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Automatic reproducing kernel and regularization for
learning convolution kernels

Haibo Li * and Fei Lu |

Abstract

Learning convolution kernels in operators from data arises in numerous applications and
represents an ill-posed inverse problem of broad interest. With scant prior information,
kernel methods offer a natural nonparametric approach with regularization. However, a
major challenge is to select a proper reproducing kernel, especially as operators and data
vary. We show that the input data and convolution operator themselves induce an auto-
matic, data-adaptive RKHS (DA-RKHS), obviating manual kernel selection. In particular,
when the observation data is discrete and finite, there is a finite set of automatic basis func-
tions sufficient to represent the estimators in the DA-RKHS, including the minimal-norm
least-squares, Tikhonov, and conjugate-gradient estimators. We develop both Tikhonov
and scalable iterative and hybrid algorithms using the automatic basis functions. Numeri-
cal experiments on integral, nonlocal, and aggregation operators confirm that our automatic
RKHS regularization consistently outperforms standard ridge regression and Gaussian pro-
cess methods with preselected kernels.
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1 Introduction

Kernel functions play a fundamental role in defining operators between function spaces, enabling
the representation of nonlocal or long-range interactions between variables. Such kernel-based
operators permeate diverse fields: they describe nonlocal diffusion and peridynamic mechanics
in partial differential equations (PDEs) (4,6, 10,16, 17,27, 41, 46|, govern anomalous transport
in fractional diffusion and Lévy processes |2, 18], and underpin advanced image-processing tech-
niques |[5,22,34|. More recently, they have become central in operator-learning frameworks for
scientific machine learning, from DeepONets [38] and Fourier neural operators [29,33], nonlocal
neural networks [1,45|, and kernel methods [9, 15, 39].

Motivated by these applications, a natural and challenging inverse problem arises: given
pairs of inputs and outputs, how can one accurately recover the underlying kernel? We address
this question in the linear setting, where the operator acts by convolution against a functional
of the input function. By framing kernel recovery as a deconvolution inverse problem, we lay
the groundwork for rigorous analysis and practical algorithms that learn these kernels directly
from data, bridging the gap between classical inverse problems and modern data-driven operator
learning.

1.1 Problem statement

We study the problem of estimating a convolution kernel ¢ : & = [0,1] — R in the operator
Ry : X — Y of the form

Rylu](z) = Lgb(s)g[u](x, s)ds, weX = {xj}}]=1 c [0,1], (1.1)
based on discrete and noisy input-output pairs
D = {(ux(yi), fe(z;)): 1<k <mng, 1 <i<3J, 1<j<J} (1.2)

Here, {y;}?/, and {x;}7_, are uniform meshes of [—1,2] and [0, 1] with mesh sizes Az = y;.1 —y; =

Tjp1 — Tj = %, and these data are generated according to

fi(z;) = Rolup) () + enly),  enlz;) ™ N(0,0%/A).

The input function space X = L?([—1,2]) and the functional g[u](z, s) are problem-specific (see
Examples 1.1- 1.3). Note that R4 can be a nonlinear functional of w, but it depends linearly on
¢. In this study, we consider a fixed discrete observation set X and set the output function space
to be Y = L2(X) with an atomic measure v defined by v({z;}) = 1/J. When X is a continuum
set [0, 1] with Lebesgue measure, the corresponding output space is L*([0, 1]), the noise is white,
and the minimax convergence rates in the sample size ng have been studied in [50].

Such deconvolution-type problems arise in a wide range of applications, and we present three
representative examples.



Example 1.1 (Integral operator) Estimate ¢ : S — R in the integral operator

Rful() = | ola=n)uln)dy = | os)uta ~ )ds
[-1,2] [0,1]

with input space X = C([—1,2]). In the form (1.1), the functional is glu](x,s) = u(x — s) for

(z,5) € X xS. The input u is a sample of the stochastic process u(y) = Y, X, cos(2mny) with

n. < +00, where the coefficients {X,} are independent Gaussian random variables N(0,402)

with Y, no, < +o0.

Example 1.2 (Nonlocal operator) Estimate ¢ : S — R in the nonlocal operator:

Ry[u](z) = J | ¢(|2]) (u(z + 2') — u(x)) v(da') = [ ]¢(5)9[U](SU, s) ds,
x'|<1 0,1
with input space X = CY([-1,2]) and g[u](z,s) = u(z + s) + u(x — s) — 2u(x). This operator
arises in peridynamics |35,46,47| and the Fokker-Planck equation of Lévy processes |2].

Example 1.3 (Aggregation operator) Consider the aggregation operator Ry[u| = V-(uV ®x
w) in the mean-field equation dyu = vAu + V - (uNV® = u) for interacting particle systems [6,30].
Let ® be a radial potential supported on S and set ¢ = ®'. For ue X = C'([—1,2]), one has

Roful@) = [ o2/ 55 0u[ute = o )ut)] vide) = [ ols)glulie.s)ds

with glu](z, s) = Ox[u(x—s)u(x)] — o u(x+ s)u(x)]. We consider input functions u to be random
probability density functions u(z) =1+ X" 0, ¢, cos(27m :E),where {Cu}ns1 are i.i.d. random

signs (i.e., P(¢, = +1) = 3), and 0y, > 0 with Y, no, < 1.

1.2 Main results: automatic reproducing kernel and regularization

Challenges in learning kernels. Learning convolution kernels from discrete, noisy obser-
vations is a severely ill-posed inverse problem: even small data perturbations can induce large
estimation errors, making regularization indispensable. Moreover, with scant prior knowledge of
the true kernel, a nonparametric framework is necessary, rendering the choice of regularization
norm both critical and nontrivial.

Kernel methods are particularly suitable for such inverse problems, as they can non-parametrically
approximate the unknown functions with regularization using reproducing kernel Hilbert spaces
(RKHS). Hence, they have been widely used in machine learning and inverse problems, dating
back from solving the Fredholm equations in [42,43] and functional linear regression [44, 48] to
the recent studies on learning dynamical systems [15,21], one-shot stochastic differential equa-
tions [14], linear responses estimations [49], and solvers for nonlinear PDEs [9] and PDEs on
manifolds [26], to name just a few. In particular, the representer theorem reduces the prob-
lem with finite data to a finite-dimensional form, enabling efficient computation and feature
extraction.

However, a major obstacle in kernel methods is the choice of the reproducing kernel. Stan-
dard options, such as Gaussian or Matérn kernels, come with hyperparameters (e.g., bandwidth
or smoothness order) that must be carefully tuned. This process is not only computationally
expensive but also fails to exploit the specific structure of the inverse problem at hand. In partic-
ular, when learning kernels in operators, the variational normal operator may be rank-deficient
or possess zero eigenvalues, rendering conventional kernel selection and hyperparameter tuning
virtually intractable.



Main results. To overcome this obstacle, we propose an automatic reproducing kernel that
is defined directly in terms of the data and the forward operator. By incorporating the normal
operator from the variational formulation, our kernel automatically adapts to the geometry
and spectral properties of the inverse problem. The resulting data-adaptive (DA) RKHS has
a closure that is the space in which we can identify the true convolution kernel. Moreover, we
use the representer theorem to derive a set of automatic basis functions that are adaptive to
the finite discrete observations and are sufficient to represent the estimators in the DA-RKHS,
including the minimal-norm least-squares, Tikhonov, and conjugate-gradient estimators. These
basis functions make mesh-free regression possible and reveal the finite-dimensional nature of the
seemingly infinite-dimensional inverse problem of deconvolution.

Building on this theory, we develop two families of regularization algorithms for efficient
implementations of the automatic reproducing kernel:

e Tikhonov methods based on matrix decomposition for small to medium datasets, with
regularization parameters chosen via the L-curve or generalized cross-validation criteria.

o [terative and hybrid regularization schemes that rely solely on matrix-vector products,
which are scalable for large datasets.

Notations. Throughout, we use roman letters (e.g., f,u,G) and Greek letters (e.g., ¢,&,\)
to denote functions or scalars, with their meanings clear from context. Boldface symbols (e.g.,
G, ¢, x) denote vectors or matrices; we write ¢ = (¢;) or c(i) for its i-th component. We reserve
0 for the zero function and O for the zero vector, and denote by I the k£ x k identity matrix.
For a closed linear subspace H, Py is the orthogonal projection. Given any linear operator or
matrix, A (-) and R(-) are its null and range spaces, respectively. Finally, for a bounded linear
operator T" between Hilbert spaces, T denotes its adjoint.

The structure of the paper is as follows. In Section 2, we introduce the automatic reproducing
kernel and automatic basis functions, and derive regularized estimators based on Tikhonov and
iterative regularization methods. In Section 3 and Section 4, we propose practical algorithms for
computing the estimators, including the approximations from discrete data and Tikhonov and
iterative regularization algorithms for small and large datasets, respectively. We use three typical
examples to illustrate the accuracy and efficiency of our methods in Section 5. The conclusion
is in Section 6.

2 Automatic reproducing kernel and basis functions

We first provide a brief review of reproducing-kernel methods for a variational formulation of
the inverse problems. Leveraging the variational framework, we then introduce the automatic
reproducing kernel. Next, we construct a finite set of automatic basis functions for regression
and show that, despite the loss function being minimized over an infinite-dimensional function
space, the minimizer actually resides in the finite-dimensional space spanned by these basis
functions. In the next section, we build on this continuum analysis to develop practical discrete
approximations, paving the way for efficient numerical implementation.

We make the following regularity assumption on data and the operator Ry[u| in terms of the
bivariate function g[u] throughout this study.

Assumption 2.1 The functions {g[ux]};2, <= L*(X x S) is uniformly bounded, i.e., C, :=
maXi<k<ng SUPgex ses lglu](z, s)| < 0.



2.1 Kernel methods for ill-posed variational inverse problems

We estimate the convolution kernel by a variational approach that minimizes the loss function
over a hypothesis space H:

no,J
¢ =argmin Ep(¢), Ep(¢) = L DT Rylugl(x)) — fulzy)PAx, (2.1)
peH "0y Tj=1

The integral defining Ry[ug|(z;) requires semi-continuum data {g[ui](z;,s),s € S}Zojil that
is discrete in x and continuous in s, which in turn presumes access to the continuum data
ug. In practice, however, we only observe discrete data uy as in (1.2) yielding the values to
discrete {g[ug](zj, s1);0=1,... ,nS}Z?j’il. In Section 3, we use these discrete data to empirically
approximate the integrals in Ry[uy](x;).

Two preliminary tasks in this variational approach are to select a hypothesis space H along
with a representation of the function ¢, and select a penalty term for regularization, which is
crucial for the deconvolution-type problem.

Kernel methods achieve both tasks by selecting a reproducing kernel, which provides a re-
producing kernel Hilbert space (RKHS) as the hypothesis space and provides an RKHS norm
as the penalty term. Specifically, let K be a reproducing kernel (a positive definite function
on § x §) and denote its RKHS by Hg. Each function in the RKHS can be represented by

d(s) = X2, aK(s,s), whose RKHS norm is ||¢]p, = \/sz cic;K(s;,s;). Here, the sample

points {s;};2; must be properly chosen to extract enough features. Then, the minimizer of the
quadratic loss function follows from solving the coefficients ¢ = (¢q,...,¢,,) via least squares
with a penalty term depending on [¢[%, .

However, the choice of the reproducing kernel K is a major challenge. The widely used re-
producing kernels, such as Gaussian kernels, come with hyperparameters that must be carefully
tuned along with the regularization strength parameter. This process is not only computation-
ally expensive but also fails to leverage the specific structure of the forward operator Ry|u].
In particular, when the quadratic loss function is not strictly convex, the conventional kernel
selection and hyperparameter tuning are challenging.

We address this challenge in the next section by introducing an automatic reproducing kernel
that is adaptive to the data and the forward operator.

2.2 Automatic reproducing kernel and RKHS

We first introduce a weighted function space L%(S ), where the measure p defined below quantifies
the exploration of data to the unknown function through the functions {g[u](z, )}, hence it is
referred to as an exploration measure.

Definition 2.2 Given data satisfying Assumption 2.1, let p be a measure on S with a density
function with respect to the Lebesque measure:

1

p(s) = iz 0 JX \glug](z, s)|v(dx), Vs € S, (2.2)

where Z = nio 2ty §6 5y lglue](z, s)|v(dx)ds is the normalization constant.

The exploration measure plays the role of the probability measure py in nonparametric
regression of f(z) = E[Y |X = z] € L2 (S) from data {(z;,;)} that are samples of the joint
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distribution (X,Y) (see e.g., [12,24]). Here, we use the L' norm of g[u](, s); alternatively, one

can also use the L? norm, as in [50], to relax the constraint on g[u]. It is particularly useful when

treating singular kernels in nonlocal operators, which may not be square integrable with respect

to the Lebesgue measure, but square integrable in L2. For example, ¢(s) = s~ ¢ L*([0,]) for

a e (3,2), but ¢ € L2(S) when w;, € C?[0,1] with umformly bounded second-order derivatives

since p(s) = O(s?) for small s since glug](z, s) = ug(zv+3)+up(xr—35)—2ui(z) = ul(x)s?/2+0(s?).
Next, we introduce the automatic reproducing kernel.

Definition 2.3 (Automatic reproducing kernel) The automatic reproducing kernel for es-

timating ¢ in the operator Ry in (1.1) from data {g[uy](x, )}x is the function G : S x & — R
defined by

—  G(s, )

Lip)ps)=0y,  G(s,8) = [ug](z, $)g[ur](x, s )v(dx 2.3
- S G = 3 [ gl ol (), (23

where p is defined in (2.2).

The next lemma shows that the automatic reproducing kernel comes from the quadratic term
of the loss function Ep(¢) in (2.1). In particular, the closure (in L?) of its RKHS is the space in
which the variational problem has a unique minimizer. Its proof is postponed to Appendix A.

For notation simplicity, we write L>(S) and Lg (S x §) as L? and L2 , respectively.

Lemma 2.4 Under Assumption 2.1, the following statements hold true:

(a) G(s,s') is in L?

2ep and symmetric, and the operator Lg : L — L2 defined by

j 6()G(s, 8 )p(ds) (2.4)

is compact, self-adjoint, and positive. Hence, its eigenvalues {\;}i=1 are nonnegative and
its orthonormal eigenfunctions {1;}; form a complete basis of Li.

(b) The loss function Ep(¢) in (2.1) can be written as

En(9) = (Lo, ¢z — 26", ¢)r2 + const., (2.5)
where ¢P comes from the Riesz representation, {¢P, P)rz = %OZZO:KRAW], fryy for any
XS L2 In particular when the data is noiseless, ¢P = Lz, and the loss function Ep has

a unique minimizer ¢ = Lo o 'oP = Py(¢y) in H := span{e);}in-0 = N(Lg)t < L.

(c) The RKHS_Of@ is Hg := E@é([/i) with inner product (¢, p)u_ = <£§_%¢, Eg_%@Lg. We
have H = Hg with closure in Lg and (¢, L) = {9, ¢>Lg for any ¢ € Hg, 0 € Li.

Therefore, solving VE(¢) = 2(Lz¢ — ¢P) = 0 yields the formal solution Lz '¢”. This
inverse exists in H when ¢” € Lz(L?) (and is undefined otherwise). Because Lz is compact and
may even be rank-deficient, the variational inverse problem is ill-posed, making regularization
essential for a stable and accurate approximation of the true ¢. The RKHS Hg provides a natural
regularization space: its closure is H, and it automatically filters out any component of ¢ not in
Lz(L?2), which arises solely from noise or model error (see [8, Theorem 2.7] for a decomposition

of ¢P).



2.3 Automatic basis functions and Tikhonov regularization

In the RKHS Heg, we seek a regularized solution by minimizing

min £,(¢) := Ep(¢) + A 8]7_, (2.6)

peHz

where Ep is given in (2.1). In practice, one must choose a finite set of basis functions to represent
elements of Hs. A common practice is to use the reproducing kernel to set a hypothesis space
‘H = span {a(sj, )};Lil c Hz L2, where the {s; %2y © § are sample points. However, this
can introduce bias and may fail to capture key features of the underlying inverse problem (see
Remark 2.7).

To overcome these limitations, we construct a finite collection of automatic basis functions
tailored to the semi-continuum observations {g[ux](z;, )}Zoj 1~ In particular, we show that even
though the minimization of the loss function is taken over an infinite-dimensional space, the
minimizer actually lies within the finite-dimensional span of these automatic bases. This result
extends the classical finite-dimensional representer theorem for smoothing spline in [44, Theorem
1.3.1] to our data-adaptive setting.

Theorem 2.5 (Finite-dimensional representer) Given functions {g[u](z;, )}ZOJ 1 let

Eki(s) = LG[%](S) = L@(s, s glug](xj, s")ds' (2.7)

for each k,j. Then, §; € Hg and (§kj, ¢)u, = Rgluk](z;). Let
% = ((hj Ewyomg) € RV f = (fi(x;)) e R™. (2.8)
We have finite-dimensional representations for the estimators in (2.1) and (2.6) as follows.

(a) The least squares estimator with minimal Hg-norm is

¢ = argmin Hzﬂ”%@ = ngjfkja with (&) =: ¢ = X', (2.9)
Yearg min Ep () %
qSeHa
where € is the minimal 2-norm solution of mlnc{ - [Xe — £]3}.

(b) The estimator of Tikhonov regularization with Hg-norm and A > 0 is

ox = argmin Ex(¢) = > Gy, = (3% + npJAS) I BF, (2.10)
¢€H§ .

where the coefficient €y = (Cr;) € R™7 solves mine{ 3¢ — f[5 + AeTXc}.

Proof. First, since gi; := % € L2 we have & = Lz0r; € Hg.
Next, note that for every ¢ € Hg, Lemma 2.4(c) implies that (Lgy), ¢)n, = (¢, ¢)rz for any
e Lf,. Hence,
i @iy = LGGkjs O)ig = Grj» P12 = Rolur](7;).

In other words, &; is a representer of the bounded linear functional Ry[uy](x;) on Heg.
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Also, for any ¢ € Hg, we can write it as

¢ =&+ > or&ryn € Lspan{iyl.
kj

Then, we have |¢[7_ = c'Yc+ 1§17 and (&kj. d)m; = (Bc)iy. As a result, the loss functions
Ep(¢) and E\(¢p) can be written as

1 1
Ep(d) = WZ | i) = g g |” = WHEC — 3
j
1
NOE WHEC — 3 + A" Ze + AJ€)G..

Therefore, the minimizer ¢ of Ep(¢) = W{]HEC — f|3 with minimal Hg-norm in (2.9) has a
coefficient € that can be solved with by the minimizer of W{]HEC — f]3 with minimal |c|».
Also, the minimizer of £y(#) solves (-=3* + AX)c = Xf, which gives (2.10). =

Note that the matrix X in (2.8) can be 0eu;thelr singular or non-singular. If it is non-singular, the
Tikhonov regularized estimator in (2.10) becomes Cyigge = (X 4+ noJAI)~'f after canceling out X,
which is the widely used ridge regularized estimator. However, when X is singular, this Tikhonov
regularized estimator is different from the ridge estimator. It is ¢y = (X% + ngJAX) ' Sf =
(2 + noJ N )_1PN(2)¢f , which prevents the error in Py s)f from contaminating the estimator.
In contrast, the ridge regularized estimator will be contaminated by the error Py (s)f and would
lead to disastrous results in the small noise limit [8,31]. Additionally, in either case, our Tikhonov
solution in (2.10) converges to the least squares solution with the minimal norm as A — 0.

Importantly, a singular 3 does not imply multiple minimizers for the loss function over the
function space, though it leads to multiple minimizers in the coefficient space. As the next
remark shows, all the coefficient minimizers correspond to the same function minimizer because
when X is singular, the basis functions {{;} are linearly dependent. In short, the loss function
Ep always has a unique minimizer in Hg regardless of 3 being singular or not.

Remark 2.6 When X is singular, there are infinitely many ¢ minimizing E{]HZC — £, but all
such minimizers lead to the unique minimizer in Hg. Equivalently, the set {¢ = ij Cki€kj i C =
(ck;) € C} contains only one element, where C = C+N (X) is the set of all minimizers of [ Zc—£|3.
To see it, let ¢y and ¢ be such two elements with corresponding c1,¢z2 € C. Then ¢; —cy € N(X)
and g1 — ¢2 = 3, (€1 — €2)(kj)ék;. Therefore, [d1 — ¢o|F = (e1 — €2)TE(e1 — ¢3) = 0, leading
to 1 = ¢2. The same conclusion holds for the reqularized loss ml)—JHEc —f|2 + \c"Xc. In other
words, when X is singular, the basis functions {{;} are linearly dependent, so there are multiple
coefficients that represent the same function minimizer.

Remark 2.7 (Basis functions via the reproducing kernel.) A default approach to solve (2.6)

is to use basis functions of the reproducing kernel G since Hg = span{g(s, V}ses- That is,
take sample points {s;}}2, < S and set hypothesis space to be H = span {G(sl, )}lnzsl For any
o(s) = D0, wG(sy, s) € H, the square of its RKHS norm is

Ns Ns

IOz, = 1D aG (s, o, = Y, war(G(si, ), Glsi, ), = a' Ga,
=1 Li=1 (2.11)



Then, the minimizer of Ep(¢) + A HQﬁHZ@ =a'Aa—2a'b + Const + \a'Ga is
ay=(A+)\G)'b,  with
A(LT) = LG (s1,-), Glsw, )iz = f f (s1,8)G (sp,8")G (s, 8 )dsds’,

1 o
= — R o luel, v = (s, ug(z, s)f
n()};f G luel, ) J I J k] k(z)v(dr)ds

(2.12)

The major difficulty is selecting the sample points {sj} such that the resulting basis functions
capture all the features in the data. In practice, this only succeeds when {s;} align exactly with the
x-mesh, at which point the estimator coincides with the automatic basis estimator. By contrast,
the automatic basis functions in Theorem 2.5 are guaranteed to extract all the features available
in the data. Therefore, throughout this study, we employ the automatic basis functions.

2.4 Conjugate gradient and iterative regularization

[terative regularization methods circumvent the computationally expensive matrix inversions
or decompositions for Tikhonov regularization in (2.10) by minimizing the loss function on a
sequence of growing subspaces with early stopping; see, e.g., |20, Ch. 3.3|. These subspaces are
designed to progressively capture the dominant features of the true solution, and early stopping
prevents the inclusion of noise-dominated directions.

To design iterative regularization methods adapted to the automatic basis functions, we can
apply the conjugate gradient (CG) method (see, e.g., [20, Ch. 7]) to the normal equation of the

least squares problem

argmin ngJEp(¢) = | T — ff3, (2.13)
peHz

where 7' is the linear operator
T: Hg— (R™, (D), ¢ ((&kjy Drg)- (2.14)

At each iteration, the CG method selects a new search direction that is conjugate with respect
to the normal operator T*T to all previous directions. In particular, CG is essentially a Krylov
subspace method, where the solution to (2.13) in the [-th CG iteration with initial guess ¢y = 0
is
¢ = argmin |[T'¢ — |y, H; := span{(T*T)"T*f}.2;. (2.15)
peH,

Each H, is a subspace of Hg and we call it the I-th RKHS-Krylov subspace.

The following theorem shows the implementation of the above CG iteration in the coefficient
space of the automatic basis functions.

Theorem 2.8 (Conjugate gradient solutions) At the l-th iteration, the CG solution in (2.15)
18 ¢l = 7T<C) = ij Cl(kj)gkj with
c; = argmin |[Zc — fly, K := span{X2'2f}_ (2.16)

CEICZ

and H; = w(K;) = span{},;; a;i(kj)é i), where a; = XS and 7 is the linear operator

m:R™ — Hy:= span{f,w}zo]’ LS Hg c— chjﬁkj. (2.17)
kj



In particular, T¢ = Xc for any ¢ = ij crilr; + & with € € Hy and ¢ = (c;) e R Toqr =3
and T* =mo (ETE), implying the following two commutative diagrams:

Hy —X— Rro/ Hy +=— Rno/

. 2.18
WT / 71']\ ‘KTE ( )
Rnoj RnoJ

Proof. The proof includes the following four steps.

Step 1: Prove that T = 3¢ for any ¢ = 3, ;& + & with § € Hy and ¢ = (¢;) € R™7,
which implies T'o 7 = X. By the definition of 7T, it follows that T¢; = ((§wjr, §kjm,) With 1 <
k' <ngand 1 <j" < J. Thus, recalling that ¥ = ((&;, §py)m, ), we have T'¢ = T'(3; ; cx;érj) =
ij ijTékj = Yc.

Step 2: Show that 7% = 7 o '3, It suffices to show that for any y € R™’ in the decompo-
sition T*y = ij ari&r; + € with € € Hy, we have £ = 0 and (az;) =: a = »¥y. By the adjoint
identity {T'¢,y)2 = {¢, T*y)n, for any ¢ = >, ; cx;&; + €, we have

(Ze,yye = O ewibeg + 6> ari&ej + On, = ¢ Ty =c'Ta+ & Hm,
K K

for all c € R™” and ¢ € Hy. Thus, taking ¢ = 0, we have (¢, §>H§ =0 for all £ € Hi". Combining
with £ € Hy, we get £ = 0. Then, we have ¢’ Xy = ¢ Xa for all c € R/, resulting in y = Za,
or equivalently, a € XT3y + A (X). But any two choices of a differing by an element of N(X)
give the same ¢ € Hg (see Remark 2.6). Therefore, we can take a = >'yy.

Step 3: Compute (T*T)'T*f. Note that T* o X = (1 0 X)X = 70 X since T = BXT.
Using T'om = 3., we have

(T*T) omr = (T*T) L oT*o X = (T*T) ' oroX =-.- =10 X"
Now we have T*f = 7(2'2f) = 7(2X'f), and
(T*T)'T*f = (T*T)" o n(BT2f) = 7(D'BVITf) = 7(ZTTIF).
Therefore, the [-th RKHS-Krylov subspace is
H; = span{(T*T)'T*f}' 2} = n(span{Z'If}_ ) = 7 (k).

Step 4: Prove ¢, = 7(¢;) with ¢; in (2.16), i.e., ¢; = argmin |¥Xc — f|,. From the above
CE’C[
results, we have

¢ = argmin |T¢ — f|| = argmin |7 o 7(c) — f|s = argmin |3c — f|s.

b=m =n
gen(Ky) 00 )

It follows that ¢; = 7(c;). =
Theorem 2.8 implies that R(T) < R(X). Furthermore, noting that A (T') = Hy, we have
dim(R(T)) = dim(Hg/N(T)) = dim(H,) = rank(X), leading to R(T) = R(X). Then, we have
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PysyLf € R(T) and Py s)f L R(T'), leading to argmm Tp — £y = argmm IT¢ — PrsyLf]2
G
and

¢ = argmin |T'¢ — Py x).flls = argmin | Xc — Py x)f2. (2.19)

H ¢=m(c)
el ceky

Therefore, we can obtain ¢; = 7(c;) by computing ¢; = argmin ||3c — Py (x).f|s.
CEICZ

In practice, rather than applying CG directly, we use the Golub-Kahan bidiagonalization
(GKB) to explicitly construct the solution subspace K; and solve (2.19) iteratively. This approach
is mathematically equivalent to CG but avoids explicitly forming 77", which is more numerically
stable, and the convergence of iterates can be further stabilized using the hybrid regularization
method; see [7,28] for more details.

Derivation of the GKB method. The recursive relations of GKB for {T, Pyx).f} is given
by:

pip1 = PN(z)ifa

by = T*(pi) — Bivi-1, (2.20)

BiviPir1 = T(¢i) — aips,
where 1 := 0, and {«;, 8;} are computed such that {¢);} = Hz and {p;} = R™” are orthonormal,
and span{t;},_; = H;. Let @ = 7|ps)L, where 7 is defined in (2.17). Note that 7 is injective,
and the two commutative diagrams in (2.18) still hold by replacing R™’ with M(X)t. By
Theorem 2.8, for any 1, there exist a unique q; € N'(X)* such that 7(q;) = v, and {¢;, Vi)m, =
q; Xq;. Using T*u; = 7#(X13w;), we have

it (q;) = 7(B'Ep;) — BiF(gi1),
Bis1Pi+1 =T o ﬁ(wi) — O;P;.

Using T'o ™ = 3, we obtain the practical GKB recursive relations:

pip1 = Py sz,
a;q; = P qulfla (221>
Bit1Pi+1 = X — a;pi,
where qo := 0, and {o;, 3;} are computed such that {q;} = N (X)* and {p;} are X-orthonormal
and 2-orthonormal, respectively. Here, to get the second relation of (2.21), we have used p; €
N(X)+, which can be verified by mathematical induction.
Note that (N ()1, (, )x) is a finite-dimensional Hilbert space with inner product {(x,x')s; :=

x " 3x. The following theorem shows that GKB iteratively constructs a X-orthonormal basis of

K in (M(2)4, (-, )s). The proof is in Appendix A.
Theorem 2.9 Following the notations in Theorem 2.8, define the linear operator:

T : (N<E)L’ <'> >E) - (N(E)lﬁ <'7 '>2)7 X — 3X. (2'22)

Then (2.21) is the recursive relations of the GKB for {i Py (s)1f}, and the following properties
hold:
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(a) The two groups of vectors {q;}'_, and {p;}\_, are Z-orthonormal and 2-orthonormal bases
of the Krylov subspace

ICI(E, PN(E)J_f) = span{EZPN(g)Lf}i;[l) = ’Cl' (223)
(b) Let the terminate step of GKB be I, = argmin {a;118;41 = 0}. Then [, < rank(X), and
i>1
¢, = &, the LS estimator with minimal He-norm defined in (2.9).

(c) Let the residual be v = T'¢; —f. Then ||r;|2 = |3Zc; — fl2 and ||¢i| = llei|s, and {|r:]2}
and {|c;|s} monotonically decreases and increases, respectively.

For [ < I;, detnote P; = (py,...,pip1) € R and Q; = (qu,...,q) € R™/*! From
(2.21) we have

BiPi1e1 = PN(E)Lﬂ
YQ =P.B, (2.24)

P = QB + aiqie 4,
where e; and e, are the first and (I + 1)-th columns of I;, 4, and
aq
P2 g
B, — B, c RU+DX (2.25)
. o

Bisa

has full column rank. Using Theorem 2.9 and for any c € K; letting ¢ = Q;y with y € R', we
have

min ||EC — PN(E)LfHQ = min HZQly — 51Pl+161”2
cek; yeR!
= min [|Py1(Bry — Bie1)]2 = min [Biy — Bieilo.
yeR! yeR!
Therefore, the I-th CG solution equals to

or=m(c), < =Quy, y =argmin|B;y— Bies. (2.26)
yeR!
In other words, we only need to solve an [-dimensional least squares problem at the [-th iteration
to get the coefficient vector.

Early stopping criterion. The CG iteration yields a regularized solution by early stopping.
If the noise norm ||e|, is available, where € = (ex(z;)) € R™’, then the discrepancy principle
(DP) |20] can be used to halt iteration at the earliest instance of [ that satisfies

| T = fll2 = |Zer — £z < 7llez, (2.27)

where 7 is chosen to be marginally greater than 1. When |¢|y is unavailable, we adopt the L-
curve criterion 25|, which estimates the ideal early stopping iteration at the corner of the curve
represented by

(log | Ty — 2, log ] 1) = (log | Ee; — £, log [leix) - (2.28)
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Note from Theorem 2.9 that the residual norm decreases monotonically while the solution norm
increases monotonically, which together make the “L”-shape of (2.28) possible. For the L-curve
method, one must proceed a few iterations beyond the optimal [ to find its corner.

Hybrid regularization method. For the iterative method, the regularized solution is sensi-
tive to the iteration number, and the DP or L-curve criterion may yield a suboptimal iteration
number, resulting in an over- or under-regularized solution. To stabilize the convergence, we
follow the idea of the hybrid regularization method; see e.g. [11,28|. At each iteration, instead
of solving (2.19), we add an Hg-norm Tikhonov regularization term and solve the problem

Or, = argmin [T = Pzt + Mol (2.29)
€7L]

where ); is the regularization parameter that is updated at each iteration. For any ¢ € ‘H;, using
B; and Q; in (2.24)—(2.25) and letting ¢ = 7(c) = 7(Qy) with y € R!, we obtain

min{|7¢ — Py £z + NlgllE} = min{|Ze — Pyz o El3 + Arflels}

= min{|By — Brei|3 + Mly[3},
yeR!

where we have used Q/ £Q; = I;. Then, the [-th hybrid solution is

on = T(Qiya),  y = argmin {[By — frer|s + Afly[}- (2.30)
yeR

Therefore, at each step we only need to update \; and compute y,,, which is computationally
efficient. We update A\; by the weighted GCV (WGCV) method; see [11,32] for more details.

3 Approximation from discrete data in practice

In practice, the data are discrete, as in (1.2). Thus, to apply the automatic reproducing kernel,
we need to numerically approximate the integrals in the exploration measure p, the automatic
reproducing kernel and basis functions, and the matrix ¥ in Section 2.2.

The starting point is to approximate the function {g[u](z;, )}Zoj .- Note that the explicit
forms of these functions are unavailable since the data only provides {us(y;)}3/,, values of these
functions at finitely many points, but the functions wu; are unknown. For the operators in
Examples 1.1-1.3, the data only defines g[ug|(z;,s;) with s, = [/J for 1 <[ < J, and one may
use a rougher mesh for s than these J points. For generahty, let the mesh points for s be {s;};,.
We denote values of the function {g[u](x;, )}"0 “, at these mesh points by a vector

gij = (9lur)(@j, s1)icn, e RV™, 1<k <np, 1 <j<J.

The functions {g[ux|(x;, )} can then be approximated by various approaches, such as splines,
wavelets, or Fourier series. For simplicity, we consider piece-wise constant approximations, i.e.,

Gri(s Zg uk (5, 50)11,(5), (3.1)

=1

with [l = (Slfl, Sl] with So = 0. .
Correspondingly, we use the Riemann sum to approximate the integrals of p in (2.2), G
n (2.3), and &; in (2.7). Table 1 presents their approximations using semi-continuum and

13



discrete data. The density of p with the semi-continuum data is /')(3)%% 2o lglu](z;, s)],
whose approximation is

p(s)oc ZL@ ug)(zj, 51)[1,(s) = _Z|9kj

& (3.2)
= PDOCZ |gks| € RV
kj
Here, the factor % = |Az]| since the z-grid is uniform. Note that p_ is a discrete representation

of the probability measure p, and it assigns weights to the sample points {s;}. Since we use
piece-wise constant approximations, these weights are the probability of p on the sets {I;}.

Similarly, we approximate the integral kernel G(s,s’) := %ijg[uk](xj,s)g[uk] (xj,s) in
(2.3) by
~ 1
Gpls,8) i == 2, gui(s0)gs(s0)1n(5)1s, (s) = —ngg $) G (s
oy

1 1
=G, = — > glgy = —g ge R
© " gl 2 BijBki = 78 8

Then, G,, and G follows directly from the above approximations of p and G, as in Table 1.
Lastly, each automatic basis functions &; = {4 G, (s, s')g[ux](x;, s')ds" in (2.7) has approxi-
mations and discrete representations based on G and G, as follows,

~ 1
§i(s) = — Grrj (1) gre i (1) grs (s0) | As|1y, (),
J noj k‘/;,l/ : (33)

=&, = g1 G, |As| € R,

To approximate the normal matrix 3 = ({({xj, $prjr)m) € Rno/*m0d " recall that Lemma 2.4(c)
implies (L), d)r = (¥, @)1z for any ¢ € L2, Then, we obtain from (2.7) that

g[uk](xjv')
p()
— | ol 65 (s)ds ~ | aluel(es, ()05 > gl

S

Ehjs Ewomg = (La~ € Gwiorz = ¢  Ejrorz

In other words, the discrete representation of 3 is
¥, =g€'As, where g = (g;) e R™/" ¢ = (&j) € R70/ X7

To conclude, our estimator (2.10) in computational practice is
Ox = D1 0iEl = Y. A1y, (s) < ¢y = 1€ with & = (32 +ngJAE,)I D1, (3.4)
kj =

where the basis functions {1;,(s)};"*; originate from the piecewise constant approximation of the
functions {g[u](z;, )} in (3.1).
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Table 1: Functions and arrays from the semi-continuum and discrete data.

Semi-continuum Data Discrete Data Vector/Arrays

9k (5) == glur](z;, ) 9ri(s) = 221 gkinln(s), | 8ks = (gujt)1<isn, € RV
with geji == glu](zj,51) | &= (gk;) € R™/"

fr(@) f = (fr(z;)) e RmoIx1

pls)oc S Lo (5)] A P (8)5 o it AL, (5) | p, e 3y, Igs] € R<T

Gls. ) = 25 Sy 015 (s () | G (5. G, = LglgeRmn

G(s, ') = p?s()spf?;z) éD(S»SI) G, = pggD € R7s %ns

6us(s) = §Cs.Nguy ()ds' | 5, (s) €0 = 80,C o |As| e BRI

= 2021 & (D1 (s) | € = 8Gp|As| e Rrolxm
2 = (Chjs Sy i) 3. = g€ |As| € RmoJxmod
Ep(9) Ep(¢) = Eplc) = 715 S,c — £
LSE mini-norm ¢ = Sk 51@]5,% o $=¢T¢ withe = »if
Tikhonov Est. Ox = Yi bl = By = €€ with &y = (B2 + ngJAD,)I B f

We summarize the above approximations from discrete data in Table 1.

Note that 3 is singular when n, < nyJ. In other words, when estimating ¢ at n, evaluation
points, the number of necessary features (basis functions) is at most n,, so the ny.J data-deduced
basis functions must be linearly dependent. Consequently, in this case, it is important to not use
the ridge estimator ¢,igge = (X, + n9JAI)~'f but use € = (X2 + ngJAX )’ f instead.

Importantly, the automatic basis functions {{;;} have two major advantages over the piece-
wise constants {1j,(s)};; and other spline basis functions. First, if the analytical form of the
functions {g[u](z;,-)} is given, we can use the automatic basis functions directly with the
coefficient €, in (3.4). Second, they overcome the difficulty in computing the RKHS norm. For
example, if we write ¢(s) = X, ¢(1)1y,(s), then the regularized problem becomes miny, |g¢p—f|[3+
>‘H¢”%Tkhs7 and a major difficulty is to compute the Gram matrix C,p,s = (<11l, 111,>H6)

1<l,l/<ns’
In contrast, the Gram matrix 3 for the automatic basis functions is directly available.

4 Practical algorithms for computing the estimators

When ngyJ is not large, e.g., up to a few thousands, one can compute the Tikhonov regularized
estimator ¢, = (Ei + noJAE )X f based on matrix decomposition. When ngJ is large, the
iterative methods can efficiently compute regularized solutions.

4.1 Tikhonov regularization for small datasets

In Tikhonov regularization, we first compute the eigenvalue decomposition: 3, = UAU' with
U = (uy,...,u,,y) and A = diag({\;}), where Ay = --- > \,,; are the eigenvalues of ¥ and
{u;};>1 are the corresponding orthonormal eigenvectors. The solution ¢, = (Ei +ngJAE,)E f

~ T .
can be written as ¢y = >, A>0 uz%nofj/\ Note that the components uin corresponding to \; = 0 do
not enter the estimator. To handle the numerical rank-deficient of 3 in practical computations,
we set a small threshold tol > 0 (e.g., tol = 107! for machine precision on the order of 107'6)
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and let 7 = #{\; : \; > tol} be the numerical rank of 3. Then, we compute a regularized
C) € span{uy, ..., u,} as follows. Let U, = (uy,...,u,) and A = diag(Aq,...,\,). Withc = U,y
and A;?y = z, the regularization problem mineer(s, ) {|X,¢ — f]5 + Ac" X, ¢} becomes

min{|U, Ay — 5 + NAVZY[3) = min{[UAY2 — £]3 + N3}, (11)

and €, = Uy, = U,A; z,. Finally, we obtain gy = () = 3, G-
In order to select the optimal A, we can use the L-curve [19] or GCV criterion [23]. The
L-curve criterion plots the following parametrized curve in log-log scale:

1Y) = (@0, 5(V) - = (log(|Tdx — £]), los(|oxlm,,)

1 (4.2)
- (1og(|yz:DeA — £, 1og((612D6A)5)> ,

and the corner of I(\) corresponds to a good estimate. In practical computation, we restrict A
in the spectral range of ¥, and compute

1o o
A* = argmax k() 1= A

ArASAL (2 + y2)32 (4.3)

as the optimal A by maximizing the signed curvature of the L-curve. For the GCV criterion, by
noting that
f -3¢\ = (L —Z,5,)f,

where 3, | = (Zi +nygJAX,))IE ), we have the following GCV function:

v (ol f)? noJ T2
|(Lhos — 2,2, )F5 (Zi_l <,\§+nOJA> + 2 (i f) )

_ 2 2
(trace(T,s — 2,2, ,)) (TLOJ P AfTrﬁJA)

GCV(\) = (4.4)

where we have used the numerical rank r to replace rank(X ). The optimal \ is estimated as
the minimizer of GCV(\).

Input: Data D = {(ux(x;), fu(x;)),j =1,...,J}2,
1: Compute basis functions {&;}, assemble matrix 3, and vector f
2: Compute the eigenvalue decomposition: ¥, = UAUT
3: Estimate the optimal A by L-curve or GCV criterion

4: Solve (4.1) to get €y = (Cyy); compute ¢y = m(Cr) = Doy ; CrjSiy
Output: Regularized estimator gﬁ,\

Algorithm 1: Tikhonov regularization
The algorithm of Tikhonov regularization is summarized in Algorithm 1. This method needs

to store the matrix 3, with the memory usage of O(n3.J?). The main computational cost is the
eigen-decomposition of X, which has the order O(nj.J?).
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4.2 TIterative regularization for large datasets

For large datasets, iterative regularization methods that rely solely on matrix-vector products
are more efficient. The algorithm is based on the GKB iteration introduced in Section 2.4.

In the GKB method, the bi-diagonal structure of B; in (2.25) allows us to update c; step by
step without explicitly solving miny |B;y — fie1. The updating procedure is based on using
Givens QR factorization to B,;, which is very similar to the LSQR algorithm; see [40] for the
details. In practice, we first compute an approximation 3, to replace 3 in the computation,
and then apply the GKB procedure to update the orthonormal basis of the solution subspace and
the coefficient vector. The iteration will be stopped if the early stopping criterion is satisfied.
The algorithm is summarized in Algorithm 2.

The hybrid regularization algorithm proceeds in the same way, except that at each iteration
we update \; and recompute the regularized solution y,, from (2.30). Accordingly, we omit its
pseudo-code here.

Input: Data D = {(ux(z;), fi(z;)),7=1,...,J}°,
1: Compute basis functions {&;}, assemble matrlx ¥, and vector f

2: (Initialization)

3: Compute f = Py(s ).f, 81 = ||f]2, p1 = /5

4: Compute oy = leHgD, qi = pi/o

5 Set co =0, w, =qy, g1 = b1, p1 =

6: for i =1,2,..., 14 do

7 (GKB iteration)

8: r=3,q; — ap;, Bis1 = |rll2, Pir1 = 1/Bis1
9: S = Pit1 — Bit1Qi, Qit1 = HSHED7 Qir1 = S/t
10: (Apply Givens QR factorization to B;)
11: /O (pz + 1+1)1/2

12: Ci = Di/Pi 8i = Biv1/pi

13: Qz’+1 = 85i0it1, Pi+1 = —CiQit1

14: Vi = CiPi, Pit1 = SiPi

15: (Update the coefficient vector)

16: Ci = Ci1 + (0i/pi)Wi, Wiy1 = diy1 — (0ir1/pi)w

17: if Early stopping criterion is satisfied then

18: Terminate at the estimated iteration [, let ¢ = ¢;, = (Ck;)
19: Compute ¢ = > ¢x;&k;

Output: Regularized estimator QAS

Algorithm 2: Iterative regularization by GKB

At the initial iteration of both methods, we compute Py (s ).f. If 3, has full-rank or
f e R(X,), then Py (z,)Lf = f. Otherwise, noting that Py ED)Lf = ZLEDf, we approximate
this projection by iteratively solving the minimal 2-norm least squares problem min,cgnos |3, v —
3 f|.. This approximation does not require high accuracy, as the presence of noise limits the
achievable final precision of the regularized estimator. In practice, it is carried out efficiently via
the LSQR algorithm [40].

The iterative method requires O(n2J?) storage, matching the storage requirements of the
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direct method of Tikhonov regularization. Each iteration is dominated by the matrix-vector
product with large X p, costing O(n2.J?) operations. Thus, over ., iterations, the total compu-
tational complexity is O(n% J? lmax). The hybrid method also incurs a total cost of O(ng J? lmax),
as the additional cost of O(I?) from the SVD of B; in WGCV at each iteration is negligible
compared to the dominant O(n2J?) term, placing its complexity between that of the iterative
method and the direct method.

5 Numerical experiments

We present numerical results for three examples of learning kernels in operators, including integral
operators, nonlocal operators, and aggregation operators in mean-field equations, as detailed in
Examples 1.1-1.3. All experiments were conducted in MATLAB R2023b using double precision.
The codes are available at https://github.com/Machealb/Automate-kernel.

Numerical settings. The input data {u;} are described in Examples 1.1-1.3 with ny = 30 and
0, = n~2. They lead to ill-conditioned and rank-deficient regression matrices with eigenvalues
decaying near polynomially. We use a uniform mesh with mesh size Az = 0.005. We use the
Gaussian quadrature integrator for the integral in the operators to generate data, and use the
Riemann sum to approximate it when computing the estimators. Unless otherwise specified, for
all the examples we set the noise-to-signal ratio (nsr) to be nsr = 0.1, which corresponds to
a noise with standard deviation of around ¢ = 0.01. Here the signal strength is the average
L%-norm of the output {Rs[ur](z;)}r.;-
The true kernels ¢ for the three examples are

¢1(s) = sin(27s), ¢o(s) = sin(4ns)Ljos)(s), P3(s) = —2sin’(67s),

respectively, and they are plotted in Figure 2. Note that the kernel ¢5 of Example 1.2 has
a jump discontinuity. As observed in [36], estimator accuracy improves when the smoothness
of data matches that of the true kernel. Accordingly, we generate discontinuous data for Ex-
ample 1.2 by multiplying each smooth u; in Example 1.1 by the indicator of [—0.5,0.8], i.e.,
ug(y) — up(y)l—05,0s(y). Furthermore, these true kernels are close to the identifiable spaces
H = N(Lg)* for each example, making accurate estimation possible.

For each regularized estimator, we evaluate the relative Li—error with respect to the true
solution, where i is the Lebesgue measure. When reporting the statistics of the estimators (such
as their means and box plots), we perform 50 independent simulations for each test.

Other regularization norms. We benchmark our Hg-norm against two baseline norms for
regularization: a Gaussian kernel norm Hy and the Lz—norm. The Hp-norm is the norm of
the RKHS with the widely-used Gaussian kernel K(s,s') = exp(|s — s'|*/(202)), where the
hyperparameter is 0y = 0.1 after fine-tuning. For both RKHS norms, we use their automatic basis
functions to get an ngJ x ng.J linear system, and apply the Tikhonov and iterative regularization
methods to compute the estimators. For the Lf,—norm regularization, following Section 3, we

compute the coefficients of gg(s) =7, &1p,(s) by solving the regularized least squares problem
arg min %HAC — )3+ Alc|E, where A = gAs e R™7*" and |c|3 = ¢'Bc with B = diag(p,).

ceRms
Using the transformation ¢ = Bic and A = B*%A, we only need to deal with the 2-norm
regularizer |[€[y in the Tikhonov or iterative regularization.

Accuracy of the estimators. We first compare the accuracy of the estimators computed
using the three regularization norms, each with the four regularization methods: Tikhonov reg-
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ularization with A selected by the L-curve and GCV criteria, iterative regularization with early
stopping determined by the L-curve, and hybrid regularization with \; updated by WGCV.
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Figure 1: Relative errors of the estimators in 50 simulations.

We present the Li (u is the Lebesgue measure) relative errors of the estimators in 50 simu-
lations in Figure 1, where the box-plots display the median, lower and upper quartiles, outliers,
and the minimum and maximum values that are not outliers. The abbreviation “LC” stands for
the L-curve criterion, while “hyb” denotes the hybrid method.

The results demonstrate that the choice of regularization norm has a significant impact on the
accuracy of the estimators. For all three examples, the Hg-norm consistently yields lower relative
errors, indicating that our data-adaptive RKHS regularization can better capture the structure of
the underlying nonlocal inverse problems. In contrast, the Gaussian kernel norm generally yields
the largest errors with large variances. While the L% norm regularization occasionally achieves
accuracy comparable to that of the Hg-norm, such as Example 1.2 with iterative regularization
methods, it is less accurate and less stable overall.

Additionally, the L-curve and GCV methods produce comparable hyperparameter selections
for Tikhonov regularization (top row of Figure 1). However, the bottom row of Figure 1 illustrates
that the purely iterative method can incur larger errors due to the instability of identifying
the discrete L-curve’s corner for early stopping. By contrast, the hybrid method offers greater
stability and consistently achieves low errors across all cases.

Figure 2 displays the estimators in a typical test: only the estimators of Tikhonov with L-
curve and the hybrid method are shown, since the other methods yield very similar results and
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Figure 2: Typical regularized estimators by Tikhonov regularization with L-curve and hybrid
regularization with WGCV using three norms: Hg, Hg, and Lz.

are omitted for clarity. Because the noise level is low, all estimators closely track the true kernels.
The Hg-norm regularizer produces slightly more accurate estimates than the Lz and Gaussian
kernel norms. In particular, for the nonlocal operator (middle column), the Hg regularizer better
resolves the jump discontinuity than the Gaussian kernel estimator: its data-adaptive smoothness
allows it to capture the discontinuity more faithfully.

Convergence as noise decreases. To compare these methods further, we examine the es-
timator convergence as the noise level decreases with the noise-to-signal ratio varying over
nsr € {1,1/2,1/4,1/8,1/16,1/32} and all other settings unchanged from the previous experi-
ment. For each noise level, we run 50 independent simulations. In Figure 3, we report results
for Tikhonov and iterative regularization using the L-curve for parameter selection, alongside
the hybrid method; Tikhonov with GCV yields results similar to Tikhonov with L-curve and
is omitted for clarity. To illustrate convergence behavior in the ideal scenario, we also include
the relative error of the optimal iterative regularized solution (denoted by “Iter.-opt.”), i.e., the
solution with the minimum relative error across all iterations.

For the integral operator (left column of Figure 3), the relative error of all estimators decreases
as the noise level is reduced. For all regularization methods, the estimators obtained using the
Hg-norm consistently achieve the lowest relative errors as the noise decreases.

In particular, for the optimal iterative solutions (bottom row of Figure 3), the convergence
curves under the Hg and LZ norms are nearly identical for all the three examples, indicating
that they share the same convergence rate up to a constant factor. This observation is consistent
with the theoretical result presented in [37].

For the nonlocal operator (middle column of Figure 3), the Gaussian kernel regularized esti-
mators have relatively large errors that fail to decay, due to the mismatched smoothness between
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Figure 3: Convergence of the estimators as the noise decreases in 50 simulations.
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the true kernel and the Gaussian kernel. In contrast, for all regularization methods, the Hg- and
Lz—norms consistently lead to estimator errors that decay with the noise, and their convergence
curves become flat as the noise level approaches the numerical integration error.

The aggregation-operator case (right column of Figure 3) highlights the differences between
methods. Both Tikhonov and hybrid methods yield convergent estimators under the Hg-norm,
but not under the Lz—norm. In contrast, the iterative method performs well in the LZ—norm but
suffers instability in Hg-norm due to early stopping sensitivity. All methods fail to converge
under the Gaussian kernel norm, due to the relatively high frequency of the true kernel.

In summary, the Hz-norm consistently leads to convergent estimators across nearly all regu-
larization methods and achieves the lowest relative errors as noise decreases, outperforming both
the Li and the Gaussian kernel norms. These results confirm its effectiveness and robustness
for learning convolution kernels. Moreover, the hybrid method exhibits the strongest conver-
gence behavior overall, underscoring its ability to automatically select optimal regularization
parameters and deliver accurate solutions.

Computational scalability. In this experiment, we evaluate the computational scalability of
Tikhonov and iterative regularization for learning convolution kernels as the data size increases.
We vary ng € {6,12, 18,24, 30, 36}, holding all other parameters fixed as in the first experiment.
We only show the results for the H regularization, as it has been proven to be the most effective
in prior tests. For each value of ng, we set the maximum number of iterations for all the three
examples as . = 30,30,40,40, 50,50, which is chosen to be larger than the optimal early
stopping iteration. We conduct 50 independent simulations for each setting, and record the
computation times on a Debian 12 desktop with 12 Intel processors.
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Nolocal operator
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Figure 4: Running time as sample size ng increases for Tikhonov, iterative and hybrid regular-
ization methods using Hz-norm.

Figure 4 reports the computation times in these tests. The iterative regularization method is
orders of magnitude faster than the Tikhonov regularization method, particularly as ng increases.
This behavior aligns with our theoretical analysis of the computational complexity of the two
approaches. Although the hybrid method incurs slightly higher runtime than pure iterative
regularization, it demonstrates significantly greater stability, as evidenced by the results of the
previous experiments. Therefore, for learning convolution kernels from large datasets, the hybrid
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method based on iterative regularization is the most effective and reliable choice.

In summary, our numerical experiments highlight the advantages of data-adaptive RKHS
regularization for learning convolution kernels. By leveraging automatically constructed basis
functions, we have developed efficient and accurate iterative regularization methods that scale
well with large datasets.

6 Conclusion

We have developed robust and scalable data-adaptive (DA) RKHS regularization methods for
learning convolution kernels, based on an automatic reproducing kernel that is tailored to the
data and the forward operator. For discrete and finite observations, the methods use a finite
set of automatic basis functions sufficient to represent minimal-norm least squares, Tikhonov,
and conjugate gradient estimators in the RKHS. The DA-RKHS and automatic basis functions
capture the structure imposed by the forward operator and data, enabling nonparametric and
mesh-free regression without the need for reproducing kernel selection, hyperparameter tuning,
or predefined bases. We have developed efficient regularization algorithms, including Tikhonov
methods based on matrix decompositions for small datasets and iterative methods using only
matrix-vector products for large datasets. Numerical experiments on integral, nonlocal and
aggregation operators demonstrate that the proposed methods outperform the ridge regression
and Gaussian process regression, highlighting their effectiveness, robustness, and scalability.

A  Proofs

Proof of Theorem 2.4. (a). It is clear that G is symmetric. First, we show that G is
square-integrable. Since g[ux] € C(X x §), we have

awm:Lifﬂmumwmmﬂwm<@m» (A1)

"o 5

Then, by symmetry, we obtain that G(s,s’) < Cymin{p(s ) p(s')} for any s,s" € S. Then,

JJG s,8')p(ds)p(ds’) ff (5, ) d ds' < C3supp(p)]*.
s p(s

Then, L is a compact self-adjoint operator. It is posmve since

(Lo, Byra = fj¢ )G (s, 8')dsds' = —Zw@ww

for any ¢ € L.

(b). By its definition in (2.1), the loss function &p can be written as (2.5). Note that
(B, )1z = nio Yot ((Rolur], Ro[ur] + €)y for any ¢ € L2, thus, we can write ¢” as ¢” = Lz, +
n, where ¢, is the true kernel and n ~ N(0,02Lg). In particular, when the data is noiseless, we
have ¢ = Lz¢,. Thus, the loss function £p has a unique minimizer ¢ = L5 '¢P = Py(¢,) in
H := span{t;}i.x>0-

(c). The fact that Hg = Egl/ 2(Lz) is a standard characterization of the RKHS, see, e.g.,
3,13,36]. Also, for any ¢ = 3, c;th; € Hg and ¢ = 3, d;th; € L2, using the fact that (i, 1) =
6ij\; ', we have

(& Latiig = PN adidi = ) edi = (0, 0z
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Lastly, it follows from the definition of H that H = Hz. =

Proof of Theorem 2.9. (a) First we prove that under the canonical basis of R™7, it hold
that T*y =y for any y € N(X)*. Since

(Tx,y) = (x, Ty < x' BTy —y) =0, VxeN(Z),

we have S(T*y —y) = 0. Using T*y —y € N (£)L, we obtain T*y —y = 0, which is the desired
result. Using the basic property of the GKB process, {q;}, and {p;}", are the X-orthonormal
and 2-orthonormal bases of the Krylov subspaces

Ky(T*T, T*PN(E 1f) = span{(T*T)’ T*PN(E P = span{X’ Pys) 1120,
Ky(TT*, Py ()L f) = span{(TT*)’ 'Prsyr£120 = span{X’ Pys) 1120,

respectively. The last relation is obvious since EiPN(E)J_ — yifiyt

(b) Since {p;} and {q;} are 2-orthonormal and X¥-orthonormal bases, the maximum GKB
iteration must not exceed the dimension N'(X)+, which is rank(X), that is, I; < rank(X). Using
Theorem 2.8 and that H,, = 7(K;), K; € N(X)*, and 7|y s — Hg is injective, there is a one-
to-one correspondence between the CG for (2.19) and the CG for minecep ()L |Tc — Py )L f]2.

Therefore, the CG for T" and T terminate at the same step, the basic property of CG implies
that Qb = ¢lt = W(Clt)‘

(c) Using Tom = X, we have Ty, — f = T on(c)) — f = Xc; — f. Using (2.8) we get
¢, = |eills. The basic property of CG for T' states that with a zero initial solution, the
residual norm monotonically decreases and the solution norm increases. This is the last assertion.
|
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