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Abstract

Learning convolution kernels in operators from data arises in numerous applications and
represents an ill-posed inverse problem of broad interest. With scant prior information,
kernel methods offer a natural nonparametric approach with regularization. However, a
major challenge is to select a proper reproducing kernel, especially as operators and data
vary. We show that the input data and convolution operator themselves induce an auto-
matic, data-adaptive RKHS (DA-RKHS), obviating manual kernel selection. In particular,
when the observation data is discrete and finite, there is a finite set of automatic basis func-
tions sufficient to represent the estimators in the DA-RKHS, including the minimal-norm
least-squares, Tikhonov, and conjugate-gradient estimators. We develop both Tikhonov
and scalable iterative and hybrid algorithms using the automatic basis functions. Numeri-
cal experiments on integral, nonlocal, and aggregation operators confirm that our automatic
RKHS regularization consistently outperforms standard ridge regression and Gaussian pro-
cess methods with preselected kernels.
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1 Introduction
Kernel functions play a fundamental role in defining operators between function spaces, enabling
the representation of nonlocal or long-range interactions between variables. Such kernel-based
operators permeate diverse fields: they describe nonlocal diffusion and peridynamic mechanics
in partial differential equations (PDEs) [4, 6, 10, 16, 17, 27, 41, 46], govern anomalous transport
in fractional diffusion and Lévy processes [2, 18], and underpin advanced image-processing tech-
niques [5, 22, 34]. More recently, they have become central in operator-learning frameworks for
scientific machine learning, from DeepONets [38] and Fourier neural operators [29, 33], nonlocal
neural networks [1, 45], and kernel methods [9, 15,39].

Motivated by these applications, a natural and challenging inverse problem arises: given
pairs of inputs and outputs, how can one accurately recover the underlying kernel? We address
this question in the linear setting, where the operator acts by convolution against a functional
of the input function. By framing kernel recovery as a deconvolution inverse problem, we lay
the groundwork for rigorous analysis and practical algorithms that learn these kernels directly
from data, bridging the gap between classical inverse problems and modern data-driven operator
learning.

1.1 Problem statement

We study the problem of estimating a convolution kernel ϕ : S “ r0, 1s Ñ R in the operator
Rϕ : X Ñ Y of the form

Rϕruspxq “

ż

S
ϕpsq gruspx, sq ds, x P X “ txju

J
j“1 Ă r0, 1s, (1.1)

based on discrete and noisy input-output pairs

D “ tpukpyiq, fkpxjqq : 1 ď k ď n0, 1 ď i ď 3J, 1 ď j ď Ju. (1.2)

Here, tyiu
3J
i“1 and txju

J
j“1 are uniform meshes of r´1, 2s and r0, 1s with mesh sizes ∆x “ yi`1´yi “

xj`1 ´ xj “ 1
J
, and these data are generated according to

fkpxjq “ Rϕrukspxjq ` ϵkpxjq, ϵkpxjq
i.i.d.
„ N p0, σ2

{∆xq.

The input function space X Ă L2pr´1, 2sq and the functional gruspx, sq are problem-specific (see
Examples 1.1– 1.3). Note that Rϕ can be a nonlinear functional of u, but it depends linearly on
ϕ. In this study, we consider a fixed discrete observation set X and set the output function space
to be Y “ L2

νpX q with an atomic measure ν defined by νptxjuq “ 1{J . When X is a continuum
set r0, 1s with Lebesgue measure, the corresponding output space is L2pr0, 1sq, the noise is white,
and the minimax convergence rates in the sample size n0 have been studied in [50].

Such deconvolution-type problems arise in a wide range of applications, and we present three
representative examples.
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Example 1.1 (Integral operator) Estimate ϕ : S Ñ R in the integral operator

Rϕruspxq “

ż

r´1,2s

ϕpx ´ yqupyq dy “

ż

r0,1s

ϕpsqupx ´ sq ds

with input space X “ Cpr´1, 2sq. In the form (1.1), the functional is gruspx, sq “ upx ´ sq for
px, sq P X ˆS. The input u is a sample of the stochastic process upyq “

řnu

n“2Xn cosp2πnyq with
nu ď `8, where the coefficients tXnu are independent Gaussian random variables Np0, 4σ2

nq

with
ř

n nσn ă `8.

Example 1.2 (Nonlocal operator) Estimate ϕ : S Ñ R in the nonlocal operator:

Rϕruspxq “

ż

|x1|ď1

ϕp|x1
|q
`

upx ` x1
q ´ upxq

˘

νpdx1
q “

ż

r0,1s

ϕpsq gruspx, sq ds,

with input space X “ C1pr´1, 2sq and gruspx, sq “ upx ` sq ` upx ´ sq ´ 2upxq. This operator
arises in peridynamics [35, 46,47] and the Fokker-Planck equation of Lévy processes [2].

Example 1.3 (Aggregation operator) Consider the aggregation operator Rϕrus “ ∇¨pu∇Φ˚

uq in the mean-field equation Btu “ ν∆u ` ∇ ¨ pu∇Φ ˚ uq for interacting particle systems [6, 30].
Let Φ be a radial potential supported on S and set ϕ “ Φ1. For u P X “ C1pr´1, 2sq, one has

Rϕruspxq “

ż

R
ϕp|x1

|q
x1

|x1|
Bx
“

upx ´ x1
qupxq

‰

νpdx1
q “

ż

S
ϕpsqgruspx, sq ds

with gruspx, sq “ Bxrupx´squpxqs´Bxrupx`squpxqs. We consider input functions u to be random
probability density functions upxq “ 1 `

řnu

n“1 σn ζn cos
`

2πnx
˘

,where tζnuně1 are i.i.d. random
signs (i.e., Ppζn “ ˘1q “ 1

2
), and σn ą 0 with

ř

n nσn ă 1.

1.2 Main results: automatic reproducing kernel and regularization

Challenges in learning kernels. Learning convolution kernels from discrete, noisy obser-
vations is a severely ill-posed inverse problem: even small data perturbations can induce large
estimation errors, making regularization indispensable. Moreover, with scant prior knowledge of
the true kernel, a nonparametric framework is necessary, rendering the choice of regularization
norm both critical and nontrivial.

Kernel methods are particularly suitable for such inverse problems, as they can non-parametrically
approximate the unknown functions with regularization using reproducing kernel Hilbert spaces
(RKHS). Hence, they have been widely used in machine learning and inverse problems, dating
back from solving the Fredholm equations in [42, 43] and functional linear regression [44, 48] to
the recent studies on learning dynamical systems [15, 21], one-shot stochastic differential equa-
tions [14], linear responses estimations [49], and solvers for nonlinear PDEs [9] and PDEs on
manifolds [26], to name just a few. In particular, the representer theorem reduces the prob-
lem with finite data to a finite-dimensional form, enabling efficient computation and feature
extraction.

However, a major obstacle in kernel methods is the choice of the reproducing kernel. Stan-
dard options, such as Gaussian or Matérn kernels, come with hyperparameters (e.g., bandwidth
or smoothness order) that must be carefully tuned. This process is not only computationally
expensive but also fails to exploit the specific structure of the inverse problem at hand. In partic-
ular, when learning kernels in operators, the variational normal operator may be rank-deficient
or possess zero eigenvalues, rendering conventional kernel selection and hyperparameter tuning
virtually intractable.
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Main results. To overcome this obstacle, we propose an automatic reproducing kernel that
is defined directly in terms of the data and the forward operator. By incorporating the normal
operator from the variational formulation, our kernel automatically adapts to the geometry
and spectral properties of the inverse problem. The resulting data-adaptive (DA) RKHS has
a closure that is the space in which we can identify the true convolution kernel. Moreover, we
use the representer theorem to derive a set of automatic basis functions that are adaptive to
the finite discrete observations and are sufficient to represent the estimators in the DA-RKHS,
including the minimal-norm least-squares, Tikhonov, and conjugate-gradient estimators. These
basis functions make mesh-free regression possible and reveal the finite-dimensional nature of the
seemingly infinite-dimensional inverse problem of deconvolution.

Building on this theory, we develop two families of regularization algorithms for efficient
implementations of the automatic reproducing kernel:

• Tikhonov methods based on matrix decomposition for small to medium datasets, with
regularization parameters chosen via the L-curve or generalized cross-validation criteria.

• Iterative and hybrid regularization schemes that rely solely on matrix-vector products,
which are scalable for large datasets.

Notations. Throughout, we use roman letters (e.g., f, u,G) and Greek letters (e.g., ϕ, ξ, λ)
to denote functions or scalars, with their meanings clear from context. Boldface symbols (e.g.,
G, c,x) denote vectors or matrices; we write c “ pciq or cpiq for its i-th component. We reserve
0 for the zero function and 0 for the zero vector, and denote by Ik the k ˆ k identity matrix.
For a closed linear subspace H, PH is the orthogonal projection. Given any linear operator or
matrix, N p¨q and Rp¨q are its null and range spaces, respectively. Finally, for a bounded linear
operator T between Hilbert spaces, T ˚ denotes its adjoint.

The structure of the paper is as follows. In Section 2, we introduce the automatic reproducing
kernel and automatic basis functions, and derive regularized estimators based on Tikhonov and
iterative regularization methods. In Section 3 and Section 4, we propose practical algorithms for
computing the estimators, including the approximations from discrete data and Tikhonov and
iterative regularization algorithms for small and large datasets, respectively. We use three typical
examples to illustrate the accuracy and efficiency of our methods in Section 5. The conclusion
is in Section 6.

2 Automatic reproducing kernel and basis functions
We first provide a brief review of reproducing-kernel methods for a variational formulation of
the inverse problems. Leveraging the variational framework, we then introduce the automatic
reproducing kernel. Next, we construct a finite set of automatic basis functions for regression
and show that, despite the loss function being minimized over an infinite-dimensional function
space, the minimizer actually resides in the finite-dimensional space spanned by these basis
functions. In the next section, we build on this continuum analysis to develop practical discrete
approximations, paving the way for efficient numerical implementation.

We make the following regularity assumption on data and the operator Rϕrus in terms of the
bivariate function grus throughout this study.

Assumption 2.1 The functions tgruksu
n0
k“1 Ă L2pX ˆ Sq is uniformly bounded, i.e., Cg :“

max1ďkďn0 supxPX ,sPS |gruspx, sq| ă 8.
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2.1 Kernel methods for ill-posed variational inverse problems

We estimate the convolution kernel by a variational approach that minimizes the loss function
over a hypothesis space H:

pϕ “argmin
ϕPH

EDpϕq, EDpϕq :“
1

n0

n0,J
ÿ

k“1,j“1

|Rϕrukspxjq ´ fkpxjq|
2∆x, (2.1)

The integral defining Rϕrukspxjq requires semi-continuum data tgrukspxj, sq, s P Su
n0,J
k,j“1 that

is discrete in x and continuous in s, which in turn presumes access to the continuum data
uk. In practice, however, we only observe discrete data uk as in (1.2) yielding the values to
discrete tgrukspxj, slq; l “ 1, . . . , nsu

n0,J
k,j“1. In Section 3, we use these discrete data to empirically

approximate the integrals in Rϕrukspxjq.
Two preliminary tasks in this variational approach are to select a hypothesis space H along

with a representation of the function ϕ, and select a penalty term for regularization, which is
crucial for the deconvolution-type problem.

Kernel methods achieve both tasks by selecting a reproducing kernel, which provides a re-
producing kernel Hilbert space (RKHS) as the hypothesis space and provides an RKHS norm
as the penalty term. Specifically, let K be a reproducing kernel (a positive definite function
on S ˆ S) and denote its RKHS by HK . Each function in the RKHS can be represented by
ϕpsq “

řns

l“1 clKpsl, sq, whose RKHS norm is }ϕ}HK
“

b

ř

ij cicjKpsi, sjq. Here, the sample
points tslu

ns
l“1 must be properly chosen to extract enough features. Then, the minimizer of the

quadratic loss function follows from solving the coefficients c “ pc1, . . . , cnsq via least squares
with a penalty term depending on }ϕ}2HK

.
However, the choice of the reproducing kernel K is a major challenge. The widely used re-

producing kernels, such as Gaussian kernels, come with hyperparameters that must be carefully
tuned along with the regularization strength parameter. This process is not only computation-
ally expensive but also fails to leverage the specific structure of the forward operator Rϕrus.
In particular, when the quadratic loss function is not strictly convex, the conventional kernel
selection and hyperparameter tuning are challenging.

We address this challenge in the next section by introducing an automatic reproducing kernel
that is adaptive to the data and the forward operator.

2.2 Automatic reproducing kernel and RKHS

We first introduce a weighted function space L2
ρpSq, where the measure ρ defined below quantifies

the exploration of data to the unknown function through the functions tgrukspx, ¨quk, hence it is
referred to as an exploration measure.

Definition 2.2 Given data satisfying Assumption 2.1, let ρ be a measure on S with a density
function with respect to the Lebesgue measure:

9ρpsq :“
1

n0Z

n0
ÿ

k“1

ż

X
|grukspx, sq|νpdxq, @s P S, (2.2)

where Z “ 1
n0

řn0

k“1

ş

S

ş

X |grukspx, sq|νpdxqds is the normalization constant.

The exploration measure plays the role of the probability measure ρX in nonparametric
regression of fpxq “ ErY

ˇ

ˇX “ xs P L2
ρX

pSq from data tpxi, yiqu that are samples of the joint
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distribution pX, Y q (see e.g., [12, 24]). Here, we use the L1 norm of grusp¨, sq; alternatively, one
can also use the L2 norm, as in [50], to relax the constraint on grus. It is particularly useful when
treating singular kernels in nonlocal operators, which may not be square integrable with respect
to the Lebesgue measure, but square integrable in L2

ρ. For example, ϕpsq “ s´α R L2pr0, δsq for
α P p1

2
, 3
2
q, but ϕ P L2

ρpSq when uk P C2r0, 1s with uniformly bounded second-order derivatives
since 9ρpsq “ Ops2q for small s since grukspx, sq “ ukpx`sq`ukpx´sq´2ukpxq “ u2

kpxqs2{2`ops2q.
Next, we introduce the automatic reproducing kernel.

Definition 2.3 (Automatic reproducing kernel) The automatic reproducing kernel for es-
timating ϕ in the operator Rϕ in (1.1) from data tgrukspx, ¨quk is the function G : S ˆ S Ñ R
defined by

Gps, s1
q :“

Gps, s1q

9ρpsq 9ρps1q
1t 9ρpsq 9ρps1qą0u, Gps, s1

q :“
1

n0

n0
ÿ

k“1

ż

X
grukspx, sqgrukspx, s1

qνpdxq, (2.3)

where 9ρ is defined in (2.2).

The next lemma shows that the automatic reproducing kernel comes from the quadratic term
of the loss function EDpϕq in (2.1). In particular, the closure (in L2

ρ) of its RKHS is the space in
which the variational problem has a unique minimizer. Its proof is postponed to Appendix A.
For notation simplicity, we write L2

ρpSq and L2
ρbρpS ˆ Sq as L2

ρ and L2
ρbρ, respectively.

Lemma 2.4 Under Assumption 2.1, the following statements hold true:

(a) Gps, s1q is in L2
ρbρ and symmetric, and the operator LG : L2

ρ Ñ L2
ρ defined by

LGϕpsq :“

ż

S
ϕps1

qGps, s1
qρpds1

q (2.4)

is compact, self-adjoint, and positive. Hence, its eigenvalues tλiuiě1 are nonnegative and
its orthonormal eigenfunctions tψiui form a complete basis of L2

ρ.

(b) The loss function EDpϕq in (2.1) can be written as

EDpϕq “ xLGϕ, ϕyL2
ρ

´ 2xϕD, ϕyL2
ρ

` const., (2.5)

where ϕD comes from the Riesz representation, xϕD, ϕyL2
ρ

“ 1
n0

řn0

k“1xRϕruks, fkyY for any
ϕ P L2

ρ. In particular, when the data is noiseless, ϕD “ LGϕ˚ and the loss function ED has
a unique minimizer pϕ “ LG´1ϕD “ PHpϕ˚q in H :“ spantψiui:λią0 “ N pLGqK Ă L2

ρ.

(c) The RKHS of G is HG :“ LG
1
2 pL2

ρq with inner product xϕ, ϕyHG
“ xLG´ 1

2ϕ,LG´ 1
2ϕyL2

ρ
. We

have H “ HG with closure in L2
ρ and xϕ,LGψyHG

“ xϕ, ψyL2
ρ

for any ϕ P HG, ψ P L2
ρ.

Therefore, solving ∇Epϕq “ 2pLGϕ ´ ϕDq “ 0 yields the formal solution LG´1ϕD. This
inverse exists in H when ϕD P LGpL2

ρq (and is undefined otherwise). Because LG is compact and
may even be rank-deficient, the variational inverse problem is ill-posed, making regularization
essential for a stable and accurate approximation of the true ϕ. The RKHS HG provides a natural
regularization space: its closure is H, and it automatically filters out any component of ϕD not in
LGpL2

ρq, which arises solely from noise or model error (see [8, Theorem 2.7] for a decomposition
of ϕD).
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2.3 Automatic basis functions and Tikhonov regularization

In the RKHS HG, we seek a regularized solution by minimizing

min
ϕPHG

Eλpϕq :“ EDpϕq ` λ }ϕ}
2
HG

, (2.6)

where ED is given in (2.1). In practice, one must choose a finite set of basis functions to represent
elements of HG. A common practice is to use the reproducing kernel to set a hypothesis space
H “ span

␣

Gpsj, ¨q
(ns

j“1
Ă HG Ă L2

ρ, where the tsju
ns
j“1 Ă S are sample points. However, this

can introduce bias and may fail to capture key features of the underlying inverse problem (see
Remark 2.7).

To overcome these limitations, we construct a finite collection of automatic basis functions
tailored to the semi-continuum observations tgrukspxj, ¨qu

n0,J
k,j“1. In particular, we show that even

though the minimization of the loss function is taken over an infinite-dimensional space, the
minimizer actually lies within the finite-dimensional span of these automatic bases. This result
extends the classical finite-dimensional representer theorem for smoothing spline in [44, Theorem
1.3.1] to our data-adaptive setting.

Theorem 2.5 (Finite-dimensional representer) Given functions tgrukspxj, ¨qu
n0,J
k,j“1, let

ξkjpsq “ LGr
grukspxj, ¨q

9ρp¨q
spsq “

ż

S
Gps, s1

qgrukspxj, s
1
qds1 (2.7)

for each k, j. Then, ξkj P HG and xξkj, ϕyHG
“ Rϕrukspxjq. Let

Σ “ pxξkj, ξk1j1yHG
q P Rn0Jˆn0J , f “ pfkpxjqq P Rn0J . (2.8)

We have finite-dimensional representations for the estimators in (2.1) and (2.6) as follows.

(a) The least squares estimator with minimal HG-norm is

rϕ “ argmin
ψPargmin

ϕPH
G

EDpϕq

}ψ}
2
HG

“
ÿ

kj

rckjξkj, with prckjq “: rc “ Σ:f , (2.9)

where rc is the minimal 2-norm solution of minct 1
n0J

}Σc ´ f}22u.

(b) The estimator of Tikhonov regularization with HG-norm and λ ą 0 is

pϕλ “ argmin
ϕPHG

Eλpϕq “
ÿ

kj

pckjξkj, pcλ “ pΣ2
` n0JλΣq

:Σf , (2.10)

where the coefficient pcλ “ ppckjq P Rn0J solves minct 1
n0J

}Σc ´ f}22 ` λcJΣcu.

Proof. First, since g̃kj :“
grukspxj ,s

1q

9ρps1q
P L2

ρ, we have ξkj “ LGg̃kj P HG.
Next, note that for every ϕ P HG, Lemma 2.4(c) implies that xLGψ, ϕyHG

“ xψ, ϕyL2
ρ

for any
ψ P L2

ρ. Hence,
xξkj, ϕyHG

“ xLGg̃kj, ϕyHG
“ xg̃kj, ϕyL2

ρ
“ Rϕrukspxjq.

In other words, ξkj is a representer of the bounded linear functional Rϕrukspxjq on HG.
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Also, for any ϕ P HG, we can write it as

ϕ “ ξ `
ÿ

kj

ckjξkj, ξ K spantξkju
n0,J
k,j“1.

Then, we have }ϕ}2HG
“ cJΣc ` }ξ}2HG

and xξkj, ϕyHG
“ pΣcqkj. As a result, the loss functions

EDpϕq and Eλpϕq can be written as

EDpϕq “
1

n0J

ÿ

kj

|fkpxjq ´ xξkj, ϕyHG
|
2

“
1

n0J
}Σc ´ f}

2
2;

Eλpϕq “
1

n0J
}Σc ´ f}

2
2 ` λcJΣc ` λ}ξ}

2
HG
.

Therefore, the minimizer rϕ of EDpϕq “ 1
n0J

}Σc ´ f}22 with minimal HG-norm in (2.9) has a
coefficient rc that can be solved with by the minimizer of 1

n0J
}Σc ´ f}22 with minimal }c}2.

Also, the minimizer of Eλpϕq solves p 1
n0J

Σ2
` λΣqc “ Σf , which gives (2.10).

Note that the matrix Σ in (2.8) can be either singular or non-singular. If it is non-singular, the
Tikhonov regularized estimator in (2.10) becomes cridge “ pΣ`n0JλIq´1f after canceling out Σ,
which is the widely used ridge regularized estimator. However, when Σ is singular, this Tikhonov
regularized estimator is different from the ridge estimator. It is cλ “ pΣ2

` n0JλΣq:Σf “

pΣ ` n0JλIq´1PN pΣqKf , which prevents the error in PN pΣqf from contaminating the estimator.
In contrast, the ridge regularized estimator will be contaminated by the error PN pΣqf and would
lead to disastrous results in the small noise limit [8,31]. Additionally, in either case, our Tikhonov
solution in (2.10) converges to the least squares solution with the minimal norm as λ Ñ 0.

Importantly, a singular Σ does not imply multiple minimizers for the loss function over the
function space, though it leads to multiple minimizers in the coefficient space. As the next
remark shows, all the coefficient minimizers correspond to the same function minimizer because
when Σ is singular, the basis functions tξkju are linearly dependent. In short, the loss function
ED always has a unique minimizer in HG regardless of Σ being singular or not.

Remark 2.6 When Σ is singular, there are infinitely many c minimizing 1
n0J

}Σc ´ f}22, but all
such minimizers lead to the unique minimizer in HG. Equivalently, the set tϕ “

ř

kj ckjξkj : c “

pckjq P Cu contains only one element, where C “ rc`N pΣq is the set of all minimizers of }Σc´f}22.
To see it, let ϕ1 and ϕ2 be such two elements with corresponding c1, c2 P C. Then c1 ´c2 P N pΣq

and ϕ1 ´ ϕ2 “
ř

kjpc1 ´ c2qpkjqξkj. Therefore, }ϕ1 ´ ϕ2}
2
HG

“ pc1 ´ c2qJΣpc1 ´ c2q “ 0, leading
to ϕ1 “ ϕ2. The same conclusion holds for the regularized loss 1

n0J
}Σc ´ f}22 ` λcJΣc. In other

words, when Σ is singular, the basis functions tξkju are linearly dependent, so there are multiple
coefficients that represent the same function minimizer.

Remark 2.7 (Basis functions via the reproducing kernel.) A default approach to solve (2.6)
is to use basis functions of the reproducing kernel G since HG “ spantGps, ¨qusPS . That is,
take sample points tslu

ns
l“1 Ă S and set hypothesis space to be H “ span

␣

Gpsl, ¨q
(ns

l“1
. For any

ϕpsq “
řns

l“1 alGpsl, sq P H, the square of its RKHS norm is

}ϕ}
2
HG

“ }

ns
ÿ

l“1

alGpsl, ¨q}
2
HG

“

ns
ÿ

l,l1“1

alal1xGpsl, ¨q, Gpsl, ¨qyHG
“ aJGa,

Gpl, l1q “ xGpsl, ¨q, Gpsl, ¨qyHG
“ Gpsl, sl1q, 1 ď l, l1 ď ns.

(2.11)
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Then, the minimizer of EDpϕq ` λ }ϕ}
2
HG

“ aJAa ´ 2aJb ` Const ` λaJGa is

paλ “ pA ` λGq
:b, with

Apl, l1q “ xLGGpsl, ¨q, Gpsl1 , ¨qyL2
ρ

“

ż

S

ż

S
Gpsl, sqGpsl1 , s

1
qGps, s1

qdsds1,

bplq “
1

n0

n0
ÿ

k“1

xRGpsl,¨q
ruks, fyY “

ż

S
Gpsl, sq

1

n0

n0
ÿ

k“1

ż

X
grukspx, sqfkpxqνpdxqds.

(2.12)

The major difficulty is selecting the sample points tsju such that the resulting basis functions
capture all the features in the data. In practice, this only succeeds when tsju align exactly with the
x-mesh, at which point the estimator coincides with the automatic basis estimator. By contrast,
the automatic basis functions in Theorem 2.5 are guaranteed to extract all the features available
in the data. Therefore, throughout this study, we employ the automatic basis functions.

2.4 Conjugate gradient and iterative regularization

Iterative regularization methods circumvent the computationally expensive matrix inversions
or decompositions for Tikhonov regularization in (2.10) by minimizing the loss function on a
sequence of growing subspaces with early stopping; see, e.g., [20, Ch. 3.3]. These subspaces are
designed to progressively capture the dominant features of the true solution, and early stopping
prevents the inclusion of noise-dominated directions.

To design iterative regularization methods adapted to the automatic basis functions, we can
apply the conjugate gradient (CG) method (see, e.g., [20, Ch. 7]) to the normal equation of the
least squares problem

argmin
ϕPHG

n0JEDpϕq “ }Tϕ ´ f}
2
2, (2.13)

where T is the linear operator

T : HG Ñ pRn0J , x¨, ¨y2q, ϕ ÞÑ pxξkj, ϕyHG
q. (2.14)

At each iteration, the CG method selects a new search direction that is conjugate with respect
to the normal operator T ˚T to all previous directions. In particular, CG is essentially a Krylov
subspace method, where the solution to (2.13) in the l-th CG iteration with initial guess ϕ0 “ 0
is

ϕl “ argmin
ϕPHl

}Tϕ ´ f}2, Hl :“ spantpT ˚T q
iT ˚fu

l´1
i“0. (2.15)

Each Hl is a subspace of HG and we call it the l-th RKHS-Krylov subspace.
The following theorem shows the implementation of the above CG iteration in the coefficient

space of the automatic basis functions.

Theorem 2.8 (Conjugate gradient solutions) At the l-th iteration, the CG solution in (2.15)
is ϕl “ πpcq “

ř

kj clpkjqξkj with

cl “ argmin
cPKl

}Σc ´ f}2, Kl :“ spantΣiΣ:fu
l
i“1, (2.16)

and Hl “ πpKlq “ spant
ř

kj aipkjqξkju
l
i“1, where ai “ ΣiΣ:f and π is the linear operator

π : Rn0J Ñ H0 :“ spantξkju
n0,J
k,j“1 Ă HG, c ÞÑ

ÿ

kj

ckjξkj. (2.17)
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In particular, Tϕ “ Σc for any ϕ “
ř

kj ckjξkj ` ξ with ξ P HK
0 and c “ pckjq P Rn0J , T ˝ π “ Σ

and T ˚ “ π ˝ pΣ:Σq, implying the following two commutative diagrams:

HG Rn0J

Rn0J

T

π
Σ

HG Rn0J

Rn0J

π

T˚

Σ:Σ

. (2.18)

Proof. The proof includes the following four steps.
Step 1: Prove that Tϕ “ Σc for any ϕ “

ř

kj ckjξkj ` ξ with ξ P HK
0 and c “ pckjq P Rn0J ,

which implies T ˝ π “ Σ. By the definition of T , it follows that Tξkj “ pxξk1j1 , ξkjyHG
q with 1 ď

k1 ď n0 and 1 ď j1 ď J . Thus, recalling that Σ “ pxξkj, ξk1j1yHG
q, we have Tϕ “ T p

ř

kj ckjξkjq “
ř

kj ckjTξkj “ Σc.
Step 2: Show that T ˚ “ π ˝ Σ:Σ. It suffices to show that for any y P Rn0J , in the decompo-

sition T ˚y “
ř

kj akjξkj ` ξ̄ with ξ̄ P HK
0 , we have ξ̄ “ 0 and pakjq “: a “ Σ:Σy. By the adjoint

identity xTϕ,yy2 “ xϕ, T ˚yyHG
for any ϕ “

ř

kj ckjξkj ` ξ, we have

xΣc,yy2 “ x
ÿ

kj

ckjξkj ` ξ,
ÿ

kj

akjξkj ` ξ̄yHG
ô cJΣy “ cJΣā ` xξ, ξ̄yHG

for all c P Rn0J and ξ P HK
0 . Thus, taking c “ 0, we have xξ, ξ̄yHG

“ 0 for all ξ P HK
0 . Combining

with ξ̄ P HK
0 , we get ξ̄ “ 0. Then, we have cJΣy “ cJΣa for all c P Rn0J , resulting in Σy “ Σa,

or equivalently, a P Σ:Σy ` N pΣq. But any two choices of a differing by an element of N pΣq

give the same ϕ P HG (see Remark 2.6). Therefore, we can take a “ Σ:Σy.
Step 3: Compute pT ˚T qiT ˚f . Note that T ˚ ˝ Σ “ pπ ˝ Σ:ΣqΣ “ π ˝ Σ since Σ:Σ “ ΣΣ:.

Using T ˝ π “ Σ, we have

pT ˚T q
i

˝ π “ pT ˚T q
i´1

˝ T ˚
˝ Σ “ pT ˚T q

i´1
˝ π ˝ Σ “ ¨ ¨ ¨ “ π ˝ Σi.

Now we have T ˚f “ πpΣ:Σfq “ πpΣΣ:fq, and

pT ˚T q
iT ˚f “ pT ˚T q

i
˝ πpΣ:Σfq “ πpΣiΣ:Σfq “ πpΣi`1Σ:fq.

Therefore, the l-th RKHS-Krylov subspace is

Hl “ spantpT ˚T q
iT ˚fu

l´1
i“0 “ πpspantΣiΣ:fu

l
i“1q “ πpKlq.

Step 4: Prove ϕl “ πpclq with cl in (2.16), i.e., cl “ argmin
cPKl

}Σc ´ f}2. From the above

results, we have

ϕl “ argmin
ϕPπpKlq

}Tϕ ´ f}2 “ argmin
ϕ“πpcq

cPKl

}T ˝ πpcq ´ f}2 “ argmin
ϕ“πpcq

cPKl

}Σc ´ f}2.

It follows that ϕl “ πpclq.
Theorem 2.8 implies that RpT q Ă RpΣq. Furthermore, noting that N pT q “ HK

0 , we have
dimpRpT qq “ dimpHG{N pT qq “ dimpH0q “ rankpΣq, leading to RpT q “ RpΣq. Then, we have
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PN pΣqKf P RpT q and PN pΣqf K RpT q, leading to argmin
ϕPHG

}Tϕ ´ f}2 “ argmin
ϕPHG

}Tϕ ´ PN pΣqKf}2

and
ϕl “ argmin

ϕPHl

}Tϕ ´ PN pΣqKf}2 “ argmin
ϕ“πpcq

cPKl

}Σc ´ PN pΣqKf}2. (2.19)

Therefore, we can obtain ϕl “ πpclq by computing cl “ argmin
cPKl

}Σc ´ PN pΣqKf}2.

In practice, rather than applying CG directly, we use the Golub-Kahan bidiagonalization
(GKB) to explicitly construct the solution subspace Kl and solve (2.19) iteratively. This approach
is mathematically equivalent to CG but avoids explicitly forming T ˚T , which is more numerically
stable, and the convergence of iterates can be further stabilized using the hybrid regularization
method; see [7, 28] for more details.

Derivation of the GKB method. The recursive relations of GKB for tT, PN pΣqKfu is given
by:

$

’

&

’

%

β1p1 “ PN pΣqKf ,

αiψi “ T ˚ppiq ´ βiψi´1,

βi`1pi`1 “ T pψiq ´ αipi,

(2.20)

where ψ0 :“ 0, and tαi, βiu are computed such that tψiu Ă HG and tpiu Ă Rn0J are orthonormal,
and spantψiu

l
i“1 “ Hl. Let π̃ “ π|N pΣqK , where π is defined in (2.17). Note that π̃ is injective,

and the two commutative diagrams in (2.18) still hold by replacing Rn0J with N pΣqK. By
Theorem 2.8, for any ψi, there exist a unique qi P N pΣqK such that π̃pqiq “ ψi, and xψi, ψjyHG

“

qJ
i Σqj. Using T ˚ui “ π̃pΣ:Σuiq, we have

#

αiπ̃pqiq “ π̃pΣ:Σpiq ´ βiπ̃pqi´1q,

βi`1pi`1 “ T ˝ π̃pψiq ´ αipi.

Using T ˝ π̃ “ Σ, we obtain the practical GKB recursive relations:
$

’

&

’

%

β1p1 “ PN pΣqKf ,

αiqi “ pi ´ βiqi´1,

βi`1pi`1 “ Σqi ´ αipi,

(2.21)

where q0 :“ 0, and tαi, βiu are computed such that tqiu Ă N pΣqK and tpiu are Σ-orthonormal
and 2-orthonormal, respectively. Here, to get the second relation of (2.21), we have used pi P

N pΣqK, which can be verified by mathematical induction.
Note that pN pΣqK, x¨, ¨yΣq is a finite-dimensional Hilbert space with inner product xx,x1yΣ :“

xJΣx. The following theorem shows that GKB iteratively constructs a Σ-orthonormal basis of
Kl in pN pΣqK, x¨, ¨yΣq. The proof is in Appendix A.

Theorem 2.9 Following the notations in Theorem 2.8, define the linear operator:

rT : pN pΣq
K, x¨, ¨yΣq Ñ pN pΣq

K, x¨, ¨y2q, x ÞÑ Σx. (2.22)

Then (2.21) is the recursive relations of the GKB for trT , PN pΣqKfu, and the following properties
hold:
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(a) The two groups of vectors tqiu
l
i“1 and tpiu

l
i“1 are Σ-orthonormal and 2-orthonormal bases

of the Krylov subspace

KlpΣ, PN pΣqKfq :“ spantΣiPN pΣqKfu
l´1
i“0 “ Kl. (2.23)

(b) Let the terminate step of GKB be lt “ argmin
iě1

tαi`1βi`1 “ 0u. Then lt ď rankpΣq, and

ϕlt “ rϕ, the LS estimator with minimal HG-norm defined in (2.9).

(c) Let the residual be rl “ Tϕl ´ f . Then }rl}2 “ }Σcl ´ f}2 and }ϕl}HG
“ }cl}Σ, and t}rl}2u

and t}cl}Σu monotonically decreases and increases, respectively.

For l ď lt, detnote Pl “ pp1, . . . ,pl`1q P Rn0Jˆpl`1q and Ql “ pq1, . . . ,qlq P Rn0Jˆl. From
(2.21) we have

$

’

&

’

%

β1Pl`1e1 “ PN pΣqKf ,

ΣQl “ Pl`1Bl,

Pl`1 “ QlB
J
l ` αl`1ql`1e

J
l`1,

(2.24)

where e1 and el`1 are the first and pl ` 1q-th columns of Il`1, and

Bl “

¨

˚

˚

˚

˚

˚

˝

α1

β2 α2

β3
. . .
. . . αl

βl`1

˛

‹

‹

‹

‹

‹

‚

P Rpl`1qˆl (2.25)

has full column rank. Using Theorem 2.9 and for any c P Kl letting c “ Qly with y P Rl, we
have

min
cPKl

}Σc ´ PN pΣqKf}2 “ min
yPRl

}ΣQly ´ β1Pl`1e1}2

“ min
yPRl

}Pl`1pBly ´ β1e1q}2 “ min
yPRl

}Bly ´ β1e1}2.

Therefore, the l-th CG solution equals to

ϕl “ πpclq, cl “ Qlyl, yl “ argmin
yPRl

}Bly ´ β1e1}2. (2.26)

In other words, we only need to solve an l-dimensional least squares problem at the l-th iteration
to get the coefficient vector.

Early stopping criterion. The CG iteration yields a regularized solution by early stopping.
If the noise norm }ϵ}2 is available, where ϵ “ pϵkpxjqq P Rn0J , then the discrepancy principle
(DP) [20] can be used to halt iteration at the earliest instance of l that satisfies

}Tϕl ´ f}2 “ }Σcl ´ f}2 ď τ}ϵ}2, (2.27)

where τ is chosen to be marginally greater than 1. When }ϵ}2 is unavailable, we adopt the L-
curve criterion [25], which estimates the ideal early stopping iteration at the corner of the curve
represented by

`

log }Tϕl ´ f}2, log }ϕl}HG

˘

“ plog }Σcl ´ f}2, log }cl}Σq . (2.28)
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Note from Theorem 2.9 that the residual norm decreases monotonically while the solution norm
increases monotonically, which together make the “L”-shape of (2.28) possible. For the L-curve
method, one must proceed a few iterations beyond the optimal l to find its corner.

Hybrid regularization method. For the iterative method, the regularized solution is sensi-
tive to the iteration number, and the DP or L-curve criterion may yield a suboptimal iteration
number, resulting in an over- or under-regularized solution. To stabilize the convergence, we
follow the idea of the hybrid regularization method; see e.g. [11, 28]. At each iteration, instead
of solving (2.19), we add an HG-norm Tikhonov regularization term and solve the problem

ϕλl “ argmin
ϕPHl

}Tϕ ´ PN pΣqKf}2 ` λl}ϕ}
2
HG
, (2.29)

where λl is the regularization parameter that is updated at each iteration. For any ϕ P Hl, using
Bl and Ql in (2.24)–(2.25) and letting ϕ “ πpcq “ πpQlyq with y P Rl, we obtain

min
ϕPHl

t}Tϕ ´ PN pΣqKf}
2
2 ` λl}ϕ}

2
HG

u “ min
cPKl

t}Σc ´ PN pΣqKf}
2
2 ` λl}c}

2
Σu

“ min
yPRl

t}Bly ´ β1e1}
2
2 ` λl}y}

2
2u,

where we have used QJ
l ΣQl “ Il. Then, the l-th hybrid solution is

ϕλl “ πpQlyλlq, yλl “ argmin
yPRl

t}Bly ´ β1e1}
2
2 ` λl}y}

2
2u. (2.30)

Therefore, at each step we only need to update λl and compute yλl , which is computationally
efficient. We update λl by the weighted GCV (WGCV) method; see [11,32] for more details.

3 Approximation from discrete data in practice
In practice, the data are discrete, as in (1.2). Thus, to apply the automatic reproducing kernel,
we need to numerically approximate the integrals in the exploration measure ρ, the automatic
reproducing kernel and basis functions, and the matrix Σ in Section 2.2.

The starting point is to approximate the function tgrukspxj, ¨qu
n0,J
k,j“1. Note that the explicit

forms of these functions are unavailable since the data only provides tukpyiqu3Ji“1, values of these
functions at finitely many points, but the functions uk are unknown. For the operators in
Examples 1.1–1.3, the data only defines grukspxj, slq with sl “ l{J for 1 ď l ď J , and one may
use a rougher mesh for s than these J points. For generality, let the mesh points for s be tslu

ns
l“1.

We denote values of the function tgrukspxj, ¨qu
n0,J
k,j“1 at these mesh points by a vector

gkj “ pgrukspxj, slqqlďns P R1ˆns , 1 ď k ď n0, 1 ď j ď J.

The functions tgrukspxj, ¨qu can then be approximated by various approaches, such as splines,
wavelets, or Fourier series. For simplicity, we consider piece-wise constant approximations, i.e.,

pgkjpsq “

ns
ÿ

l“1

grukspxj, slq1Ilpsq, (3.1)

with Il “ psl´1, sls with s0 “ 0.
Correspondingly, we use the Riemann sum to approximate the integrals of ρ in (2.2), G

in (2.3), and ξkj in (2.7). Table 1 presents their approximations using semi-continuum and
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discrete data. The density of ρ with the semi-continuum data is 9ρpsq9 1
n0J

ř

kj |grukspxj, sq|,
whose approximation is

p9ρpsq9
1

n0J

ÿ

kjl

|grukspxj, slq|1Ilpsq “
1

n0J

ÿ

kj

|pgkjpsq|,

ñ ρ
D

9
ÿ

kj

|gkj| P R1ˆns .
(3.2)

Here, the factor 1
J

“ |∆x| since the x-grid is uniform. Note that ρ
D

is a discrete representation
of the probability measure ρ, and it assigns weights to the sample points tslu. Since we use
piece-wise constant approximations, these weights are the probability of ρ on the sets tIlu.

Similarly, we approximate the integral kernel Gps, s1q :“ 1
n0J

ř

kj grukspxj, sqgrukspxj, s
1q in

(2.3) by

pG
D

ps, s1
q : “

1

n0J

ÿ

k,j,l,l1

gkjpslqgkjpsl1q1Ilpsq1Il1 psq “
1

n0J

ÿ

kj

pgkjpsqpgkjps
1
q,

ñ G
D

“
1

n0J

ÿ

kj

gJ
kjgkj “

1

n0J
gJg P Rnsˆns .

Then, pG
D

and G follows directly from the above approximations of ρ and G, as in Table 1.
Lastly, each automatic basis functions ξkj “

ş

S GD
ps, s1qgrukspxj, s

1qds1 in (2.7) has approxi-
mations and discrete representations based on G and G

D
as follows,

xξD
kjpsq “

1

n0J

ÿ

k1,j1,l,l1

gk1j1pslqgk1j1psl1qgkjpsl1q|∆s|1Ilpsq,

ñ ξkj “ gkjGD
|∆s| P R1ˆns .

(3.3)

To approximate the normal matrix Σ “ pxξkj, ξk1j1yHG
q P Rn0Jˆn0J , recall that Lemma 2.4(c)

implies xLGψ, ϕyHG
“ xψ, ϕyL2

ρ
for any ψ P L2

ρ. Then, we obtain from (2.7) that

xξkj, ξk1j1yHG
“ xLG´1ξkj, ξk1j1yL2

ρ
“ x

grukspxj, ¨q

9ρp¨q
, ξk1j1yL2

ρ

“

ż

S
grukspxj, sqξk1j1psqds «

ż

S
grukspxj, sqyξD

k1j1psqds « gkjξ
J
k1j1∆s.

In other words, the discrete representation of Σ is

Σ
D
:“ gξJ∆s, where g “ pgkjq P Rn0Jˆns , ξ “ pξkjq P Rn0Jˆns .

To conclude, our estimator (2.10) in computational practice is

pϕλ “
ÿ

kj

pckjpξD
kj “

ns
ÿ

l“1

pϕλplq1Ilpsq ô pϕλ “ pcJ
λξ with pcλ “ pΣ2

D
` n0JλΣD

q
:Σ

D
f , (3.4)

where the basis functions t1Ilpsqu
ns
l“1 originate from the piecewise constant approximation of the

functions tgrukspxj, ¨qu in (3.1).
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Table 1: Functions and arrays from the semi-continuum and discrete data.

Semi-continuum Data Discrete Data Vector/Arrays

gkjpsq :“ grukspxj , sq pgkjpsq “
řns

l“1 gkjl1Ilpsq, gkj “ pgkjlq1ďlďns
P R1ˆns

with gkjl :“ grukspxj , slq g “ pgkjq P Rn0Jˆns

fkpxq f “ pfkpxjqq P Rn0Jˆ1

9ρpsq9
ř

kj |gkjpsq|∆x p9ρ
D

psq9
ř

kjl |gkjl|∆x1Ilpsq ρ
D

9
ř

kj |gkj | P R1ˆns

Gps, s1q “ 1
n0J

ř

kj gkjpsqgkjps1q pG
D

ps, s1q G
D

“ 1
n0J

gJg P Rnsˆns

Gps, s1q “
Gps,s1

q

9ρpsq 9ρps1q

pG
D

ps, s1q G
D

“
G

D

ρJ
D
ρ
D

P Rnsˆns

ξkjpsq “
ş

Gps, s1qgkjps1qds1
pξD

kjpsq ξkj “ gkjGD
|∆s| P R1ˆns

“
řns

l“1 ξkjplq1Ilpsq ξ “ gG
D

|∆s| P Rn0Jˆns

Σ “ pxξkj , ξk1j1 yHG
q Σ

D
“ gξJ

|∆s| P Rn0Jˆn0J

EDpϕq xEDpϕq “ xEDpcq “ 1
n0J

}Σ
D
c ´ f}2

LSE mini-norm rϕ “
ř

kj rckj
pξD

kj ô rϕ “ rcJξ with rc “ Σ:

D
f

Tikhonov Est. pϕλ “
ř

kj pckj,λ
pξD

kj ô pϕλ “ pcJ
λ ξ with pcλ “ pΣ2

D
` n0JλΣD

q:Σ
D
f

We summarize the above approximations from discrete data in Table 1.
Note that Σ

D
is singular when ns ă n0J . In other words, when estimating ϕ at ns evaluation

points, the number of necessary features (basis functions) is at most ns, so the n0J data-deduced
basis functions must be linearly dependent. Consequently, in this case, it is important to not use
the ridge estimator cridge “ pΣ

D
` n0JλIq´1f but use pc “ pΣ2

D
` n0JλΣD

q:Σ
D
f instead.

Importantly, the automatic basis functions tξkju have two major advantages over the piece-
wise constants t1Ilpsqu

ns
l“1 and other spline basis functions. First, if the analytical form of the

functions tgrukspxj, ¨qu is given, we can use the automatic basis functions directly with the
coefficient pcλ in (3.4). Second, they overcome the difficulty in computing the RKHS norm. For
example, if we write ϕpsq “

ř

l ϕplq1Ilpsq, then the regularized problem becomes minϕ }gϕ´f}22`

λ}ϕ}2Crkhs
, and a major difficulty is to compute the Gram matrix Crkhs “

`

x1Il ,1Il1 yHG

˘

1ďl,l1ďns
.

In contrast, the Gram matrix Σ
D

for the automatic basis functions is directly available.

4 Practical algorithms for computing the estimators
When n0J is not large, e.g., up to a few thousands, one can compute the Tikhonov regularized
estimator pcλ “ pΣ2

D
` n0JλΣD

q:Σ
D
f based on matrix decomposition. When n0J is large, the

iterative methods can efficiently compute regularized solutions.

4.1 Tikhonov regularization for small datasets

In Tikhonov regularization, we first compute the eigenvalue decomposition: Σ
D

“ UΛUJ with
U “ pu1, . . . ,un0Jq and Λ “ diagptλiuq, where λ1 ě ¨ ¨ ¨ ě λn0J are the eigenvalues of Σ

D
and

tuiuiě1 are the corresponding orthonormal eigenvectors. The solution pcλ “ pΣ2
D

`n0JλΣD
q:Σ

D
f

can be written as pcλ “
ř

λią0 ui
uJ
i f

λi`n0Jλ
. Note that the components uJ

i f corresponding to λi “ 0 do
not enter the estimator. To handle the numerical rank-deficient of Σ

D
in practical computations,

we set a small threshold tol ą 0 (e.g., tol “ 10´14 for machine precision on the order of 10´16)
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and let r “ #tλi : λi ą tolu be the numerical rank of Σ
D
. Then, we compute a regularized

pcλ P spantu1, . . . ,uru as follows. Let Ur “ pu1, . . . ,urq and Λ “ diagpλ1, . . . , λrq. With c “ Ury

and Λ
1{2
r y “ z, the regularization problem mincPRpΣ

D
qt}Σ

D
c ´ f}22 ` λcJΣ

D
cu becomes

min
yPRr

t}UrΛry ´ f}
2
2 ` λ}Λ1{2

r y}
2
2u ô min

zPRr
t}UrΛ

1{2
r z ´ f}

2
2 ` λ}z}

2
2u, (4.1)

and pcλ “ Uryλ “ UrΛ
´1{2
r zλ. Finally, we obtain pϕλ “ πppcλq “

ř

kj pckjξkj.
In order to select the optimal λ, we can use the L-curve [19] or GCV criterion [23]. The

L-curve criterion plots the following parametrized curve in log-log scale:

lpλq “ pxpλq, ypλqq : “

´

logp}T pϕλ ´ f}2q, logp}ϕλ}HG
q

¯

“

´

logp}Σ
D
pcλ ´ f}2q, logpppcJ

λΣD
pcλq

1
2 q

¯

,
(4.2)

and the corner of lpλq corresponds to a good estimate. In practical computation, we restrict λ
in the spectral range of Σ

D
, and compute

λ˚
“ argmax

λrďλďλ1

κpλq :“
x1y2 ´ y1x2

px12 ` y12q3{2
(4.3)

as the optimal λ by maximizing the signed curvature of the L-curve. For the GCV criterion, by
noting that

f ´ Σ
D
pcλ “ pIn0J ´ Σ

D
Σ

D,λ
qf ,

where Σ
D,λ

:“ pΣ2
D

` n0JλΣD
q:Σ

D
, we have the following GCV function:

GCVpλq “
}pIn0J ´ Σ

D
Σ

D,λ
qf}22

ptracepIn0J ´ Σ
D
Σ

D,λ
qq2

“

ˆ

řr
i“1

´

n0JλuJ
i f

λ2i `n0Jλ

¯2

`
řn0J
i“r`1pu

J
i fq2

˙

´

n0J ´ r `
řr
i“1

n0Jλ
λ2i `n0Jλ

¯2 (4.4)

where we have used the numerical rank r to replace rankpΣ
D

q. The optimal λ is estimated as
the minimizer of GCVpλq.

Input: Data D “ tpukpxjq, fkpxjqq, j “ 1, . . . , Ju
n0
k“1

1: Compute basis functions tξkju, assemble matrix Σ
D

and vector f
2: Compute the eigenvalue decomposition: Σ

D
“ UΛUJ

3: Estimate the optimal λ by L-curve or GCV criterion
4: Solve (4.1) to get pcλ “ ppckjq; compute pϕλ “ πppcλq “

ř

k,j pckjξkj

Output: Regularized estimator pϕλ

Algorithm 1: Tikhonov regularization

The algorithm of Tikhonov regularization is summarized in Algorithm 1. This method needs
to store the matrix Σ

D
, with the memory usage of Opn2

0J
2q. The main computational cost is the

eigen-decomposition of Σ
D
, which has the order Opn3

0J
3q.
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4.2 Iterative regularization for large datasets

For large datasets, iterative regularization methods that rely solely on matrix-vector products
are more efficient. The algorithm is based on the GKB iteration introduced in Section 2.4.

In the GKB method, the bi-diagonal structure of Bl in (2.25) allows us to update cl step by
step without explicitly solving miny }Bly ´ β1e1}. The updating procedure is based on using
Givens QR factorization to Bl, which is very similar to the LSQR algorithm; see [40] for the
details. In practice, we first compute an approximation Σ

D
to replace Σ in the computation,

and then apply the GKB procedure to update the orthonormal basis of the solution subspace and
the coefficient vector. The iteration will be stopped if the early stopping criterion is satisfied.
The algorithm is summarized in Algorithm 2.

The hybrid regularization algorithm proceeds in the same way, except that at each iteration
we update λl and recompute the regularized solution yλl from (2.30). Accordingly, we omit its
pseudo-code here.

Input: Data D “ tpukpxjq, fkpxjqq, j “ 1, . . . , Ju
n0
k“1

1: Compute basis functions tξkju, assemble matrix Σ
D

and vector f
2: (Initialization)
3: Compute f̄ “ PN pΣ

D
qKf , β1 “ }f̄}2, p1 “ f̄{β1

4: Compute α1 “ }p1}Σ
D
, q1 “ p1{α1

5: Set c0 “ 0, w1 “ q1, φ̄1 “ β1, ρ̄1 “ α1

6: for i “ 1, 2, . . . , lmax do
7: (GKB iteration)
8: r “ Σ

D
qi ´ αipi, βi`1 “ }r}2, pi`1 “ r{βi`1

9: s “ pi`1 ´ βi`1qi, αi`1 “ }s}Σ
D
, qi`1 “ s{αi`1

10: (Apply Givens QR factorization to Bi)
11: ρi “ pρ̄2i ` β2

i`1q1{2

12: c̄i “ ρ̄i{ρi, s̄i “ βi`1{ρi
13: θi`1 “ s̄iαi`1, ρ̄i`1 “ ´c̄iαi`1

14: φi “ c̄iφ̄i, φ̄i`1 “ s̄iφ̄i
15: (Update the coefficient vector)
16: ci “ ci´1 ` pφi{ρiqwi, wi`1 “ qi`1 ´ pθi`1{ρiqwi

17: if Early stopping criterion is satisfied then
18: Terminate at the estimated iteration l˚, let ĉ “ cl˚ “ ppckjq

19: Compute ϕ̂ “
ř

ĉkjξkj

Output: Regularized estimator ϕ̂

Algorithm 2: Iterative regularization by GKB

At the initial iteration of both methods, we compute PN pΣ
D

qKf . If Σ
D

has full-rank or
f P RpΣ

D
q, then PN pΣ

D
qKf “ f . Otherwise, noting that PN pΣ

D
qKf “ Σ:

D
Σ

D
f , we approximate

this projection by iteratively solving the minimal 2-norm least squares problem minvPRn0J }Σ
D
v´

Σ
D
f}2. This approximation does not require high accuracy, as the presence of noise limits the

achievable final precision of the regularized estimator. In practice, it is carried out efficiently via
the LSQR algorithm [40].

The iterative method requires Opn2
0J

2q storage, matching the storage requirements of the
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direct method of Tikhonov regularization. Each iteration is dominated by the matrix-vector
product with large ΣD, costing Opn2

0J
2q operations. Thus, over lmax iterations, the total compu-

tational complexity is O
`

n2
0J

2 lmax

˘

. The hybrid method also incurs a total cost of O
`

n2
0J

2 lmax

˘

,
as the additional cost of Opl3q from the SVD of Bl in WGCV at each iteration is negligible
compared to the dominant Opn2

0J
2q term, placing its complexity between that of the iterative

method and the direct method.

5 Numerical experiments
We present numerical results for three examples of learning kernels in operators, including integral
operators, nonlocal operators, and aggregation operators in mean-field equations, as detailed in
Examples 1.1–1.3. All experiments were conducted in MATLAB R2023b using double precision.
The codes are available at https://github.com/Machealb/Automate-kernel.

Numerical settings. The input data tuku are described in Examples 1.1–1.3 with n0 “ 30 and
σn “ n´2. They lead to ill-conditioned and rank-deficient regression matrices with eigenvalues
decaying near polynomially. We use a uniform mesh with mesh size ∆x “ 0.005. We use the
Gaussian quadrature integrator for the integral in the operators to generate data, and use the
Riemann sum to approximate it when computing the estimators. Unless otherwise specified, for
all the examples we set the noise-to-signal ratio (nsr) to be nsr “ 0.1, which corresponds to
a noise with standard deviation of around σ “ 0.01. Here the signal strength is the average
L2
ν-norm of the output tRϕrukspxjquk,j.

The true kernels ϕ for the three examples are

ϕ1psq “ sinp2πsq, ϕ2psq “ sinp4πsq1r0,0.8spsq, ϕ3psq “ ´2 sin3
p6πsq,

respectively, and they are plotted in Figure 2. Note that the kernel ϕ2 of Example 1.2 has
a jump discontinuity. As observed in [36], estimator accuracy improves when the smoothness
of data matches that of the true kernel. Accordingly, we generate discontinuous data for Ex-
ample 1.2 by multiplying each smooth uk in Example 1.1 by the indicator of r´0.5, 0.8s, i.e.,
ukpyq ÞÑ ukpyq1r´0.5,0.8spyq. Furthermore, these true kernels are close to the identifiable spaces
H “ N pLGqK for each example, making accurate estimation possible.

For each regularized estimator, we evaluate the relative L2
µ-error with respect to the true

solution, where µ is the Lebesgue measure. When reporting the statistics of the estimators (such
as their means and box plots), we perform 50 independent simulations for each test.

Other regularization norms. We benchmark our HG-norm against two baseline norms for
regularization: a Gaussian kernel norm HK and the L2

ρ-norm. The HK-norm is the norm of
the RKHS with the widely-used Gaussian kernel Kps, s1q “ expp|s ´ s1|2{p2σ2

0qq, where the
hyperparameter is σ0 “ 0.1 after fine-tuning. For both RKHS norms, we use their automatic basis
functions to get an n0J ˆn0J linear system, and apply the Tikhonov and iterative regularization
methods to compute the estimators. For the L2

ρ-norm regularization, following Section 3, we
compute the coefficients of ϕ̂psq “

řns

l“1 ĉl1Ilpsq by solving the regularized least squares problem
argmin
cPRns

1
n0J

}Ac´ f}22 ` λ}c}2B, where A “ g∆s P Rn0Jˆns and }c}2B “ cJBc with B “ diagpρ
D

q.

Using the transformation c̃ “ B
1
2c and Ã “ B´ 1

2A, we only need to deal with the 2-norm
regularizer }c̃}2 in the Tikhonov or iterative regularization.

Accuracy of the estimators. We first compare the accuracy of the estimators computed
using the three regularization norms, each with the four regularization methods: Tikhonov reg-
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ularization with λ selected by the L-curve and GCV criteria, iterative regularization with early
stopping determined by the L-curve, and hybrid regularization with λl updated by WGCV.
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Figure 1: Relative errors of the estimators in 50 simulations.

We present the L2
µ (µ is the Lebesgue measure) relative errors of the estimators in 50 simu-

lations in Figure 1, where the box-plots display the median, lower and upper quartiles, outliers,
and the minimum and maximum values that are not outliers. The abbreviation “LC” stands for
the L-curve criterion, while “hyb” denotes the hybrid method.

The results demonstrate that the choice of regularization norm has a significant impact on the
accuracy of the estimators. For all three examples, the HG-norm consistently yields lower relative
errors, indicating that our data-adaptive RKHS regularization can better capture the structure of
the underlying nonlocal inverse problems. In contrast, the Gaussian kernel norm generally yields
the largest errors with large variances. While the L2

ρ norm regularization occasionally achieves
accuracy comparable to that of the HG-norm, such as Example 1.2 with iterative regularization
methods, it is less accurate and less stable overall.

Additionally, the L-curve and GCV methods produce comparable hyperparameter selections
for Tikhonov regularization (top row of Figure 1). However, the bottom row of Figure 1 illustrates
that the purely iterative method can incur larger errors due to the instability of identifying
the discrete L-curve’s corner for early stopping. By contrast, the hybrid method offers greater
stability and consistently achieves low errors across all cases.

Figure 2 displays the estimators in a typical test: only the estimators of Tikhonov with L-
curve and the hybrid method are shown, since the other methods yield very similar results and
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Figure 2: Typical regularized estimators by Tikhonov regularization with L-curve and hybrid
regularization with WGCV using three norms: HG, HK , and L2

ρ.

are omitted for clarity. Because the noise level is low, all estimators closely track the true kernels.
The HG-norm regularizer produces slightly more accurate estimates than the L2

ρ and Gaussian
kernel norms. In particular, for the nonlocal operator (middle column), the HG regularizer better
resolves the jump discontinuity than the Gaussian kernel estimator: its data-adaptive smoothness
allows it to capture the discontinuity more faithfully.

Convergence as noise decreases. To compare these methods further, we examine the es-
timator convergence as the noise level decreases with the noise-to-signal ratio varying over
nsr P t1, 1{2, 1{4, 1{8, 1{16, 1{32u and all other settings unchanged from the previous experi-
ment. For each noise level, we run 50 independent simulations. In Figure 3, we report results
for Tikhonov and iterative regularization using the L-curve for parameter selection, alongside
the hybrid method; Tikhonov with GCV yields results similar to Tikhonov with L-curve and
is omitted for clarity. To illustrate convergence behavior in the ideal scenario, we also include
the relative error of the optimal iterative regularized solution (denoted by “Iter.-opt.”), i.e., the
solution with the minimum relative error across all iterations.

For the integral operator (left column of Figure 3), the relative error of all estimators decreases
as the noise level is reduced. For all regularization methods, the estimators obtained using the
HG-norm consistently achieve the lowest relative errors as the noise decreases.

In particular, for the optimal iterative solutions (bottom row of Figure 3), the convergence
curves under the HG and L2

ρ norms are nearly identical for all the three examples, indicating
that they share the same convergence rate up to a constant factor. This observation is consistent
with the theoretical result presented in [37].

For the nonlocal operator (middle column of Figure 3), the Gaussian kernel regularized esti-
mators have relatively large errors that fail to decay, due to the mismatched smoothness between
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Figure 3: Convergence of the estimators as the noise decreases in 50 simulations.
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the true kernel and the Gaussian kernel. In contrast, for all regularization methods, the HG- and
L2
ρ-norms consistently lead to estimator errors that decay with the noise, and their convergence

curves become flat as the noise level approaches the numerical integration error.
The aggregation-operator case (right column of Figure 3) highlights the differences between

methods. Both Tikhonov and hybrid methods yield convergent estimators under the HG-norm,
but not under the L2

ρ-norm. In contrast, the iterative method performs well in the L2
ρ-norm but

suffers instability in HG-norm due to early stopping sensitivity. All methods fail to converge
under the Gaussian kernel norm, due to the relatively high frequency of the true kernel.

In summary, the HG-norm consistently leads to convergent estimators across nearly all regu-
larization methods and achieves the lowest relative errors as noise decreases, outperforming both
the L2

ρ and the Gaussian kernel norms. These results confirm its effectiveness and robustness
for learning convolution kernels. Moreover, the hybrid method exhibits the strongest conver-
gence behavior overall, underscoring its ability to automatically select optimal regularization
parameters and deliver accurate solutions.

Computational scalability. In this experiment, we evaluate the computational scalability of
Tikhonov and iterative regularization for learning convolution kernels as the data size increases.
We vary n0 P t6, 12, 18, 24, 30, 36u, holding all other parameters fixed as in the first experiment.
We only show the results for the HG regularization, as it has been proven to be the most effective
in prior tests. For each value of n0, we set the maximum number of iterations for all the three
examples as lmax “ 30, 30, 40, 40, 50, 50, which is chosen to be larger than the optimal early
stopping iteration. We conduct 50 independent simulations for each setting, and record the
computation times on a Debian 12 desktop with 12 Intel processors.
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Figure 4: Running time as sample size n0 increases for Tikhonov, iterative and hybrid regular-
ization methods using HG-norm.

Figure 4 reports the computation times in these tests. The iterative regularization method is
orders of magnitude faster than the Tikhonov regularization method, particularly as n0 increases.
This behavior aligns with our theoretical analysis of the computational complexity of the two
approaches. Although the hybrid method incurs slightly higher runtime than pure iterative
regularization, it demonstrates significantly greater stability, as evidenced by the results of the
previous experiments. Therefore, for learning convolution kernels from large datasets, the hybrid
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method based on iterative regularization is the most effective and reliable choice.
In summary, our numerical experiments highlight the advantages of data-adaptive RKHS

regularization for learning convolution kernels. By leveraging automatically constructed basis
functions, we have developed efficient and accurate iterative regularization methods that scale
well with large datasets.

6 Conclusion
We have developed robust and scalable data-adaptive (DA) RKHS regularization methods for
learning convolution kernels, based on an automatic reproducing kernel that is tailored to the
data and the forward operator. For discrete and finite observations, the methods use a finite
set of automatic basis functions sufficient to represent minimal-norm least squares, Tikhonov,
and conjugate gradient estimators in the RKHS. The DA-RKHS and automatic basis functions
capture the structure imposed by the forward operator and data, enabling nonparametric and
mesh-free regression without the need for reproducing kernel selection, hyperparameter tuning,
or predefined bases. We have developed efficient regularization algorithms, including Tikhonov
methods based on matrix decompositions for small datasets and iterative methods using only
matrix-vector products for large datasets. Numerical experiments on integral, nonlocal and
aggregation operators demonstrate that the proposed methods outperform the ridge regression
and Gaussian process regression, highlighting their effectiveness, robustness, and scalability.

A Proofs

Proof of Theorem 2.4. (a). It is clear that G is symmetric. First, we show that G is
square-integrable. Since gruks P CpX ˆ Sq, we have

Gps, s1
q :“

ż

X

1

n0

n0
ÿ

k“1

grukspx, sqgrukspx, s1
q νpdxq ď Cg 9ρpsq. (A.1)

Then, by symmetry, we obtain that Gps, s1q ď Cgmint 9ρpsq, 9ρps1qu for any s, s1 P S. Then,
ż

S

ż

S
Gps, s1

q
2ρpdsqρpds1

q “

ż

S

ż

S

Gps, s1q2

9ρpsq 9ρps1q
dsds1

ď C2
g |supppρq|

2.

Then, LG is a compact self-adjoint operator. It is positive since

xLGϕ, ϕyL2
ρ

“

ż

S

ż

S
ϕpsqϕps1

qGps, s1
qdsds1

“
1

n0

n0
ÿ

k“1

}Rϕruks}
2

ě 0

for any ϕ P L2
ρ.

(b). By its definition in (2.1), the loss function ED can be written as (2.5). Note that
xϕD, ϕyL2

ρ
“ 1

n0

řn0

k“1xRϕruks, Rϕruks ` ϵyY for any ϕ P L2
ρ, thus, we can write ϕD as ϕD “ LGϕ˚ `

η, where ϕ˚ is the true kernel and η „ N p0, σ2
ϵLGq. In particular, when the data is noiseless, we

have ϕD “ LGϕ˚. Thus, the loss function ED has a unique minimizer pϕ “ LG´1ϕD “ PHpϕ˚q in
H :“ spantψiui:λią0.

(c). The fact that HG “ LG1{2
pL2

ρq is a standard characterization of the RKHS, see, e.g.,
[3,13,36]. Also, for any ϕ “

ř

i ciψi P HG and ψ “
ř

i diψi P L2
ρ, using the fact that xψi, ψjyHG

“

δijλ
´1
i , we have

xϕ,LGψyHG
“
ÿ

i

λ´1
i cidiλi “

ÿ

i

cidi “ xϕ, ψyL2
ρ
.
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Lastly, it follows from the definition of H that H “ HG.

Proof of Theorem 2.9. (a) First we prove that under the canonical basis of Rn0J , it hold
that rT ˚y “ y for any y P N pΣqK. Since

xrTx,yy2 “ xx, rT ˚yyΣ ô xJΣprT ˚y ´ yq “ 0, @ x P N pΣq
K,

we have ΣprT ˚y´ yq “ 0. Using rT ˚y ´ y P N pΣqK, we obtain rT ˚y ´ y “ 0, which is the desired
result. Using the basic property of the GKB process, tqiu

m
i“1 and tpiu

m
i“1 are the Σ-orthonormal

and 2-orthonormal bases of the Krylov subspaces

KlprT
˚
rT , rT ˚PN pΣqKfq “ spantprT ˚

rT q
i
rT ˚PN pΣqKfu

l´1
i“0 “ spantΣiPN pΣqKfu

l´1
i“0,

KlprT rT ˚, PN pΣqKfq “ spantprT rT ˚
q
iPN pΣqKfu

l´1
i“0 “ spantΣiPN pΣqKfu

l´1
i“0,

respectively. The last relation is obvious since ΣiPN pΣqK “ Σi`1Σ:.
(b) Since tpiu and tqiu are 2-orthonormal and Σ-orthonormal bases, the maximum GKB

iteration must not exceed the dimension N pΣqK, which is rankpΣq, that is, lt ď rankpΣq. Using
Theorem 2.8 and that Hm “ πpKlq, Kl Ă N pΣqK, and π|N pΣqK Ñ HG is injective, there is a one-
to-one correspondence between the CG for (2.19) and the CG for mincPN pΣqK }rTc ´ PN pΣqKf}2.
Therefore, the CG for T and rT terminate at the same step, the basic property of CG implies
that rϕ “ ϕlt “ πpcltq.

(c) Using T ˝ π “ Σ, we have Tϕl ´ f “ T ˝ πpclq ´ f “ Σcl ´ f . Using (2.8) we get
}ϕl}HG

“ }cl}Σ. The basic property of CG for T states that with a zero initial solution, the
residual norm monotonically decreases and the solution norm increases. This is the last assertion.
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