝐶 , 𝐼𝑚
)

‖‖𝛿0‖ ≤
√

2‖𝛿0‖ = 𝑂(‖𝑏‖𝐮),

‖𝐸1‖ ≤ ‖

(

𝐶 , 𝐼𝑚
)

‖‖𝑋‖ ≤
√

2‖𝑋‖.

Let the SVD of 𝑉 is 𝑉 = 𝐾 𝛴1𝐽𝑇 . Define 𝑉𝑛 = 𝐾 𝐽𝑇 ∈ R𝑛×𝑛. then 𝑉𝑛 is orthogonal and

‖𝑉𝑛 − 𝑉 ‖ = ‖𝐼𝑛+1 − 𝛴1‖ ≤ 1 − (1 − 2𝜈𝑘+1)1∕2 = 𝜈𝑘+1 + 𝑂(𝜈2𝑘+1), (3.31)

where we have used 𝜎𝑛(𝑉 ) ≥ (1 − 2𝜈𝑘+1)1∕2 since the orthogonality level of 𝑉 is 𝜈𝑘+1; see (2.10). By the definition of 𝐸1 in (3.29),
we have 𝐴𝑉 + 𝐸1 = 𝑈̄𝑛+1𝐵, which can be rewritten as

(𝐴 + 𝐸)𝑉𝑛 = 𝑈̄𝑛+1𝐵 or (𝐴 + 𝐸)𝑇 𝑈̄𝑛+1 = 𝑉𝑛𝐵
𝑇 , (3.32)

where

𝐸 = [𝐴(𝑉 − 𝑉𝑛) + 𝐸1]𝑉 𝑇
𝑛 ,

and thus

‖𝐸‖ ≤ ‖𝐴‖[𝜈𝑘+1 + 𝑂(𝜈2𝑘+1)] +
√

2‖𝑋‖ = 𝑂(‖𝐴‖
√

𝑛(𝑘𝐮 + 𝑘𝜈𝑘+1 + 𝜇𝑘+1)).

Let 𝑈̄𝑘+1 = 𝑈̄𝑛+1(∶, 1 ∶ 𝑘 + 1) and 𝑉𝑘+1 = 𝑉𝑛(∶, 1 ∶ 𝑘 + 1). By using ‖𝑈̄𝑘+1 − 𝑈𝑘+1‖ ≤ ‖𝑈̄𝑛+1 − 𝑈‖ and ‖𝑉𝑘+1 − 𝑉𝑘+1‖ ≤ ‖𝑉𝑛 − 𝑉 ‖ we
btain (3.23). By equating the first 𝑘 and 𝑘 + 1 columns of the two equalities of (3.32) respectively, we obtain (3.21) and (3.22).

Note that 𝛽1𝑢̄1 = 𝑈̄𝑘+1(𝛽1𝑒
(𝑘+1)
1 ). By (3.30) we finally obtain (3.20). □

Theorem 3.3 is a generalization of [20, Theorem 5.2] that deals with upper Lanczos bidiagonalization with one-sided reorthogo-
nalization. There are three main improvements. First, our result can apply to a general reorthogonalization strategy, and by letting
𝑐𝑘 = 0𝑘 for 𝑘 = 1, 2,… that corresponds to the one-sided reorthogonalization case we can obtain a similar upper bound on ‖𝐸‖

as [20, Theorem 5.2]. Second, apart from giving an upper bound on ‖𝑉𝑘+1 − 𝑉𝑘+1‖, our result also gives a similar upper bound on
‖𝑈̄𝑘+1 − 𝑈𝑘+1‖. Finally, although [20, Theorem 5.2] is about the 𝑘-step process, upper bounds on ‖𝐸‖ and ‖𝑉𝑘 − 𝑉𝑘‖ there depend
on the orthogonality level of 𝑉𝑛 that can only be known after the 𝑛-step process has finished, while our result, in contrast, can really
apply to the 𝑘-step LBRO for 1 ≤ 𝑘 ≤ 𝑛 due to the help of Lemma 3.2.

Notice that the relations (3.20)–(3.22) are matrix-form recurrences of the 𝑘-step Lanczos bidiagonalization of 𝐴+𝐸 with starting
vector 𝑏 + 𝛿𝑏 (denoted by LB(𝐴 + 𝐸 , 𝑏 + 𝛿𝑏)) in exact arithmetic. If the orthogonality levels of 𝑈𝑘+1 and 𝑉𝑘+1 are kept around 𝑂(𝐮),

hich corresponds to the full reorthogonalization case, then 𝐵𝑘 is the exact one generated by the 𝑘-step LB(𝐴 + 𝐸 , 𝑏 + 𝛿𝑏) with
‖𝐸‖∕‖𝐴‖, ‖𝛿𝑏‖∕‖𝑏‖ = 𝑂(𝐮). Following Higham [18, §1.5], we could call the 𝑘-step LBRO mixed forward–backward stable as long
as the orthogonality of 𝑈𝑘+1 and 𝑉𝑘+1 are good enough.2 This result can be used to analyze backward stability of LBRO based
algorithms, such as bidiagonalization based algorithms for computing a partial SVD or LSQR for iteratively solving least squares
problems.

4. Applications to SVD computation and LSQR

In this section, we use the above results to investigate backward stability of LBRO based algorithms including partial SVD
computation and LSQR. For simplicity, we only consider rounding errors in the LBRO, while other parts of an algorithm is supposed
o be performed in exact arithmetic.

We first review the partial SVD computation of 𝐴 based on the Lanzos bidiagonalization in exact arithmetic. We add ‘‘ ̂ ’’ to 𝛼𝑖, 𝑢𝑖,
𝐵𝑘, etc. to denote the corresponding quantities in exact arithmetic. In order to approximate some singular values and corresponding
vectors of 𝐴, we first compute the compact SVD of 𝐵̂𝑘:

𝐵̂𝑘 = 𝐻𝑘𝛩𝑘𝑍
𝑇
𝑘 , 𝛩𝑘 = diag(𝑠(𝑘)1 ,… , 𝑠(𝑘)𝑘 ), 𝑠(𝑘)1 > ⋯ > 𝑠(𝑘)𝑘 > 0, (4.1)

where 𝐻𝑘 = (ℎ(𝑘)1 ,… , ℎ(𝑘)𝑘 ) ∈ R(𝑘+1)×𝑘 and 𝑍𝑘 = (𝑧(𝑘)1 ,… , 𝑧(𝑘)𝑘 ) ∈ R𝑘×𝑘 are orthonormal, and 𝛩𝑘 ∈ R𝑘×𝑘. Then the approximate
ingular values of 𝐴 are 𝑠(𝑘)𝑖 , which are often called Ritz values, and the corresponding approximate left and right singular vectors
re 𝑥(𝑘)𝑖 = 𝑈̂𝑘+1ℎ

(𝑘)
𝑖 and 𝑦(𝑘)𝑖 = 𝑉𝑘𝑧

(𝑘)
𝑖 , respectively, where 𝑖 = 1,… , 𝑘. The above decomposition can be achieved by a direct method

ince 𝐵̂𝑘 is a matrix of small scale, and it is appropriate to compute some extreme singular values and vectors [4].
In finite precision arithmetic, the above procedure suffers from the ‘‘ghost’’ phenomenon, which means that some of the

converged Ritz values suddenly ‘‘jump’’ to become a ‘‘ghost’’ and then converge to the next larger or smaller singular values after
a few iterations. These redundant copies of Ritz values are usually called ‘‘ghosts’’ and this phenomenon results in many unwanted
purious copies of singular values and make it difficult to determine whether these spurious copies are real multiple singular values.
his problem is closely related to the loss of orthogonality of Lanczos vectors, which can be avoided by using some types of

2 The mixed forward–backward stability can be illustrated by the following example. Suppose a method is used to compute 𝑦 = 𝑓 (𝑥) for 𝑓 ∶ R → R. Then
he method is called mixed forward–backward stable if the computed value 𝑦 satisfies 𝑦 + 𝛥𝑦 = 𝑓 (𝑥 + 𝛥𝑥) where |𝛥𝑦|∕|𝑦| and |𝛥𝑥|∕|𝑥| are sufficiently small.
12 
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reorthogonalization strategies [4,5]. The full reorthogonalization strategy is often used to mimic the Lanczos bidiagonalization in
xact arithmetic. Next, we give an analysis of full reorthogonalization for partial SVD computation in finite precision arithmetic.

Suppose the Lanczos bidiagonalization is implemented with full reorthogonalization and the orthogonality levels of 𝑈𝑘+1 and
𝑘+1 are kept around 𝑂(𝐮). By Theorem 3.3, 𝑠(𝑘)𝑖 are Ritz values of 𝐴 = 𝐴 + 𝐸 and they will converge to the singular values of 𝐴.
otice that ‖𝐸‖ = 𝑂(‖𝐴‖

√

𝑛𝑘𝐮). By the perturbation theory of singular values we have
|𝜎𝑖(𝐴) − 𝜎𝑖(𝐴)|

𝜎𝑖(𝐴)
=

|𝜎𝑖(𝐴) − 𝜎𝑖(𝐴)|
‖𝐴‖

⋅
𝜎1(𝐴)
𝜎𝑖(𝐴)

≤
𝜎1(𝐴)
𝜎𝑖(𝐴)

⋅ 𝑂(
√

𝑛𝑘𝐮) (4.2)

for 𝜎𝑖(𝐴) > 0. Therefore, the several largest Ritz values 𝑠(𝑘)𝑖 will approximate largest singular values of 𝐴 with relative error around
𝑂(𝐮). If 𝜎𝑖(𝐴) has multiplicity bigger than one, then the several converged Ritz values corresponding to 𝜎𝑖(𝐴) are not strictly equal. By
(4.2), with the help of full reorthogonalization, errors between these Ritz values will be so small that they all look like approximations
to the same 𝜎𝑖(𝐴), but they actually differ by a value of 𝑂(

√

𝑛𝑘𝐮). If the algorithm is implemented in a lower precision arithmetic,
then separations between those converged Ritz values corresponding to a singular value with multiplicity greater than one will be
bserved more obviously. If that singular value denoted by 𝜎𝑖(𝐴) is very small, then the converged Ritz values corresponding to 𝜎𝑖(𝐴)
ill have bigger relative errors since 𝜎1(𝐴)∕𝜎𝑖(𝐴) is very big. The above discussion is illustrated by a numerical example described
y Fig. 3 in Section 5.

Now we investigate the LSQR that is based on the Lanczos bidiagonalization for iteratively solving a large scale linear least
squares problem

min
𝑥∈R𝑛

‖𝐴𝑥 − 𝑏‖. (4.3)

In exact arithmetic, the problem is projected to the Krylov subspace 𝑘(𝐴𝑇𝐴, 𝐴𝑇 𝑏) = span(𝑉𝑘) to become a 𝑘-dimension small scale
roblem. Denoting a vector in span(𝑉𝑘) by 𝑥 = 𝑉𝑘𝑦 where 𝑦 ∈ R𝑘, we have

min
𝑥=𝑉𝑘𝑦

‖𝐴𝑥 − 𝑏‖ = min
𝑦∈R𝑘

‖𝐴𝑉𝑘𝑦 − 𝛽1𝑈𝑘+1𝑒
(𝑘+1)
1 ‖

= min
𝑦∈R𝑘

‖𝑈̂𝑘+1𝐵̂𝑘𝑦 − 𝛽1𝑈̂𝑘+1𝑒
(𝑘+1)
1 ‖

= min
𝑦∈R𝑘

‖𝐵̂𝑘𝑦 − 𝛽1𝑒
(𝑘+1)
1 ‖,

and thus the 𝑘th iterative solution of the LSQR is
𝑥̂𝑘 = 𝑉𝑘𝑦̂𝑘, 𝑦̂𝑘 = ar g min

𝑦∈R𝑘
‖𝐵̂𝑘𝑦 − 𝛽1𝑒

(𝑘+1)
𝑘+1 ‖. (4.4)

In [2], the authors proposed a formula that recursively update 𝑥̂𝑘 to 𝑥̂𝑘+1 very efficiently to avoid solving the 𝑘-dimension small-scale
roblem at each iteration.

In finite precision arithmetic, the convergence of LSQR can be slowed down significantly due to the loss of orthogonality of
anczos vectors. Maintaining a certain level of orthogonality among Lanczos vectors will accelerate the convergence at the expense of
 bit more computational costs and storage requirements.3 For example, the LSQR is often implemented with full reorthogonalization

to maintain stability of convergence for solving discrete linear ill-posed problems, since it usually takes not too many iterations to
reach the semi-convergence point [6,17].

We analyze the LSQR with full reorthogonalization for solving least squares problems. In finite precision arithmetic, the 𝑘-step
SQR computes

𝑥𝑘 = 𝑉𝑘𝑦𝑘, 𝑦𝑘 = ar g min
𝑦∈R𝑘

‖𝐵𝑘𝑦 − 𝛽1𝑒
(𝑘+1)
1 ‖.

By (3.20) and (3.21), we have
𝑦𝑘 = ar g min

𝑦∈R𝑘
‖𝑈̄𝑘+1𝐵𝑘𝑦 − 𝑈̄𝑘+1𝛽1𝑒

(𝑘+1)
1 ‖ = ar g min

𝑦∈R𝑘
‖(𝐴 + 𝐸)𝑉𝑘𝑦 − (𝑏 + 𝛿𝑏)‖.

Therefore, we get 𝑥̄𝑘 = ar g min𝑥=𝑉𝑘𝑦 ‖(𝐴 + 𝐸)𝑥 − (𝑏 + 𝛿𝑏)‖ where 𝑥̄𝑘 = 𝑉𝑘𝑦𝑘, which implies that 𝑥̄𝑘 is the 𝑘th LSQR solution in exact
arithmetic to the perturbed problem

min
𝑥∈R𝑛

‖(𝐴 + 𝐸)𝑥 − (𝑏 + 𝛿𝑏)‖. (4.5)

Notice from (3.23) that

‖𝑥̄𝑘 − 𝑥𝑘‖ ≤ ‖𝑉𝑘 − 𝑉𝑘‖‖𝑦𝑘‖ ≤ ‖𝑦𝑘‖(𝜈𝑘 + 𝑂(𝜈2𝑘)).

Using ‖𝑦𝑘‖ = ‖𝑥̄𝑘‖ we obtain
‖𝑥𝑘 − 𝑥̄𝑘‖

‖𝑥̄𝑘‖
≤ 𝜈𝑘 + 𝑂(𝜈2𝑘). (4.6)

If we keep the orthogonality of 𝑉𝑘 around 𝑂(𝐮), then 𝑥𝑘 ≈ 𝑥̄𝑘 and thus 𝑥𝑘 can be treated as the 𝑘th LSQR solution to the perturbed
roblem (4.5). This indicates the backward stability property of LSQR if full reorthogonalization is used.

3 In full reorthogonalization, 𝑢𝑘 and 𝑣𝑘 are reorthogonalized against all previous vectors {𝑢1 ,… , 𝑢𝑘−1} and {𝑣1 ,… , 𝑣𝑘−1} as soon as they have been computed.
his adds an arithmetic cost of about 4(𝑚 + 𝑛)𝑘2 flops, which is affordable if 𝑘 ≪ min{𝑚, 𝑛}.
13 
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Table 1
Properties of the test matrices.

Index 𝐴 𝑚 × 𝑛 ‖𝐴‖ 𝜅(𝐴) Description

1 nos3 960 × 960 689.904 37 723.6 Structural problem
2 well1850 1850 × 712 1.79433 111.313 Least squares problem
3 lshp2614 2614 × 2614 6.98798 5197.35 Thermal problem
4 c-23 3969 × 3969 1089.71 22 795.9 Optimization problem

Fig. 1. Values of ‖𝑋𝑘‖∕‖𝐴‖ for full reorthogonalization: (a) nos3; (b) well1850; (c) lshp2614; (d) c-23.

5. Numerical experiments

In this section, we use several numerical examples to illustrate our results. Since the error matrix ‖𝐸‖ in Theorem 3.3 cannot
e explicitly calculated, we only show the values of ‖𝑋𝑘‖ in Theorem 3.1. In order to confirm the upper bound on ‖𝐸‖ implicitly,

we use an example to illustrate the relation (4.2) for partial SVD computations. The following four matrices are taken from [26],
and a description of them is in Table 1, where 𝜅(⋅) is the condition number of a matrix. All the computations are carried out in

ATLAB R2019b, where the roundoff unit for double precision arithmetic is 𝐮 = 2−53 ≈ 1.11 × 10−16. All starting vectors are chosen
as 𝑏 = (1,… , 1) ∈ R𝑚.

Fig. 1 depicts the values of ‖𝑋𝑘‖∕‖𝐴‖ and orthogonality levels of 𝑈𝑘 and 𝑉𝑘 as the iterations progress from 1 to 100, where the
LBRO is implemented using full reorthogonalization. For the four matrices, the orthogonality levels of 𝑈𝑘 and 𝑉𝑘 are maintained
around 𝑂(𝐮). Therefore, by the upper bound in (3.10), ‖𝑋𝑘‖∕‖𝐴‖ should be around 𝑂(𝐮), which can be observed from the four
subfigures.

Then we use partial reorthogonalization to implement the LBRO by using lanbpro.m in the PROPACK package [4]. Fig. 2
depicts the values of ‖𝑋𝑘‖∕‖𝐴‖ as well as 𝜇𝑘 and 𝜈𝑘. We also depict the orthogonality levels of 𝑢𝑘 and 𝑣𝑘 defined as

𝜔(𝑢𝑘) = max
1≤𝑖<𝑘

|𝑢𝑇𝑖 𝑢𝑘|, 𝜔(𝑣𝑘) = max
1≤𝑖<𝑘

|𝑣𝑇𝑖 𝑣𝑘|,

respectively. Note that 𝜔(𝑢𝑖) ≤ 𝜇𝑘 ≤ 𝑘max1≤𝑖≤𝑘 𝜔(𝑢𝑖) and this quantity is used to measure orthogonality between 𝑢𝑘 and previous
Lanczos vectors. From the figure we find that the values of 𝜇𝑘 and 𝜈𝑘 grow slowly and eventually stabilize around a value. This is
because we set OPTIONS.eta=1e-10 in lanbpro.m, which can keep orthogonality levels below 10−10 after reorthogonalization.

e can also find that ‖𝑋𝑘‖∕‖𝐴‖ grows in consistent with 𝜇𝑘 and 𝜈𝑘, which confirms the upper bound (3.10) again. We find that
𝜔(𝑢 ) and 𝜔(𝑣 ) grow gradually at first but jump down when reorthogonalization is used. Then, they stay low for a few steps but
𝑘 𝑘
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Fig. 2. Values of ‖𝑋𝑘‖∕‖𝐴‖ for partial reorthogonalization: (a) nos3; (b) well1850; (c) lshp2614; (d) c-23.

increase again until reorthogonalization is used again. This process repeats. This is because partial reorthogonalizations occurs only
hen necessary and only a part of previous Lanczos vectors are included in the reorthogonalization steps.

Finally we use an example to illustrate the relation (4.2). The matrix 𝐴 is constructed as follows. Let 𝑚 = 𝑛 = 800. First construct
a row vector 𝑠 = (𝑠1, 𝑠2,… , 𝑠𝑛). The first two (𝑠1, 𝑠2) and the last two (𝑠𝑛−1, 𝑠𝑛) are repeated (have multiplicity 2) with values 1.0
and 10−4. The remaining values are as follows: 𝑠3 = 0.95, 𝑠𝑛−2 = 0.10 and the rest decrease linearly from 𝑠4 = 0.90 to 𝑠𝑛−3 = 0.15

ith uniform steps. Let 𝚂 = 𝚍𝚒𝚊𝚐(𝚜), and let 𝑃 and 𝑄 be two symmetric orthogonal matrices generated by the MATLAB built-in
unctions 𝙿 = 𝚐𝚊𝚕𝚕𝚎𝚛𝚢(}𝚘𝚛𝚝𝚑𝚘𝚐′, 𝚗, 𝟷) and 𝚀 = 𝚐𝚊𝚕𝚕𝚎𝚛𝚢(}𝚘𝚛𝚝𝚑𝚘𝚐′, 𝚗, 𝟸), respectively. Finally let 𝐴 = 𝑃 𝑆 𝑄𝑇 . By the construction, the
𝑖th largest singular value of 𝐴 is 𝜎𝑖 = 𝑠𝑖, and the multiplicities of singular values 𝜎1 and 𝜎𝑛 are 2. In the implementations, we first
tore both 𝐴 and 𝑏 in double precision, and then the LBRO using full reorthogonalization is implemented in double and single
recision arithmetic, respectively, and all the other computations are taken in double precision.

Fig. 3 depicts the convergence history of the first four largest approximations and the error curve corresponding to the 2-
multiplicity singular value 𝜎1. The black circles along the right vertical axis in subfigures (3(a)) and (3(c)) indicate the values
of 𝜎𝑖 for 𝑖 = 1,… , 𝑛. The experimental results for smallest approximations are similar and we omit them. Subfigures (3(a)) and
(3(c)) show that the multiplicities of 𝜎1 can be determined correctly from the convergence history of 𝑠(𝑘)1 and 𝑠(𝑘)2 . However, in
ubfigures (3(b)) and (3(d)) we find that 𝑠(𝑘)1 is not rigorously equal to 𝑠(𝑘)2 although they are both used to approximate 𝜎1. This
an be observed more obviously in subfigure (3(d)) where the LBRO is performed in single precision arithmetic with roundoff unit
= 2−24 ≈ 5.96 × 10−8.

Table 2 shows the errors of approximations to both the 2-multiplicity singular values 𝜎1 = 𝜎2 and 𝜎𝑛 = 𝜎𝑛−1. For approximations
to 𝜎1 we set 𝑘 = 100, while the smallest two Ritz values converge to 𝜎𝑛 more slowly and we set 𝑘 = 250 in this case. We can find that
both 𝑠(𝑘)1 and 𝑠(𝑘)2 as well as 𝑠(𝑘)𝑘 and 𝑠(𝑘)𝑘−1 differs by a value of 𝑂(𝐮), which is consistent with the upper bound on ‖𝐸‖. For 𝜎𝑛 = 10−4,
the relative errors of approximations are much bigger than that of 𝜎1 = 1.0 due to a large value of 𝜎1∕𝜎𝑛, which is consistent with
(4.2).

6. Conclusion

By writing various types of reorthogonalization strategies in a general form, we have made a backward error analysis of the LBRO
n finite precision arithmetic. For the 𝑘-step LBRO(𝐴, 𝑏), we have shown that: (1). the computed 𝐵𝑘 is the exact one generated by

the 𝑘-step LB(𝐴+𝐸 , 𝑏+𝛿𝑏), where ‖𝛿𝑏‖∕‖𝑏‖ = 𝑂(𝐮) and ‖𝐸‖∕‖𝐴‖ has the same order of magnitude as the sum of 𝐮 and orthogonality
levels of 𝑈 and 𝑉 ; (2). if we denote the two orthonormal matrices generated by LB(𝐴+𝐸 , 𝑏+𝛿 ) in exact arithmetic by 𝑈̄ and
𝑘+1 𝑘+1 𝑏 𝑘+1
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Fig. 3. Convergence and accuracy of approximate largest singular values: (a), (b) full reorthogonalization in double precision arithmetic; (c), (d) full
reorthogonalization in single precision arithmetic.

Table 2
Accuracy of approximate singular values computed in double and single precision arithmetic.
Work precision |𝑠(100)1 − 𝜎1|∕𝜎1 |𝑠(100)2 − 𝜎2|∕𝜎2 |𝑠(100)1 − 𝑠(100)2 |

double 2.22 × 10−16 2.22 × 10−16 4.44 × 10−16
single 4.17 × 10−8 2.33 × 10−8 1.83 × 10−8

|𝑠(250)250 − 𝜎𝑛|𝜎𝑛 |𝑠(250)249 − 𝜎𝑛−1|𝜎𝑛−1 |𝑠(250)250 − 𝑠(250)249 |

double 1.30 × 10−12 1.08 × 10−12 2.38 × 10−16
single 7.93 × 10−6 3.27 × 10−5 2.48 × 10−9

𝑉𝑘+1, respectively, then the first order errors of ‖𝑈𝑘+1−𝑈̄𝑘+1‖ and ‖𝑉𝑘+1−𝑉𝑘+1‖ are of the same orders of magnitude as orthogonality
levels of 𝑈𝑘+1 and 𝑉𝑘+1, respectively. Thus, the 𝑘-step LBRO is mixed forward–backward stable as long as the orthogonality of 𝑈𝑘+1
and 𝑉𝑘+1 are good enough. This result is then used to show backward stability of the LBRO based SVD computation algorithm and
LSQR algorithm. For the Lanczos bidiagonalization with full reorthogonalization, we have shown that the LBRO based SVD actually
computes approximations to the singular values of 𝐴+𝐸 with ‖𝐸‖ = 𝑂(‖𝐴‖𝐮), and the LBRO based LSQR computes iterative solution
that approximately equals to the exact solution of a slightly perturbed least squares problem within error 𝑂(𝐮). Several numerical
experiments are made to confirm the results. All these results can help us to gain more insights on the finite precision behavior of
the Lanczos bidiagonalization algorithm.
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