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Abstract—Ultra-fast electronic phenomena originating from
finite temperature, such as nonlinear optical excitation, can
be simulated with high fidelity via real-time time dependent
density functional theory (rt-TDDFT) calculations with hybrid
functional. However, previous rt-TDDFT simulations of real ma-
terials using the optimal gauge–known as the parallel transport
gauge–have been limited to low-temperature systems with band
gaps. In this paper, we introduce the parallel transport-implicit
midpoint (PT-IM) method, which significantly accelerates finite-
temperature rt-TDDFT calculations of real materials with hybrid
function. We first implement PT-IM with hybrid functional
in our plane wave code PWDFT, and optimized it on both
GPU and ARM platforms to build a solid baseline code. Next,
we propose a diagonalization method to reduce computation
and communication complexity, and then, we employ adaptively
compressed exchange (ACE) method to reduce the frequency of
the most expensive Fock exchange operator. Finally, we adopt
the ring based method and the shared memory mechanism to
overlap computation and communication and alleviate memory
consumption respectively. Numerical results show that our opti-
mized code can reach 3072 atoms for rt-TDDFT simulation with
hybrid functional at finite temperature on 192 computing nodes,
the time-to-solution for one time step is 429.3s, which is 41.4
times faster compared to the baseline.

Index Terms—rt-TDDFT, High-performance computing

I. INTRODUCTION

Real-time time-dependent density functional theory (rt-
TDDFT) [1]–[5] is a widely used approach in electronic
excitation calculations, gaining research attention with the
growing experimental focus on ultrafast electronic phenom-
ena in materials science. It can be used in a spectrum of
applications, including ion collisions [6], the light absorp-
tion spectrum [7], laser-induced demagnetization and phase
transitions [8], charge transfer, dynamics of excited carriers,
and chemical reactions [9]. Recent studies [10]–[16] have
illuminated the capacity of laser excitation to initiate structural
phase transitions and charge density wave excitations, along
with revealing that many interactions in catalysis, previously
assumed to be adiabatic, actually proceed via non-adiabatic
mechanisms, necessitating electron excitation simulations for
accurate analysis. These developments mark a significant
shift in materials science simulations, pushing the boundaries
beyond conventional ground state DFT calculation.

However, rt-TDDFT simulations of real materials still face
two challenges: first, rt-TDDFT calculations are constrained by
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the precision and stability requisites of ordinary differential
equation (ODE) integrators, restricting the time step to the
sub-attosecond domain to ensure the accuracy of dynamics.
Consequently, explicit time integrators, notably the fourth-
order Runge-Kutta (RK4) method, are frequently favored over
implicit methods like the Crank-Nicolson (CN) scheme, owing
to their operational efficiency and ease of implementation. The
parallel transport gauge formalism can find the slowest oscil-
lating orbitals, allowing for the effective utilization of implicit
integrators with significantly larger step sizes. The parallel
transport Crank-Nicolson (PT-CN) scheme, in particular, has
been shown to extend the feasible time step to approximately
50 attoseconds while maintaining accuracy comparable to the
RK4 method [17]. However, the current PT-CN scheme is
only applicable for systems with band gaps, which means
PT-CN cannot be applied to metallic or finite-temperature
systems where electrons are fractionally occupied. Secondly,
semi-local exchange-correlation functionals, like the Local
Density Approximation (LDA) [18], [19] and Generalized
Gradient Approximation (GGA) [20], fall short in accurately
describing excited states and band gaps, which can lead to
incorrect behavior such as the emergence of nonphysical
exciton in rt-TDDFT calculations. Hybrid functionals [21],
[22] within Density Functional Theory (DFT) offer a solution
by mixing a portion of the Fock exchange integral with semi-
local functionals, improving accuracy for electronic structures.
Particularly, range-separated hybrid functionals [23], [24] have
shown to match optical absorption spectra accurately, com-
parable to results from more demanding methods like the
Bethe-Salpeter equation based on GW calculations [25]. Thus,
combining rt-TDDFT with hybrid functionals represents a
powerful approach for accurately modeling exciton excitation
and charge transfer, marking a notable advance in materials
science simulations.

Unfortunately, both finite-temperature rt-TDDFT and hybrid
functional require significantly higher computational costs
compared to traditional ground state DFT calculations with
semi-local functionals. Specifically, rt-TDDFT can be orders
of magnitude slower than conventional ground state molecular
dynamics simulations, attributed to its smaller time steps. Sim-
ilarly, hybrid functionals are substantially slower than semi-
local exchange-correlation functionals due to the evalution of
the Fock exchange term. Consequently, literature on plane
wave-based real material rt-TDDFT simulation with hybrid
functional, even for modest systems comprising a few atoms,
is scarce, let alone for larger systems containing thousands of
atoms [26], [27]. Nonetheless, for a multitude of applications,
such as excited state charge transfer and laser-induced struc-
tural phase transitions in nanostructures like quantum dots and
wires, simulating large systems is indispensable. Moreover,
complete basis sets such as plane waves are more favorable in
describing excited states in rt-TDDFT calculations. All these
considerations pose challenges to rt-TDDFT calculations of
real materials at finite temperatures.

The latest developments in high-performance computing
and the parallel transport gauge formalism have offers opportu-

nities for overcoming these challenges, both from algorithmic
and hardware perspectives. Recently, An et al. proposed a
parallel transport formalism for rt-TDDFT at finite temper-
atures [28], demonstrating its potential of extending the time
step length significantly beyond the limitations of the Runge-
Kutta 4th order (RK4) method in a one-dimension problem.
On the hardware side, with the improvement of architecture
and manufacturing processes, the computing performance has
been enhanced at a faster pace compared to that of memory
bandwidth and network bandwidth, resulting in an increasingly
wider gap between the former and the latter two. This raises a
highly intriguing question: can hybrid functional rt-TDDFT
calculations be accelerated on many-core systems, such as
ARM or GPU platforms?

In this paper, we present our highly scalable and efficient
implementation of finite-temperature rt-TDDFT calculation
with hybrid functionals, and optimized for both ARM and
GPU platforms using the planewave code PWDFT. Our major
contributions are as follows:

• We implement finite-temperature rt-TDDFT algorithm
PT-IM with hybrid functional for 3D real materials and
optimized it on ARM and GPU platforms using OpenMP
and CUDA, respectively.

• We further proposed a matrix diagonalization method
to reduce the computational complexity from O(N4) to
O(N3) and significantly decreased the frequency of the
most expensive hybrid functional calculations using the
Adaptively Compressed Exchange (ACE) method.

• Additionally, we proposed an Asynchronous ring-based
method and utilized a shared memory mechanism to
optimize the network communication and reduce memory
consumption.

• Testing results of a 384-atom silicon system show that
compared to the baseline, our optimized code achieves
a speedup of 55.15 and 41.44 times on ARM and GPU
platforms, respectively. Our optimized code can also scale
up to 960 nodes on Fugaku (46080 ARM cores) to
simulate a silicon system of 1536 atoms and can reach
3072 atoms (12288 electrons) on 768 A100 GPUs.

This paper is organized as follows: we review the rt-TDDFT
algorithm PT-IM in Sec. II. Then a baseline implementation of
PT-IM with hybrid functional is shown in Sec. III. We further
optimize the PT-IM in Sec. IV. Machine configuration and
physical systems are listed in Sec. V and Sec. VI. The physical
and performance results are shown in Sec. VII and Sec. VIII,
respectively. The conclusion is drawn in Sec. IX.

II. BACKGROUND

A. The parallel transport-implicit midpoint (PT-IM) method

Real-time time-dependent density functional theory solves
the following time-dependent equation:

i∂tΨ(t) = H(t, P (t))Ψ(t). (1)

Here Ψ(t) = [ψ1(t), ..., ψN (t)] is the collection of electron
wavefunctions (also called electron orbitals), and N is the



number of total electron states (spin degeneracy omitted). P (t)
is the density matrix, which defined as P (t) = Ψ(t)σ(t)Ψ∗(t)
[28]. Ψ∗ is the Hermitian conjugate of Ψ and σ(t) is the
occupation number matrix.

In pure states (low temperature), σ(t) = σ(0) = IN . So

P (r, r′) =
N∑
i

ψi(r)σiψ
∗
i (r

′), and σi is either one (occupied)

or zero (unoccupied). In real material rt-TDDFT simulation,
the initial state σ(0) is required to be a mixed state. For
instance, for metallic systems or semiconductors at finite
temperatures, the wavefunctions can be fractionally occupied
by the Fermi-Dirac distribution. In such mixed states,

P (r, r′) =

N∑
i,j=1

ψi(r)σijψ
∗
j (r

′). (2)

The corresponding rt-TDDFT equation 1 can be equiva-
lently reformulated using a series of unitarily transformed
orbitals. Physical observables, including the density matrix,
remain unchanged under such unitary transformations, a prop-
erty known as gauge invariance. This invariance enables the
pursuit of an optimal gauge. Recent advancements have pin-
pointed such an optimal gauge [28], implicitly defined by the
subsequent equation:

i∂tΦ(t) = (I − P̃ (t))H(t, P (t))Φ(t),

i∂tσ(t) = [(Φ∗(t)H(t, P (t))Φ(t), σ(t)],
(3)

where Φ(t) oscillates much slower by choosing the optimal
gauge (Φ(t) = Ψ(t)U(t)). Coupled with the implicit midpoint
(IM) rule (also known as the Gauss-Legendre method of order
2), the shorthand notations are introduced:

Φn+ 1
2
=

Φn+1 +Φn

2
, σn+ 1

2
=
σn+1 + σn

2
, (4)

and accordingly,

P̃n+ 1
2
= Φn+ 1

2
(Φ∗

n+ 1
2
Φn+ 1

2
)−1Φ∗

n+ 1
2
,

Pn+ 1
2
= Φn+ 1

2
σn+ 1

2
Φ∗

n+ 1
2
,

Hn+ 1
2
= H(tn+ 1

2
, Pn+ 1

2
),

(5)

the parallel transport-implicit midpoint scheme (PT-IM) at
each time step reads:

Φn+1 = Φn − i∆t(I − P̃n+ 1
2
)Hn+ 1

2
Φn+ 1

2
),

σn+1 = σn − i∆t[(Φ
∗
n+ 1

2
Hn+ 1

2
Φn+ 1

2
), σn+ 1

2
].

(6)

If {Φn+1;σn+1} is chosen to be the unknowns, then equation
3 can be viewed as a fixed point equation in the abstract form

x = T (x). (7)

B. Fock exchange operator

The Hamiltonian has the following operators when hybrid
functionals are used:

H[P ] = −1

2
∆ + Vext(t) + VHxc[P (t)] + αVx[P (t)]. (8)

Here Vext(t) is the time-dependent external potential and
VHxc consists of the Hartree potential and the local part

of the exchange-correlation potential. Without the term Vx,
the functional is considered semilocal. This paper focuses on
hybrid functional rt-TDDFT calculations, where Vx, called the
Fock exchange operator, is an integral operator with kernel
Vx[P ](r, r

′) = −P (r, r′)K(r, r′). In this context, K(r, r′)
denotes the kernel for the (possibly screened) electron inter-
action, and α represents a mixing fraction (usually α = 0.25).

In hybrid functional calculations, in pure states, each set of
multiplications Vx[P ]Φ requires the following operations:

(Vx[P ]ϕj)(r) = −
N∑
i=1

ϕi(r)σi

∫
K(r, r′)ϕ∗i (r

′)ϕj(r
′)dr′.

(9)

In mixed states at finite temperatures, with P (r, r′) in the
form(2), each set of multiplications Vx[P ]Φ takes the follow-
ing form:

(Vx[P ])ϕj(r) = −
N∑

i,k=1

σikϕi(r)

∫
K(r, r′)ϕ∗k(r

′)ϕj(r
′)dr′.

(10)
In planewave basis, for Vx applied to a single orbital, in
pure states, it can be calculated via solving N2 Poisson-type
equations. In mixed states, however, it amounts to solving N3

Poisson equations. And then we need to do this for all N
orbitals to obtain VxΦ. If we denote the number of discrete
lattice points in real space by Ng , in pure states, the total cost
of VxΦ is O(NglogNgN

2) ∼ O(N3) and in mixed states the
cost is O(NglogNgN

3) ∼ O(N4). Notably, in pure states, the
time taken by the Fock exchange operator already accounts for
over 95% of the total time, meaning that, for the same quantum
system, the solution time of hybrid functional DFT is more
than 20 times that of semi-local functional DFT [26]. In mixed
states, the computational complexity of the Fock exchange
operator increases by an order. This implies that performing
rt-TDDFT with hybrid functionals on large systems at finite
temperatures is prohibitively expensive.

III. BASELINE IMPLEMENTATION OF PT-IM WITH HYBRID
FUNCTIONAL ON GPU AND ARM PLATFORMS

Since there is no prior plane-wave implementation of
the PT-IM method, the primary task of this paper is to
develop an efficient baseline version of PT-IM. This section
details our approach to implementing an efficient PT-IM
method on GPU and ARM platforms using MPI combined
with OpenMP/CUDA in the PWDFT package [26]. Note that
OpenMP and GPU acceleration have been adopted for ground
state electronic structure calculations in several software pack-
ages, including ABINIT [29], PWmat [30], [31], Quantum
ESPRESSO [32], VASP [33], BigDFT [34], NWChem [35].
To achieve a better acceleration, our optimization efforts ex-
tended beyond the computationally expensive Fock exchange
operator to include acceleration of additional components,
such as residual calculations and wavefunction mixing.

Alg.1 outlines a single time propagation step of the PT-
IM method. First, the initial values of Φn+1 and σn+1 are



Algorithm 1: One time propagation step for PT-IM
method with hybrid functional

Input: Φn and σn
Output: Φn+1 and σn+1

1 Suppose {Φn+1, σn+1} = T ({Φn, σn}) ;
2 Calculate ρinn+1 from Φn+1 and σn+1;
3 for k = 1, 2... do
4 Calculate Φn+ 1

2
and σn+ 1

2
refer to (4);

5 Calculate ρn+ 1
2

from Φn+ 1
2

and σn+ 1
2

;
6 Update Hn+ 1

2
;

7 Update {Φn+1, σn+1} refer to (6);
8 Update Φn+1 and σn+1 by Anderson mixing;
9 Evaluate the residual Rf of (6);

10 Calculate ρoutn+1 from Φn+1 and σn+1;
11 Jump out of the loop when the density change is

sufficiently small;
12 end
13 Orthogonalize Φn+1 and conjugate symmetrize σn+1;

evaluated to obtain the intermediate wavefunctions Φn+ 1
2

and
occupation number matrix σn+ 1

2
. Next, we calculate the physi-

cal quantities at these intermediate moments: ρn+ 1
2

and Hn+ 1
2

,
which are ultimately used to update the new {Φn+1, σn+1}
refer to (6), involving the calculation of the Fock exchange
operator. Anderson mixing [36] of the wavefunctions and
charge density are employed to accelerate the convergence of
the fixed-point problem. When the residual of ρ is sufficiently
small, the SCF iteration can be terminated. In practice, we
find that the SCF convergence can also be controlled by the
convergence of the charge density. In Alg.1, the most time-
consuming part is the Fock exchange operator. Therefore, we
will focus on optimizing it in the following. Other important
computation modules include electron density, residual, and
Anderson mixing.

A. Data distribution

MPI_Alltoallv

P0 P0

P1

P2

P3

P1 P2 P3

Fig. 1. The parallel distribution of wavefunction Φ (left: band-index
parallelization; right: grid-point parallelization). Note that MPI Alltoallv is
required to transpose between the two parallelization schemes.

Fig. 1 shows the two primary parallelization schemes used
in PWDFT. First, the wavefunction Φ can be distributed over
the columns (band-index parallelization as shown in Fig. 1
left). This is particularly efficient for the calculation of HΦ
and hybrid functional since different MPI tasks can perform
fast Fourier transformations (FFT) independently. The second

parallelization scheme is to distribute the wavefunction Φ over
the rows(grid-point parallelization as shown in Fig. 1 right,
G is the grid in Fourier space). grid-point parallelization is
efficient for the calculation of the overlap matrix S = Φ∗HΦ
over matrix-matrix multiplication. Note that MPI Alltoall
is required to transpose between these two parallelization
schemes. And since we focus on large systems with more than
a few hundred atoms, only one Γ point is needed. Therefore,
K-point parallelization is omitted in this paper.

B. Evaluation of the Fock exchange operator

Algorithm 2: The Fock exchange operator calculation
in mixed states
Input: Φ and σ
Output: VxΦ

1 Let VxΦ be distributed by band-index parallelization
and initialized to zero and ϕtemp is a temp variable;
for k = 1, N do

2 if the current process holds ϕk then
3 Broadcast ϕk to all processes;
4 end
5 for i = 1, N do
6 if the current process holds ϕi then
7 Broadcast ϕi to all processes;
8 end
9 for j = 1, N do

10 if the current process holds ϕj then
11 ϕtemp = ϕ∗k ⊙ ϕj ;
12 ϕtemp = inplace forward FFT(ϕtemp);
13 ϕtemp = K(r, r′)ϕtemp;
14 ϕtemp = inplace inverse FFT(ϕtemp);
15 Vxϕj = Vxϕj + σikϕtemp ⊙ ϕi;
16 end
17 end
18 end
19 end

In PT-IM implementation, the evaluation of the Fock ex-
change operator is the most time-consuming part and is
repeatedly performed within the matrix-vector multiplication
HΦ. Alg. 2 details the evaluation of the Fock exchange
operator (Vx[P ]Φ) in mixed-state rt-TDDFT calculation. As
discussed earlier, wavefunction Φ is distributed in band-index
parallelization to efficiently perform FFTs. Each wavefunction
ϕk has to be broadcast to all MPI tasks via MPI Bcast. Then
the Fock exchange operator is evaluated as shown in Equ. 10.
Due to the introduction of the occupation matrix σi,k, a triple
loop is needed in calculating the Fock exchange operator
among wavefunctions ϕi, ϕj and ϕk. This requires a total
number of N3 FFTs, leading to a computational complexity
of O(N3NglogNg), where Ng is the number of grid points
and N is the number of electrons. This computational com-
plexity is higher than that in zero-temperature rt-TDDFT or
ground-state calculations, which requires only N2 FFTs since



the occupation matrix σ is diagonal, and only two-electron
interaction between ϕi and ϕj are evaluated (as shown in
Eq. 9).

In our baseline implementation, we take the following steps
to optimize the calculation of the Fock exchange operator.
(a) Band-by-band implementation. First, we implement
the Fock exchange operator in a band-by-band manner, and
CUFFT and FFTW are utilized on GPU and ARM platforms.
The gaps between the FFT invoke are filled via CUDA cus-
tomized kernels or OpenMP accelerated computations. Note
that no CPU-GPU synchronization is during the calculation.
(b) Multi-batch implementation. For GPU platform, we
further utilize a multi-batch strategy to enhance its bandwidth
utilization. Each A100 GPU has a bandwidth of 1.5 TB/s
and the band-by-band implementation cannot fully exploit
the hardware limit. To improve the performance, instead
of sending the data Φ∗Φ one by one, we perform multi-
batch operations in customed CUDA kernels, cuFFT, FFT,
and MPI Bcast to fully saturate the memory and network
bandwidth. Especially, the multi-batch implementation can
also reduce the latency of CPU-GPU kernel launch. The batch
size is set to 16. We find that the multi-batch implementation
can greatly improve the performance of the Fock exchange
operator compared to the band-by-band implementation.

C. Other calculations

As Amdahl‘s law indicates, all calculations have to be
optimized to achieve a desirable speedup. Thus in our PWDFT
implementation, we have moved almost all calculations to the
GPU and ARM cores besides the computationally intensive
Fock exchange operator.

1. Charge density evaluation. The charge density ρ is cal-

culated via
N∑

i,j=1

ϕiσijϕ
∗
j in the PT-IM method. The introduc-

tion of occupation matrix σi,j has increased the computational
complexity of charge density calculation from O(N2logNg)
(ground state) to O(N3logNg) due to the interaction for each
i, j pair of the wavefunctions. Note that the wavefunctions Φ
have to be communicated across all MPI tasks via MPI Bcast
due to the parallel distribution as detailed in Sec. III-A, and
all calculations are evaluated either via efficient libraries such
as CUFFT/FFTW or hand written CUDA kernels/OpenMP.

2. Anderson mixing and orthogonalization. The Anderson
mixing in PT-IM solves the least square problem for each
wavefunction and σ. Note that the least square problem can
be very small (20 × 20 in our implementation), thus the
main computation is the evaluation of the overlap matrix
that can be efficiently calculated via grid-point parallelization.
Our implementation, requires 20 copies of the wavefunctions,
which can cost lots of HBM if stored in the GPU. Thus in our
GPU implementation, all wavefunctions are stored on the CPU
to save GPU memory footprint and then copied to GPU for
matrix-matrix multiplication to obtain the overlap matrix. The
orthogonalization step is also accelerated via calling efficient
libraries and hand-optimized kernels.

In summary, we develop a solid baseline version of PT-IM
within the PWDFT package by incorpoarting the optimizations
described above.

IV. FURTHER OPTIMIZATIONS

A solid baseline version of PT-IM is implemented within the
PWDFT package on the GPU and ARM platform, as detailed
in Sec. III. However, despite our efforts in optimizing almost
all calculations with multi-threaded parallelism and GPU, our
baseline code still encounters several challenges: Firstly, it
suffers from surging computation and communication com-
plexity introduced by the occupation matrix σ, as delineated
in (2)(10). Paricularly, the number of FFTs in the evaluation
of the Fock exchange operator grows from N2 (ground state)
to N3 (PT-IM). Since the Fock exchange operator is required
in each HΦ calculation, we will have to calculate 25 VxΦ
in each time step on average. Moreover, the communications
cost can be optimized via computation-communication overlap
and asynchronous communication. In this section, we will
introduce how to address the challenges above through step-
by-step optimizations.

A. Algorithm innovation
ca
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Fig. 2. Evaluation of the Fock exchange operator. (a) Baseline. (b) Accelerated
by diagnonalization.

1) Reduce the complexity of Fock exchange operator and
density calculation by occupation matrix diagonalization:
In PT-IM, the occupation number matrix σ introduces extra
computation into the evaluation of charge density and Fock
exchange operator. For example, in PT-IM the Fock exchange
operator evaluation requires 109 FFTs for a physical system
with 103 orbitals. The extensive computational cost hinders
the time-to-solution of PT-IM to more than 30 minutes per
time step for a physical system of 384 atoms. One key
observation is that σ is a Hermitian matrix, whose eigenvectors
are orthogonal to each other. Hence, we can diagonalize it:

σt = QDQ∗. (11)

Here D is a diagonal matrix with diagnonal elements
d1, d2, ..., dN . We can set φ = ΦQ, so density matrix can
be written as:

P (r, r′) =

N∑
i

φi(r)diφ
∗
i (r

′). (12)



Meanwhile, the result of Vx applied to an orbital ϕj then is
given by:

(Vx[P ])ϕj(r) = −
N∑
i

diφi(r)

∫
K(r, r′)φ∗

i (r
′)ϕj(r

′)dr′,

(13)
As illustrated in Fig. 2(b), the only additional overhead intro-
duced is the single diagonalization of σ after each update and
the basis set transformation of the wavefunctions during the
calculation of density and exchange operators. The number
of FFTs in VxΦ calculation is greatly reduced from O(N3)
to O(N2), decreasing from a triple loop to a double loop,
and communication volume from O(NgN

2) to O(NgN).
Fig. 2 shows the comparison between the naive and optimized
versions of the Fock exchange operator. Similarly, the number
of FFTs in the calculation of charge density can also be
reduced from O(N2) to O(N).

(a)             (b)                 

Fig. 3. Evaluation of VxΦ. (a) Direct two-electron integral. (b) ACE operator.

2) Reduce the frequency of Fock exchange operator by
adaptively compressed exchange (ACE): The Fock exchange
operator remains the most computationally intensive part after
introducing the occupation matrix diagonalization, i.e., it still
takes 90% of the total time for a silicon system of 384 atoms.
One way to further optimize it is to reduce the frequency of
the Fock exchange operator by adopting the ACE formulation,
which is introduced by Lin [37]. The construction of the low-
rank ACE operator is as follows:

Wi(r) = (Vxϕi)(r) = (V ACE
X ϕi)(r),

V ACE
X (r, r′) = −

Ne∑
i=1

ξk(r)ξk(r
′).

(14)

More theoretical details on W and ξ are described in Ref. [37].
Fig. 2 shows the computational procedure of both two-electron
integral and ACE operator.

To integrate the ACE method into PT-IM, two ACE oper-
ators are required due to the implicit midpoint rule: V ACE

xn

and V ACE
x
n+1

2

. Those ACE operators are incorporated into PT-
IM via a double self-consistent field (SCF) loop, where both
V ACE
xn

and V ACE
x
n+1

2

are constructed in the outer SCF. During the

evaluation of HΦ of the inner SCF, the ACE operators V ACE
X

can replace the previous Fock exchange operator, transforming
the previously two-electron integral into more efficient matrix-
matrix multiplications of size Ng × N . Fig. 3(b) shows a
detailed workflow of the PT-IM-ACE. Note that ACE operator
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Anderson mixing
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Electron density converged?
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(b) Workflow of 3D PT-IM-ACE 

Fig. 4. One time step propagation of the rt-TDDFT using (a) PT-IM (b) PT-
IM-ACE with double loop to reduce the frequency of Fork exchange operator.

can greatly reduce the frequency of the Fock exchange oper-
ator application. For example, to fully converge for a silicon
system of 384 atoms, an average of 25 SCF steps are required,
meaning that 25 Fock exchange operators are evaluated in
the previous implementation (Fig. 4(a)). With the introduction
of ACE operator, it takes about 5 outer SCF iterations, with
each outer SCF averaging 13 inner SCF iterations. This
optimization reduces the number of Fock exchange operator
calculation by 20, or 80%, in a single time-step propagation.

B. System innovation

Since all computational intensive parts have been migrated
to GPU/ARM in Sec. III, we focus on the communication
time and memory footprint in this subsection. The most time-
consuming MPI operation is the wavefunction MPI Bcast
in the evaluation of the Fock exchange operator. Fig. 5(a)
illustrates a naive implementation of MPI Bcast with 4 MPI
tasks. In this setup, 4 steps of MPI Bcast are performed to
evaluate the Poisson-like equation for all wavefunction pairs
(i,j). To reduce the communication time associated with the
wavefunctions, we perform several steps of optimization.

1) Ring-based point-to-point pattern: We propose a ring-
based point-to-point (p2p) communication pattern, as shown in
Fig. 5 (b). In this approach, wavefunctions are rotated among
processes through point-to-point MPI communications. Within
each step, MPI tasks send and receive wavefunctions from its
adjacent processes.

The ring-based method offers distinct advantages over the
conventional broadcast approach in both communication pat-
tern and latency. Unlike broadcasting, which requires global
communication and can impact the entire network, the ring-
based approach limits communication to neighboring pro-
cesses. This localized communication significantly reduces
network load and minimizes congestion. Additionally, in terms
of latency, the ring-based method ensures that each commu-
nication step occurs within a single hop, which is highly
advantageous in most network topologies. As a result, this
method greatly improves scalability by reducing communica-
tion burdens and times.

2) Asynchronous ring-based method: Furthermore, the per-
formance of the ring-based method can be substantially
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Fig. 5. Communication pattern of wavefunctions across 4 processes. (a).
Bcast-based method. (b). Ring-based point-to-point pattern. (c). Asynchronous
ring-based method. The red two-way arrow solid line indicates MPI Bcast
communication, and the red one-way arrow solid line is point-to-point
communication. The dashed red one-way arrow stands for asynchronous point-
to-point communication. ⊙ denotes element-wise multiplication between two
wavefunctions.

enhanced by leveraging asynchronous execution to overlap
communication with computation. The process is shown in
Fig. 5(c). In each step, a process asynchronously transmits
its local wavefunctions (or those received in the previous
step) to the next neighboring process while simultaneously
beginning to asynchronously receive wavefunctions from the
previous neighbor. After completing these initial computations,
the process waits for the communication phase to finish before
proceeding to the next step. This iterative process consists of
mpisize steps.

Overlapping communication with computation can further
reduce the total runtime, significantly improving program
performance. While this technique can also be applied to
Bcast-based method, its effectiveness depends on whether
computation or communication takes longer. As noted in
Sec. VIII-D, our tests show that communication time exceeds
computation time, meaning that communication ultimately
determines the total runtime. The broadcast method generally
increases communication time, thereby reducing the benefits
of overlapping computation with communication.
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Fig. 6. Calculation for Φ∗Φ or Φ∗HΦ across 4 processes. (a) The original.
(b) optimized by shared memory mechanism. The matrix with dashed border
has not been allocated memory.

3) Reduce memory footprint using shared memory mech-
anism: The idea is to use inter-process shared memory to
reduce memory usage. In the original implementation, certain
matrices, such as σ, and intermediate results like Φ∗Φ and
Φ∗HΦ, are not memory scalable. Consider a system with 768
silicon atoms and 1920 electronic orbitals, characterized by a

substantial grid size of Ng = 324000. When using more than
168 processes, the memory advantage of scalable matrices,
such as wavefunctions, diminishes. At this stage, the memory
consumed by non-scalable square matrices becomes significant
and cannot be ignored.

Our key idea is to use shared memory between processes to
store these matrices, as they are identical across all processes.
Shared memory is allocated using the MPI SHM Extension
[38], allowing processes on the same computing node to share
the same matrix. If p processes are launched on a node,
the memory usage for these matrices is reduced to 1/p of
the original amount. This optimization primarily enables the
simulation of larger systems.

As for performance improvement, although inter-process
allreduce was replaced with inter-node allreduce, reducing the
number of processes involved in communication to one-quarter
of the original, there was no significant performance gain.
This lack of improvement is due to the introduction of remote
memory access in NUMA systems. When the runtime, the
ΦΦ and ΦHΦ matrices we stored in the shared memory were
allocated to a single NUMA node in the physical memory,
which would lead to the remote memory access problem when
the computing cores in the other three NUMA nodes accessed
this matrix, resulting in a loss of performance. In fact, with
our method, by sacrificing little computing performance, we
reduce the number of communication process, communication
volume and memory footprint of this part to a quarter of the
original. This enables us to scale up to a larger size.

V. MACHINE CONFIGURATION

All our tests are performed on both ARM and GPU
platforms. The first machine is Fugaku, an ARM many-core
supercomputer currently ranked fourth in the Top500 list
[39], with a theoretical peak performance of 537.21 PFLOPS.
Fugaku is comprised of 158,976 computing nodes intercon-
nected through a 6D-torus network. Each node is equipped
with one A64FX ARM CPU, which has four core memory
groups (CMGs). Each CMG has 13 cores (1 for OS and
12 for compute) and 8GB of HBM2 memory (32GB HBM2
per node). Additionally, each computing core supports 512-
bit SVE vector instructions, allowing an A64FX to reach a
theoretical peak performance of 3.38 TFLOPS at 2.2GHz, with
a theoretical memory bandwidth of 1024GB/s.

The second platform is a GPU cluster featuring NVIDIA
A100 GPUs. Each computing node is equipped with one
ARM-based Kunpeng-920 CPU, 256GB of DDR4 memory,
and 4 NVIDIA A100 GPUs. Each Kunpeng-920 CPU has 128
cores distributed across four NUMA domains, each supporting
128-bit NEON vector instructions. Each A100 GPU accelera-
tor offers a theoretical peak performance of 9.7 TFLOPS (19.5
TFLOPS with tensor cores) and 40GB of HBM2 memory,
achieving a theoretical bandwidth of 1.5TB/s. The CPU and
GPUs are interconnected via a PCIe bus with a bi-directional
bandwidth of 64GB/s. The computing nodes are intercon-
nected through a fat-tree network.



VI. PHYSICAL SYSTEM

Silicon systems ranging from 48 to 3072 atoms, corre-
sponding to the supercell constructed from 1×1×3 to 6×8×8
unit cells. Each simple cubic unit cell consists of 8 silicon
atoms with the lattice constant being 5.43 Å. In our accuracy
tests, the number of extra states is set to Natom, and it is set
to 1

2Natom in all other tests.
In our tests, the external potential is a laser pulse shown in

Fig. 7(a), and its wavelength is 380 nm. The total simulation
time is 30 fs, with a time step of 50 as for both PT-IM and
PT-IM-ACE methods. The stopping criteria is set to 1.0×10−6

for electron density and exchange energy errors. We use
the SG15 Optimized Norm-Conserving Vanderbilt (ONCV)
pseudopotentials [40], [41] and HSE06 functionals [23] in all
tests. The kinetic energy cutoff is set to 10 Hartree and the
temperature is set to 8000K. The average number of outer and
inner SCFs is 5 and 13, respectively. The maximum Anderson
mixing dimension is set to 20.

For the system with 1536 atoms, the number of grid points
for a wavefunction is Ng = 60 × 90 × 120 = 648, 000. This
corresponds to a charge density grid 120×180×240. The Fock
exchange operator is evaluated on the wavefunction grid. The
number of orbitals is N = 1536× 2 + 1

2 × 1536 = 3840.

VII. PHYSICAL RESULTS

In this section, we test the accuracy of the optimized code
and descibe the motion of electrons during the rt-TDDFT
simulation.

A. Accuracy

The accuracy is evaluated using the dipole moment along
the x-direction and the total energy, as shown in Fig.7. For
the 380 nm laser case, Fig.7 demonstrates that the results of
PT-IM-ACE with a 50 as time step fully match those obtained
using the RK4 method with a time step 100 times smaller.
Furthermore, the enlarged section in Fig. 7 confirms that PT-
IM-ACE provides a very good approximation to the electron
dynamics compared to RK4 during the final 100 time steps
(25-30 fs), regardless of whether the system is in a pure or
mixed state. It is important to note that electrons already
exhibit fractional occupation at the beginning of the finite
temperature (8000K) rt-TDDFT simulation.

B. Electrons motions

The motion of electrons in finite temperature rt-TDDFT
is shown in Fig.8, with the laser pulse shown in Fig. 7(a).
Initially, the occupation number matrix σt is depicted in
Fig.8(c), with elements from 0 to 1 indicating the probability
of electron occupying each orbital. During the simulation,
the variation of the off-diagnal elemment σt(0, 2) over time
is shown in Fig.8(a), demonstrating the stochastic nature
of electron motion. Meanwhile, as an example of diagonal
elements, the variation of σt(22, 22) over time is shown in
Fig.8(b), increasing as the external field is strengthening (10-
15 fs). This indicates that the stronger the external laser field,
the more active the electrons are. Enhanced electron activity

Fig. 7. Electron dynamics of an 8 atom silicon system under a laser pulse with
380 nm. (a) Electric field along the x direction. (b) Dipole moment along the
x direction in pure states. (c) Total energy in pure states. (d) Dipole moment
along the x direction in mixed states(Total states = 24). (e) Total energy in
mixed states(Total states = 24).

in laser fields implies that modifying material’s electronic
structures and band properties can significantly affect their
optical responses, offering new avenues for optoelectronic
device innovation.

VIII. PERFORMANCE RESULTS AND ANALYSIS

In this section, we perform detailed performance tests,
including step-by-step performance improvements, strong scal-
ing, weak scaling, and communication analysis. On the ARM
platform, all our tests are conducted with four MPI ranks
per node, matching the A64FX’s four NUMA architectures.
Each process launches 12 threads to manage the 12 computing
cores within a CMG, with access to 8GB of memory. On
the GPU platform, each compute node is equipped with four
A100 GPUs, so we initiate four MPI ranks per node, with
each process controlling one A100 GPU. Consequently, each
process has access to 64GB of host memory and 40GB of
GPU memory.

A. Step-by-step performance improvement

On both platforms, step-by-step performance improvements
are evaluated using a 384 silicon atom system on 240 ARM
nodes and 24 GPU nodes. Results are shown in Fig. 9. The
baseline test (BL) represents the original PTIM algorithm,
accelerated by OpenMP and GPU on two respective platforms.



Fig. 8. States evolution of an 8-atom silicon system under laser pulse
irradiation over 30 fs with 4 processes. (a) Relationship between the real and
imaginary parts of the off-diagonal element σt(0, 2) over 30 fs. (b) Variation
of the diagonal element σt(22, 22) over 30 fs. (c) Initial σt. (d) Final σt.

Fig. 9. Step-by-step performance improvement for one time step on
GPU/ARM platforms with 384 silicon atom system using 240/24 nodes on
ARM/GPU platform. The baseline is the results calculated by the initial PTIM
method accelerated by OpenMP and GPU.

1) Occupation matrix diagonalization: As shown in Fig. 9,
the occupation matrix diagonalization method, labeled as
”Diag” in the figures, is introduced in Sec. IV-A1. For the 384
atom system, this method accelerated per step performance of
the PT-IM in PWDFT by 12.86x on the ARM and 7.57x on the
GPU platform. In Sec.IV-A1, we describe the diagonalization
algorithm, which reduces the computational complexity of
VxΦ. As system size N increases, the importance of VxΦ
calculation grows, and the benefit of complexity reduction
becomes more significant. Therefore, the speedup of the
diagonalization of occupation matrix is more substantial for
larger systems.

2) ACE method: The ACE operator method, introduced in
Sec.IV-A2 and labeled as ”ACE” in Fig. 9, reduces the number
of computations for VxΦ from 25 to 5. On the ARM/GPU
platform, for the 384 atom system, the computation time of
HΦ decrease from 148.5s/110.6s to 6s/20.3s, with the total
ACE preparation time being 23s/17.4s. As shown in Fig. 9,

the ACE operator accelerates the per-step time by 3.3x/3.6x.
3) Ring-based method: The performance gain from the

ring-based method, detailed in Sec. IV-B1 and denoted as
a ”Ring”, is shown in Fig. 9. Compared to the Bcast-based
method in the previous step, it accelerates the 384 atom system
by 1.13x/1.23x on the ARM/GPU platform.

4) Asynchronous ring-based method: The asynchronous
ring-based method is detailed in Sec. IV-B2 and is denoted
as ”Async” in Fig. 9. Compared to the ring-based method in
the previous step, it gains a speedup of 1.14x/1.23x on the
ARM/GPU platform for the 384 atom system.

Further details on the MPI communication time across
different methods will be analyzed in more detail in Sec.
VIII-D. We remark that the more nodes used, the greater the
improvement of communication optimization.

B. Strong scaling

Fig. 10. Strong scaling: wall clock time per 50 as for silicon systems on two
HPC systems. The “ideal scaling” here scales as O(N). (a). Strong scaling
with 768 silicon atom system on ARM platform. (b). Strong scaling with 1536
silicon atom system on GPU platform.

Fig. 10 (a)(b) shows the strong scaling of one time step
using the optimized PT-IM method for a 768-atom silicon
system on the ARM platform and a 1536-atom system on
the GPU platform, respectively. On the ARM platform, the
parallel efficiency is 36.8% when increasing the number of
nodes by 32 times. On the GPU platform, the same increase
yields a parallel efficiency of 22.9%. The dropping of the
parallel efficiency are highly related to the data communication
and computational efficiency. First, as the number of nodes
increases, communication time grows due to MPI Sendrecv
in ring-based method and MPI Allreduce operations required
by the Rayleigh-Ritz procedure. For example, on the ARM
platform, when increasing from 15 nodes to 480 nodes, the
MPI Sendrecv grows by a factor of 1.5, from 4.7 seconds to
7.1 seconds and the MPI Allreduce grows by a factor of 1.4,



Fig. 11. Weak scaling: wall clock time per 50 as for silicon systems on two
HPC systems. The “ideal scaling” here scales as O(N2) on both platforms.
(a).Weak scaling on the ARM platform, from 48 atoms to 1536 atoms. The
number of nodes used is always set to 1/4 of the number of total orbitals in
the calculation. (b).Weak scaling on the GPU platform, from 48 atoms to 3072
atoms. The number of nodes is used are always set to 1/40 of the number of
total orbitals in the calculation.

from 2.6 seconds to 3.7 seconds. On the GPU platform, when
increasing from 12 nodes to 192 nodes, the MPI Sendrecv
grows by a factor of 1.6, from 6.3 seconds to 10.1 seconds
and the MPI Allreduce grows by a factor of 1.5, from 2.9
seconds to 4.3 seconds. Second, the computational efficiency
decreases as per-node workload scales. For example, on the
ARM platform, when computing resources expand by 32
times, the computing efficiency drops to 40% of the original.
On the GPU platform, when computing resources expand by
16 times, the computing efficiency reduces to 26% of the
original.

Compared to the GPU platform, the optimized PWDFT
demonstrates higher parallel efficiency on the ARM platform.
This is primarily due to two factors. First, the ratio of theoreti-
cal peak performance to peak bandwidth is lower on the ARM
platform (3.4 Flop/Byte) compared to the GPU platform (6.5
Flop/Byte), allowing for better performance since PWDFT is
bandwidth-bound. Second, the ARM platform features a 6D
torus network architecture, which provides superior network
performance.

C. Weak scaling

Fig. 11 shows the weak scaling of the optimized PT-IM
code on both ARM and GPU platforms. We find that the
system size is primarily constrained by the memory capacity
of the hardware. For example, our optimized PWDFT can
accommodate only 1536 atoms on 960 computing nodes on
Fugaku, limited by the 8GB memory capacity of each NUMA
node. On the GPU platform, due to the number of nodes
we can access, PWDFT can only scale up to 3072 atoms

on 192 nodes. Even with more nodes, the current machine
configuration is unable to handle 6144 silicon atoms because
of memory limitations. The simulation of 3072 atoms already
consumes over 80% of the available global memory and 75%
theoretical peak bandwidth per process. This also indicates that
PT-IM is a memory-bandwidth bounded problem. If our GPUs
have larger global memory, it might be possible to double the
simulation scale.

The computational complexity of hybrid functional rt-
TDDFT simulation scales as O(N3). Notably, on both plat-
forms, when the number of orbitals is relatively low, doubling
it results in a much smaller increase in computing time than
the theoretical fourfold. However, as the system size grows,
the time required to double the computational workload ap-
proaches to the theoretical four times increase. This is because,
in smaller systems, less time is spent on the Fork exchange
operator VxΦ. As the system scale scales up, the relative time
spent on these operations increases, eventually becoming the
dominant factor in the overall simulation time. For a smaller
system with 192 atoms, simulating one time step on the GPU
platform using 12 nodes takes 11.40 seconds, meaning that
each femtosecond of simulation requires approximately 3.5
minutes. For a larger system with 3072 atoms, simulating one
time step with 192 computing nodes takes 429.29 seconds,
implying that each femtosecond of simulation takes about 2.5
hours.

D. Communication analysis

In this section, we evaluate the MPI communication time
after system optimizations. Table. I shows results from 1536-
atom tests on ARM and GPU platforms, using 960 and 96
nodes, respectively. A ’-’ indicates that no such communica-
tion occurrs in the program.

This subsection focuses on communication, and the opti-
mization methods prior to ACE do notdirectly reduce com-
munication. Therefore, we start communication optimization
analysis from PT-IM after ACE optimization.

On the ARM/GPU platform, the communication time
for wavefunctions using the bcast-based method accounts
for 74%/83% of the total MPI communication time. The
ring-based method reduces the corresponding time from
67.22s/64.85s to 30.1s/20.54s. For asynchronous ring commu-
nication, after overlapping computation and communication,
the time spent on MPI Wait is 20.13/10.1 seconds on the
ARM/GPU platforms, respectively.

We note that on two platforms, after asynchronous commu-
nication, MPI Wait time is greater than zero, indicating that
communication time exceeds computation time. Even with the
overlap of computation and communication, communication
remains the bottleneck, higlighting the importance of replacing
the bcast-based method with the ring-based mechanism.

In Table. I, the proportion of communication time on the
GPU platform is higher than that on the ARM platform, even
though the number of processes on the GPU platform is only
one tenth of that on the ARM platform. This can be attributed
to two factors. First, although the computational workload per



TABLE I
MPI COMMUNICATION TIME WITH THE OPTIMIZED METHODS FOR A BIG SYSTEM OF 1536 SILICON ATOMS ON BOTH PLATFORMS

Alltoallv (s) Sendrecv (s) Wait (s) Allgatherv (s) Allreduce (s) Bcast (s) Total communication
time(s)

Communication
ratio(%)

ARM
platform

ACE 9.04 - - 0.17 14.19 67.22 90.62 18.92
Ring 9.03 30.1 - 0.17 14.21 0.03 53.54 12.73

Async 9.18 - 20.13 0.17 14.18 0.03 43.69 10.65

GPU
platform

ACE 7.95 - - 0.47 4.99 64.85 78.26 25.72
Ring 7.35 20.54 - 0.47 4.46 0.89 33.71 21.13

Async 7.64 - 10.1 0.47 4.28 0.82 23.31 16.38

process on the GPU is ten times that on the ARM platform,
the computational power per process on the GPU platform
(9.7 TFLOPS) is 11.5 times greater than the ARM platform
(0.84 TFLOPS). Second, our GPU cluster is not equipped
with NVLink and does not support GPUDirect communica-
tion, which negatively impacts communication time. On the
GPU platforms equipped with NVLink, such as Summit, the
communication performance of our program will be further
improved [42].

IX. CONCLUSION

In this paper, we first implement a three-dimensional PT-IM
algorithm in PWDFT, enabling finite-temperature rt-TDDFT
simulation with hybrid functional. In terms of algorithms,
we propose a diagonalization method to reduce computation
and communication complexity, nearing pure state levels.
Additionally, we employ the ACE method to significantly
reduce the frequency of the most expensive Fock exchange
operator. In terms of computer architecture, the ring-based
method is utilized to optimize communication patterns and
extensively reduce the communication load. Performance is
further enhanced by overlapping computation and communi-
cation. The shared memory mechanism is used to alleviate the
memory consumption. the correctness of our implementation
is proved in the physical result. The step-by-step performance
improvement test reveals our optimization achieving speeds
up of 51.15 and 41.44 times speed up on ARM and GPU
platforms, respectively. The strong scaling results show that
when nodes scale 32 and 16 times, time-to-solution was
accelerated by 11.79x/3.67X, on ARM and GPU platforms,
respectively. The simulation system is respectively extended
to 1536/3072 atoms(6144/12288 electrons) on two platforms.
Our work paves the way for large-scale rt-TDDFT simulation
for real material with finite temperatures.
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