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Abstract

We consider the linear least squares problem with linear equality constraints
(LSE problem) formulated as minx∈Rn ‖Ax−b‖2 s.t. Cx = d. Although there
are some classical methods available to solve this problem, most of them rely
on matrix factorizations or require the null space of C, which limits their appli-
cability to large-scale problems. To address this challenge, we present a novel
analysis of the LSE problem from the perspective of operator-type least squares
(LS) problems, where the linear operators are induced by {A,C}. We show that
the solution of the LSE problem can be decomposed into two components, each
corresponding to the solution of an operator-form LS problem. Building on this
decomposed-form solution, we propose two Krylov subspace based iterative meth-
ods to approximate each component, thereby providing an approximate solution
of the LSE problem. Several numerical examples are constructed to test the pro-
posed iterative algorithm for solving the LSE problems, which demonstrate the
effectiveness of the algorithms.
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1 Introduction

The linear least squares problem with equality constraints (LSE problem) arises fre-
quently in various fields such as data fitting, signal processing, control systems and
optimization [1–4]. These problems involve minimizing a least squares objective func-
tion while ensuring that a set of linear equality constraints is satisfied. The general
formulation of the LSE problem is formulated as:

min
x∈Rn

‖Ax− b‖2 s.t. Cx = d, (1.1)

where A ∈ Rm×n, and C ∈ Rp×n. It restricts the solution space to the set of solutions
that satisfy both the least squares objective and the linear equality constraints, which

1



is often used in cases where certain relationships between the variables are known a
priori and must be preserved. The LSE problem (1.1) has a solution if and only if
Cx = d is consistent, and it has a unique solution if and only if (AT, CT)T has full
column rank. There is a large amount of work on the analysis of the LSE problem; see
e.g. [5–9].

Despite their wide applicability, solving large-scale LSE problems efficiently
remains a significant computational challenge. Classical solution approaches typi-
cally reduce the constrained LSE problem to an equivalent unconstrained problem
by eliminating the constraints. The key strategy of these methods are the constraint
substitution technique, which eliminates the constraints by reducing the dimension
of the problem. The first one is usually called the null space method [10–13]. This
method involves finding a null space basis for the matrix C using a rank-revealing QR
factorization [14–16]. The constraints are then incorporated into the LS problem by
substituting this basis into the system, leading to a reduced, unconstrained problem
of lower dimension. This approach provides numerical stability and is widely used in
many practical settings. The second one is usually called the direct elimination method
[11]. In this method, a substitution is made directly by expressing certain solution
components (those affected by the constraints) in terms of others. This can be accom-
plished using a pivoted LU factorization or a rank-revealing QR factorization of C
[17]. The direct elimination method exhibits good numerical stability and efficiency,
particularly when implemented with appropriate matrix factorizations.

In addition to constraint substitution methods, there are some other methods
that transform the constrained LS problem to an unconstrained optimization prob-
lem. The method based on the Lagrange multiplier formulation [17–19] is often useful.
This approach introduces auxiliary variables (Lagrange multipliers) to incorporate
the constraints into the optimization process, which constructs an augmented sys-
tem by combining the linear constraints and the LS problem, and both can be solved
simultaneously. This method provides a powerful and general way to enforce equality
constraints during the optimization. Techniques like weighting and updating proce-
dures can also be used to enforce constraints progressively, ensuring that the solution
satisfies the constraints a posteriori [20–23].

All the above methods, when implemented correctly, can provide a solution with
satisfied accuracy. However, in many practical scenarios, the problem size can be very
large. In such cases, matrix factorization-based methods become impractical due to
their cubic scaling computational complexity. This highlights the need to develop new
iterative methods for solving the LSE problem that do not rely on matrix factoriza-
tions. The Krylov subspace method is well-known for its effectiveness in solving linear
systems, including linear equations and LS problems, where only matrix-vector multi-
plications are required during the iteration process [17, 24]. However, up to now, there
is a lack of Krylov iterative methods specifically for the LSE problem, possibly due to
an incomplete understanding of its properties. Establishing connections between the
LSE and LS problems could be valuable, as it would aid in the development of efficient
Krylov iterative methods for solving the LSE problem.

In this paper, we present a novel analysis of the LSE problem from the perspective
of operator-type LS problems. Building on this framework, we propose two Krylov
subspace based iterative methods for solving LSE problems. To this end, we construct
two linear operators using the matrices {A,C} and formulate two LS problems asso-
ciated with these operators. Using these formulations, we investigate the structure of
the solutions to the LSE problem and show that its minimum 2-norm solution can
be decomposed into two components, each corresponding to the solution of one of
the operator-based LS problems. Building on this connection, we derive two types of
decomposed-form solution for the LSE problem. To approximate the solution, it is
sufficient to solve the associated operator-form LS problems using the Golub-Kahan
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bidiagonalization process [25–28]. This approach leads to Krylov subspace-based iter-
ative procedures. Consequently, we develop two Krylov iterative methods for the LSE
problem, each corresponding to solving one of the decomposed-form solutions. The
proposed algorithms do not rely on any matrix factorizations. Instead, they follow an
inner-outer iteration structure, where, at each outer iteration, an inner subproblem is
approximately solved. We also propose a procedure for constructing LSE problems for
testing purposes and present several numerical examples to illustrate the effectiveness
of the proposed algorithms.

The paper is organized as follows. In Section 2, we review three commonly used
methods for the LSE problem. In Section 3, we analyze the LSE problem from the
perspective of operator-type LS problems and derive two types of decomposed-form
solution. In Section 4 we proposed two Krylov subspace based iterative algorithms for
approximating the decomposed-form solution. Numerical experiments are presented
in Section 5, and concluding remarks follow in Section 6.

Throughout the paper, we denote by N (·) and R(·) the null space and range space
of a matrix or linear operator, respectively, denote by I and 0 the identity matrix
and zero matrix/vector with orders clear from the context, and denote by span{·} the
subspace spanned by a group of vectors or columns of a matrix. We use PS to denote
the orthogonal operator onto a closed subspace S.

2 LSE problem and its computation

We review three classical methods for the LSE problem: the null space approach, the
method of direct elimination, and the augmented system approach.

The null space method was developed and discussed by a number of authors in the
1970s. The basic idea is that any vector x ∈ Rn satisfying the linear constraint Cx = d
can be written as x = x0 + Zy, where x0 is a particular solution of Cx = d, and the
columns of Z ∈ Rn×t form a basis for N (C). Let the QR factorization of C be

CP = Q
(
R 0 p

p n− p

)
, (2.1)

where P ∈ Rn×n is a permutation matrix representing the pivoting, R is an upper
triangular matrix and Q is an orthogonal matrix. Now we can get a solution of Cx = d:

x0 = P

R−1QTd p

0 n− p

 . (2.2)

Now the LSE problem (1.1) becomes

min
y∈Rt
‖AZy − (b−Ax0)‖ . (2.3)

By solving the above standard LS problem to get the solution y†, we get a solution
x† = x0 + Zy† to the LSE problem.

In the null space method, the matrix Q should be stored explicitly or implicitly (by
using e.g, Householder transformations), leading to a relatively high memory demands
and implied operation counts. The more challenging point is that the matrix Z is
usually dense, which makes it inefficient to solve the LS problem (2.6). Also, In recent
years, there are some works about constructing a sparse null space matrix Z, where
the QR factorization of C with a threshold pivoting is used; see [29, 30].
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The second method is the direct elimination, which involves expressing the depen-
dence of the selected p components of the vector x on the remaining n−p components,
and this relationship is then substituted into the LS problem in (1.1). Suppose
P ∈ Rn×n is a permutation matrix such that CP =

(
C1 C2

)
with C1 ∈ Rp×p be a

nonsingular matrix. Let

AP =
(
A1 A2 m

p m− p

)
, x = Py =

(y1 p

y2 n− p

)
. (2.4)

Now we have the substitution y1 = C−11 (d − C2y2). Combining this expression with
the LS problem in (1.1), we have the transformed LS problem

min
y2∈Rn−p

∥∥∥Ãy2 − (b−A1C
−1
1 d)

∥∥∥
2
, (2.5)

where
Ã = A2 −A1C

−1
1 C2 ∈ Rm×(n−p). (2.6)

Once we have the solution y2, then we can compute y1 and finally get the solution

of (1.1) with the expression x = P

(
y1
y2

)
. To get P and C1, usually a QR factorization

of C with pivoting should be exploited. For sparse matrices A and C, some strategies
have been proposed to make that the transformed matrix Ã has some sparse structure
[30, 31], leading to a sparse LS problem (2.6) that can be computed effectively by an
iterative solver.

The third method is the augmented system method, which is based on the method
of Lagrange multiplier for constrained optimization problem. Consider the following
Lagrangian function for the constrained LS problem (1.1):

f(x, λ) =
1

2
‖Ax− b‖22 + λT(d− Cx), λ ∈ Rp. (2.7)

Finding the zero root of ∇xf(x, λ) leads to

ATAx−ATb− CTλ = 0.

By letting r = b− Ax and using Cx = d, we have the following symmetric indefinite
linear system: 0 AT BT

A I 0
B 0 0

xr
λ

 =

0
b
d

 . (2.8)

If A and C are sparse and have full rank, then (2.8) is a (m+n+p)×(m+n+p) sparse
nonsingular linear system. Based on the above framework, there are several variants
of practical algorithms. We do not discuss them in more details, but refer the readers
to [30, 32–35].

3 Decomposed-form solution of the LSE problem

In this section, we investigate the structure of the solutions of (1.1) and derive two
decomposed-form expressions of the minimum 2-norm solution of (1.1). We consider
a more general case, which is formulated as

min
x∈S
‖Ax− b‖2, S = {x ∈ Rn : ‖Cx− d‖2 = min}. (3.1)
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In this paper, we also call (3.1) the LSE problem. Note that if Cx = d is a consistent
linear system, then (3.1) is equivalent to (1.1). In the rest part of the paper, we focus
on the analysis and computation of (3.1).

The following theorem about the generalized linear least squares (GLS) problem
will be used in the subsequent analysis. We refer to [27, 36] for more details.

Theorem 3.1. For any K ∈ Rm×n and L ∈ Rp×n, consider the GLS problem

min
x∈Rn

‖Lx‖2 s.t. ‖Kx− g‖2 = min. (3.2)

The following properties hold:

(1) a vector x ∈ Rn is a solution of (3.2) if and only if{
KT(Kx− b) = 0,

xTMz = 0, ∀ z ∈ N (K),
(3.3)

where M = KTK + LTL;
(2) there exist a unique solution in R(M), which is the minimum 2-norm solution

of (3.2), given by x = K†Lg, where K†L := (I − (LPN (K))
†L)K† is the weighted

pseudoinverse of K;
(3) define the linear operator

T : X := (R(M), 〈·, ·〉M )→ (Rm, 〈·, ·〉2), v 7→ Kv, (3.4)

where v and Kv are column vectors under the canonical bases of Rn and Rm. Then
the minimum ‖ · ‖X -norm solution of the least squares problem

min
v∈X
‖Tv − b‖2 (3.5)

is the minimum 2-norm solution of (3.2).

The following result characterizes the structure of the solutions of (3.1).

Theorem 3.2. Let G = ATA+ CTC. The minimum 2-norm solution of (3.1) is

x† = C†Ad+ (PR(G) − C†AC)A†b, (3.6)

and the set of all the solutions is x† +N (G).

Proof. First note that N (G) = N (A) ∩ N (C). Thus, if x is a solution of (3.1), then
PR(G)x is also a solution. Conversely, if x ∈ R(G) is a solution, then x + z is also a
solution for any z ∈ N (G). Since N (G) ⊥ R(G), the minimum 2-norm solution of
(3.1) must in R(G).

Notice that
‖Ax− b‖22 = ‖Ax− PR(A)b‖22 + ‖PR(A)⊥b‖22

and the second term is independent of x. Therefore, we can rewrite (3.1) as

min
x∈Rn

‖A(x−A†b)‖2, s.t. ‖Cx− d‖2 = min.

Using the transformation x̃ = x− A†b and noticing that Cx− d = C(x̃+ A†b)− d =
Cx̃− (d− CA†b), the above problem is equivalent to

min
x̃∈Rn

‖Ax̃‖2, s.t. ‖Cx̃− (d− CA†b)‖2 = min. (3.7)
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By Theorem 3.1, the general solution of this problem is

x̃ = C†A(d− CA†b) + z, z ∈ N (G).

Therefore, the general solution of (3.1) is

x = A†b+ C†A(d− CA†b) + z = C†Ad+ (In − C†AC)A†b+ z, z ∈ N (G). (3.8)

Note from Theorem 3.1 that R(C†A) ⊆ R(G), which indicates that the projection of
the above solution onto R(G) is x†. Thus, x† is a solution of (3.1) in R(G).

It only remains to show that there exists a unique solution of (3.1) in R(G). To
see it, notice from the above transformation that x ∈ R(G) is a solution of (3.1) if
and only if x − PR(G)A

†b ∈ R(G) is a solution of (3.7). By Theorem 3.1, (3.7) has a
unique solution in R(G), this implies that (3.1) has a unique in R(G).

Write
x†1 = C†Ad, x†2 = (PR(G) − C†AC)A†b. (3.9)

The minimum 2-norm solution of (3.1) has the decomposed-form: x† = x†1 + x†2. Note

that x†1 is the minimum 2-norm solution of the GLS problem

min
x∈Rn

‖Ax‖2 s.t. ‖Cx− d‖2 = min. (3.10)

By Theorem 3.1, x†1 is also the solution of the operator-form LS problem (3.5), where
K = C and L = A. We can use the iterative method proposed in [27] to approximate

x†1. Although the expression of x†2 looks relatively complicated, the following result
shows that it is the minimum 2-norm solution of an LS problem with a null space
constraint.

Theorem 3.3. Let x†2 = (PR(G)−C†AC)A†b, then x†2 is the minimum 2-norm solution
of

min
x∈N (C)

‖Ax− b‖2. (3.11)

The following lemma is needed for the proof.

Lemma 3.1. A vector x ∈ N (C) is the minimum 2-norm solution of (3.11) if and
only if {

PN (C)(A
T(Ax− b)) = 0,

x ⊥ N (A) ∩N (C).

Proof. Define the linear operator

A : (N (C), 〈·, ·〉2)→ (Rm, 〈·, ·〉2), v 7→ Av, (3.12)

where v and Av are column vectors under the canonical bases of Rn and Rm. Notice
that X := (N (C), 〈·, ·〉2) is a finite dimensional Hilbert space. Therefore, there exist a
unique minimum X -norm solution of minv∈X ‖Av−b‖2, which is the minimum 2-norm
solution of (3.11), and x ∈ N (C) is the minimum X -norm solution if and only if

A∗(Ax− b) = 0, x ⊥X N (A)

where the orthogonal relation ⊥X in X is the 2-orthogonal relation in N (C), and the
linear operator A∗ : (Rm, 〈·, ·〉2) → (N (C), 〈·, ·〉2) is the adjoint of A defined by the
relation 〈Av, u〉2 = 〈v,A∗u〉2 for any v ∈ N (C) and u ∈ Rm. It is easy to verify that
A∗v = PN (C)A

Tv under the canonical bases. Thus, A∗(Ax − b) = 0 is equivalent to
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PN (C)(A
T(Ax − b)) = 0. Since N (A) = {x ∈ N (C) : Ax = 0} = N (A) ∩ N (C), it

follows that x ⊥X N (A) is equivalent to x ⊥ N (A) ∩N (C).

Now we can prove Lemma 3.1.

Proof of Lemma 3.1. The proof contains three steps.

Step 1: prove x†2 ∈ N (C). Using [27, Theorem 3.7], we have the relation CC†AC =
C. It follows that

Cx†2 = (CPR(G) − CC†AC)A†b = C(I− PR(G))A
†b = CPN (G)A

†b = 0,

where we have used N (G) ⊆ N (C).

Step 2: prove PN (C)(A
T(Ax†2 − b)) = 0. First we have

AT(Ax†2 − b) = AT[APR(G)A
†b− b−AC†ACA

†b]

= AT(AA† − I)b−ATAC†ACA
†b

= −ATAC†ACA
†b,

where we have used APR(G)x = Ax−APN (G)x = Ax for any x ∈ Rn, and I−AA† =

PR(A)⊥ = PN (AT). Let w = C†ACA
†b. By Theorem 3.2, w is the minimum 2-norm

solution of
min ‖Ax‖2 s.t. ‖Cx− CA†b‖2 = min .

Using Theorem 3.2 again, it follows that wTGz = 0 for any z ∈ N (C), which is just

wT(ATA+ CTC)z = (ATAw)Tz = 0

for any z ∈ N (C), which means that ATAw ⊥ N (C). This proves PN (C)A
TAw = 0,

which is the desired result.

Step 3: prove x†2 ⊥ N (A)∩N (C). This is obvious by noticing that x†2 ∈ R(G) and
R(G) ⊥ N (A) ∩N (C).

From the above proof, we know that x†2 is the minimum X -norm solution of
operator-form LS problem minX ‖Ax − b‖2 with A defined in (3.12). Therefore, we

have x†2 = A†b =: A†N (C)b. Note that A†N (C) is essentially the matrix form of A† under

the canonical bases of Rn and Rm, which depends both on A and N (C).

Based on Theorem 3.3, we will propose an iterative method for the LS problem
(3.11) to approximate x†2. Before this, let us investigate several properties of the matrix

A†N (C), which will be used to derive another decomposed-form solution of (3.1).

Proposition 3.1. The following two equalities hold:{
(I−A†N (C)A)C† = C†A
(PR(C) − C†AC)A† = A†N (C).

(3.13)

Proof. The second equality is directly derived from Theorem 3.3. Now we prove the
first equality. By Theorem 3.1, for any y ∈ Rn, C†Ay is the 2-minimum solution of

min ‖Ax‖2 s.t. ‖Cx− y‖2 = min,

which has the same solution as

min ‖Ax‖2 s.t. ‖C(x− C†y)‖2 = min .
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Let x̄ = x− C†y. The above problem becomes

min ‖Ax̄+AC†y‖2 s.t. ‖Cx̄‖2 = min,

which has the minimum 2-norm solution x̄† = −A†N (C)AC
†y, and a general solution

is x̄ = x̄† + z with z ∈ N (A) ∩ N (C). Therefore a general solution of the original
problem is

x = C†y + x̄†y + z.

Note that PN (C)C
†y = (I − C†C)C†y = 0. Thus, C†y ⊥ N (C) and C†y ⊥ z. Com-

bining with x̄† ⊥ z we have C†y+ x̄† ⊥ z. Therefore, C†y+ x̄†y = (I−A†N (C)A)C†y is

the minimum 2-norm solution of the original problem. Since y is arbitrary, we finally
get (I−A†N (C)A)C† = C†A.

From the above result, we obtain the following decomposed-form solution of (3.1).

Corollary 3.1. The minimum 2-norm solution of (3.1) has the form

x† = C†d+A†N (C)(b−AC
†d) (3.14)

Proof. Using Theorem 3.1 and Proposition 3.1, we have

x† = C†Ad+A†N (C)b = (I−A†N (C)A)C†d+A†N (C)b

= A†N (C)(b−AC
†d) + C†d,

which is the desired result.

By Theorem 3.2 and Corollary 3.1, we can give two approaches for computing x†.

The first approach.

(1) Solve the GLS problem (3.10) to get x†1 = C†Ad;

(2) Solve the LS problem (3.11) to get x†2 = A†N (C)b;

(3) Compute x† = x†1 + x†2.

The second approach.

(1) Solve the LS problem minx ‖Cx − d‖2 to get the minimum 2-norm solution x̃†1 =
C†d;

(2) Let b̃ = b− Ax̃†1. Solve the LS problem minx∈N (C) ‖Ax− b̃‖2 to get the minimum

2-norm solution x̃†2 = A†N (C)b̃;

(3) Compute x† = x̃†1 + x̃†2.

In the next section, we will propose two Krylov subspace based iterative methods
for solving (3.1), which correspond to the above two approaches, respectively.

4 Krylov iterative methods for the LSE problem

From the previous section, we find that for solving the LSE problem, we need to
compute C†A or A†N (C). We first propose the iterative methods for such computations

based on the Krylov subspace, then we give two iterative algorithms for the LSE
problem.
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4.1 Iterative method for computing C†
A

Based on Theorem 3.1, the author in [27] proposes a Krylov iterative method for

approximating C†Ad for a vector d ∈ Rp. The idea is to apply the Golub-Kahan
bidiagonalization (GKB) to solve the operator-form LS problem

min
x∈X
‖Tx− d‖2, (4.1)

where X = (R(G), 〈·, ·〉G) and T : X → (Rm, 〈·, ·〉2), x 7→ Cx under the canonical
bases. Applying the GKB to {T, d} we get the recursive relations

β1u1 = d

αivi = T ∗ui − βivi−1
βi+1ui+1 = Tvi − αiui,

(4.2)

where T ∗ : (Rm, 〈·, ·〉2) → X is the adjoint operator of T defined by the relation
〈Tx, y〉2 = 〈x, T ∗y〉G for any x ∈ X and y ∈ Rm. It has been shown in [27] that the
matrix form of T ∗ is G†C. The positive scalars αi and βi are computed such that
‖vi‖X = ‖ui‖2 = 1. Note that v0 := 0 for the initial step.

After k steps, the above GKB process generates two Krylov subspaces and projects
the LS problem (4.1) onto the Krylov subspaces to get a k-dimensional LS problem.
The solution of the k-dimensional LS problem can be updated step by step from
the previous one, which converges to C†Ad as k increases. This leads to the following

Algorithm 1 for iteratively approximating C†Ad. Please refer to [27] for more details.

Algorithm 1 Generalized LSQR (gLSQR) for computing C†Ad

Input: A ∈ Rm×n, C ∈ Rp×n, d ∈ Rp
1: Compute β1 = ‖d‖2, u1 = d/β1 β1ũ1 = b
2: Compute s = G†CTu1, α1 = (sTGs)1/2, v1 = s/α1 . G = ATA+ CTC
3: Set x0 = 0, w1 = v1, φ̄1 = β1, ρ̄1 = α1

4: for i = 1, 2, . . . until convergence, do
5: r = Cvi − αiui
6: β1+1 = ‖r‖2, ui+1 = r/βi+1

7: s = G†CTui+1 − βi+1vi
8: αi+1 = (sTGs)1/2, vi+1 = s/αi+1

9: ρi = (ρ̄2i + β2
i+1)1/2

10: ci = ρ̄i/ρi
11: si = βi+1/ρi
12: θi+1 = siαi+1

13: ρ̄i+1 = −ciαi+1

14: φi = ciφ̄i
15: φ̄i+1 = siφ̄i
16: xi = xi−1 + (φi/ρi)wi
17: wi+1 = vi+1 − (θi+1/ρi)wi
18: end for
Output: Approximation to C†Ad

In Algorithm 1, the main computational bottleneck is the need to compute
G†(CTui) at each iteration. For large-scale matrices, it is generally impractical to
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obtain G† directly. In this case, using the relation

G†(CTui) = argmin
x∈Rn

‖Gx− CTui‖2, (4.3)

we can compute G†(CTui) by iteratively solving the above LS problem. Furthermore,
by noticing that G†(CTui) is the minimum 2-norm solution of the LS problem

min
x∈Rn

∥∥∥∥(CA
)
x−

(
ui
0

)∥∥∥∥
2

, (4.4)

we can use the LSQR algorithm [37] to approximate G†(CTui) without explicitly

forming G. If

(
C
A

)
is sparse and its sparse QR factorization is not difficult to compute,

then we can compute the solution of (4.4) directly.

4.2 Iterative method for computing A†
N (C)

Now we consider how to design a GKB based method to approximate AN (C)b for a
b ∈ Rm. First, suppose an orthonormal basis of the null space N (C) is {w1, . . . , wt}.
Let Wt = (w1, . . . , wt) ∈ Rn×t. Using Theorem 3.3, if follows that A†N (C)b = Wtf ,

where f ∈ Rt is the minimum 2-norm solution of the LS problem

min
f∈Rt

‖(AWt)f − b‖2 (4.5)

To solve (4.5) iteratively, we apply the GKB to {AWt, b}, which leads to the following
recursive relations: 

δ1p1 = b

γiq̃i = (AWt)
Tpi − δiq̃i−1

δi+1pi+1 = (AWt)q̃i − γipi,
(4.6)

where the positive scalars are computed such that ‖pi‖2 = ‖qi‖2 = 1, and we set
q0 := 0 for the initial step.

Using the property of GKB, after k steps, it generates two groups of 2-orthonormal
vectors {pi}k+1

i=1 and {q̃i}k+1
i=1 . Then we can approximate the solution of (4.5) in the sub-

space span{q̃i}ki=1 as k grows from 1 to t. This approach is equivalent to applying the

standard LSQR algorithm to (4.5). Therefore, to get a good approximation to A†N (C)b,

we can search a solution of (3.11) in the subspace Wt · span{q̃i}ki=1 = span{Wtq̃i}ki=1

at the k-th iteration. Let qi = Wtq̃i. Note that PN (C) = WtW
T
t . From the recursions

(4.6), we get 
δ1p1 = b

γiqi = PN (C)A
Tpi − δiqi−1

δi+1pi+1 = Aqi − γipi,
(4.7)

where ‖qi‖2 = 1. The following result demonstrates that this iterative process is
essentially an operator-type GKB.

Proposition 4.1. Let the linear operator defined as (3.12). Then the iterative process
(4.7) is equivalent to the GKB applied to {A, b}.

Proof. From the proof of Lemma 3.1 we know that A∗v = PN (C)A
Tv for any v ∈ Rm

under the canonical bases. Therefore, the second recursive relation in (4.7) is equivalent
to γiqi = A∗pi − δiqi−1. Now we can find that (4.7) is just the recursions of the
operator-type GKB applied to {A, b} under the canonical bases.

10



Proposition 4.1 implies that the outputs of the above iterative process do not
depend on the choice of 2-orthonormal basis of N (C), i.e. it will generate the same
vectors {pi, qi} and scalars {γi, δi} whenever the 2-orthonormal basis {wi}ti=1 forN (C)
is used.

Now we can give the practical computational approach of this iterative process.
Since all the constructed vectors qi are restricted in N (C), we name this process the
Null Space Restricted GKB (NSR-GKB). The pseudocode of NSR-GKB is shown in
Algorithm 2.

Algorithm 2 Null Space Restricted GKB (NSR-GKB)

Input: A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm
1: Compute δ1 = ‖b‖2, p1 = b/δ1,
2: Compute s = PN (C)A

Tp1, γ1 = ‖s‖2, q1 = s/γ1
3: for i = 1, 2, . . . , k, do
4: r = Aqi − γipi,
5: δi+1 = ‖r‖2, pi+1 = r/δi+1

6: s = PN (C)A
Tpi+1 − δi+1qi

7: γi+1 = ‖s‖2, qi+1 = s/γi+1

8: end for
Output: {γi, δi}k+1

i=1 , {pi, qi}k+1
i=1

Note that PN (C) = In − C†C. In the computation of NSR-GKB, the orthonor-
mal basis of N (C) is not required, where instead at each step we need to compute
C†CATpi, which is the most costly part. Write ṽi = CATpi, which is easy to compute.
To get a good approximate to C†ṽi, we can iteratively compute the minimum 2-norm
solution of the LS problem

min
x∈Rn

‖Cx− ṽi‖2, (4.8)

which can be done efficiently by using the LSQR algorithm. In this case, NSR-GKB
has the nested inner-outer iteration structure. If C has a special structure such that
its rank-revealing QR factorization is relatively easy to compute, we can first get the
QR factorization of C and then compute C†ṽi directly.

The following result characterizes the structures of the two Krylov subspaces
generated by NSR-GKB.

Proposition 4.2. For the NSR-GKB process, the generated vectors {qi}ki=1 ⊂ N (C)
constitute a 2-orthonormal basis of the Krylov subspace

Kk(PN (C)A
TA,PN (C)A

Tb) = span{(PN (C)A
TA)iPN (C)A

Tb}k−1i=0 , (4.9)

and {pi}ki=1 ⊂ Rm constitute a 2-orthonormal basis of the Krylov subspace

Kk(APN (C)A
T, b) = span{(APN (C)A

T)ib}k−1i=0 . (4.10)

Proof. To get more insights into the NSR-GKB process, here we give two proofs.

The first proof is based on the property of GKB for linear compact operators [26].
By Proposition 4.1, the NSR-GKB is essentially the operator-type GKB of {A, b},
where the underlying Hilbert spaces are X := (N (C), 〈·, ·〉2) and Rm. Therefore, under
the canonical bases, the generated vectors satisfy qi ∈ N (C) and pi ∈ Rm, and {qi}ki=1

and {qi}ki=1 are 2-orthonormal bases of the Krylov subspaces Kk(A∗A,A∗PR(P )b) and

Kk(AA∗,PR(P )b), respectively. Since A∗y = PN (C)A
Ty for any y ∈ Rm, we have

(A∗A)iA∗b = (PN (C)A
TA)iPN (C)A

Tb,
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and
(AA∗)iPR(P )b = (APN (C)A

T)ib.

The desired result immediately follows.

The second proof uses the recursions (4.6), which is based on a 2-orthonormal basis
{wi}ti=1 for N (C). The standard GKB process of {(AWt), b} with recursions (4.6)
generates two 2-orthonormal basis {q̃i}ki=1 and {pi}ki=1 for the two Krylov subspaces

Kk((AWt)
TAWt, (AWt)

Tb) = span{((AWt)
TAWt)

i(AWt)
Tb}k−1i=0 ,

Kk(AWt(AWt)
T, b) = span{(AWt(AWt)

T)ib}k−1i=0 ,

respectively. Using qi = Wtq̃i, WtW
T
t = PN (C) and noticing that

Wt((AWt)
TAWt)

i(AWt)
Tb

= Wt(W
T
t A

TAWt)
iWT

t A
Tb = (WtW

T
t A

TA)iWtW
T
t A

Tb

= (PN (C)A
TA)iPN (C)A

Tb,

we immediately obtain (4.9). Similarly, we can obtain (4.10).

Since the dimensions of (N (C), 〈·, ·〉2) and Rm are dim(N (C)) and m, respec-
tively, Proposition 4.2 implies that NSR-GKB will eventually terminate at most
min{dim(N (C)),m} steps. The “terminate step” of NSR-GKB is defined as kt =
min{k : αk+1βk+1 = 0}, which means that γi or δi equals zero at the current step and
thereby the Krylov subspace can not expand any longer. Suppose NSR-GKB does not
terminate before the k-th iteration, that is, γiδi 6= 0 for 1 ≤ i ≤ k. Then the k-step
NSR-GKB process generates two 2-orthonormal matrices Qk = (q1, . . . , qk) ∈ Rn×k
and Pk = (p1, . . . , pk) ∈ Rm×k that satisfy the following matrix-form relations:

β1Qk+1e1 = b

APk = Qk+1Bk

PN (C)A
TQk+1 = PkB

T
k + γk+1qk+1e

T
k+1,

(4.11)

where e1 and ek+1 are the first and (k+ 1)-th columns of the identity matrix of order
k + 1, and the bidiagonal matrix

Bk =


γ1
δ2 γ2

δ3
. . .

. . . γk
δk+1

 ∈ R(k+1)×k (4.12)

has full column rank. We remark that it may happen that δk+1 = 0, meaning that
NSR-GKB terminates at the k-th step with qk+1 = 0.

Now we seek the approximation to A†N (C)b by computing the solution of (3.11) in

the Krylov subspace span{Qk} ⊂ N (C). For any x ∈ span{Qk}, let x = Qky with
y ∈ Rk. Using the relations (4.11), we get

min
x=Qky

‖Ax− b‖2 = min
y∈Rn

‖Pk+1(Bky − β1e1)‖2 = min
y∈Rn

‖Bky − β1e1‖2.

12



Therefore, at the k-th iteration, we only need to solve the following k-dimensional
subproblem to get the approximation:

xk = Qkyk, yk = argmin
y∈Rk

‖Bky − β1e1‖2. (4.13)

Note that before NSR-GKB terminates, Bk has full column rank and the LS problem
argminy ‖Bky − β1e1‖2 always has the unique solution yk = B†kβe1. As the iteration
proceeds, xk will gradually approximate the true solution of (3.11). The following
result shows that at the terminate step, we will get the exact solution of (3.11).

Theorem 4.1. Suppose NSR-GKB terminates at step kt. Then the iterative solution
xkt = A†N (C)b, which is the the exact minimum 2-norm solution of (3.11).

Proof. Since xkt ∈ spanQk ⊂ N (C), we only need to verify that xkt satisfies the two
relations of Lemma 3.1.

Write xkt as xkt = Qktykt and use the relation Axkt − b = Qkt+1(Bktyt − β1e1).
We have

PN (C)A
T(Axkt − b) = PN (C)A

TQkt+1(Bktykt − δ1e1)

= (PktB
T
kt + γkt+1qkt+1e

T
k+1)(Bktykt − δ1e1)

= Pkt(B
T
ktBktykt −B

T
ktδ1e1) + γkt+1δkt+1vkt+1e

T
ktykt

= γkt+1δkt+1vkt+1e
T
ktykt

= 0,

since γkt+1δkt+1 = 0 and BT
kt
Bktykt = BT

kt
δ1e1 due to ykt = argminy ‖Bkty − β1e1‖2.

This verifies the first relation of Lemma 3.1. By Proposition 4.2 we have xkt ∈
PN (C)R(AT) = PN (C)N (A)⊥. Let xkt = PN (C)w with w ∈ N (A)⊥. For any
y ∈ N (A) ∩N (C), we have

〈xkt , y〉2 = 〈PN (C)w, y〉2 = 〈w,PN (C)y〉2 = 〈w, y〉2 = 0.

This verifies the second relation of Lemma 3.1.

In the practical computation, we do not need to compute B†k to get xk at each iter-
ation. Instead, by exploiting the bidiagonal structure of Bk, we can design a recursive
procedure to update xk based on the Givens QR factorization of Bk. This proce-
dure follows a very similar approach proposed in [37, Section 4.1], and we omit the
derivation. Combining the NSR-GKB process and the update procedure, we get the
following Algorithm 3 for approximating A†N (C)b. This algorithm is named the Null

Space Restricted LSQR(NSR-LSQR). We remark that for notational simplicity, some
notations in Algorithm 3 are the same as those in Algorithm 1, but the readers can
easily find the differences between them.

To check the convergence condition of NSR-LSQR, here we give a stopping criterion.
The idea is based on Theorem 3.3 and Proposition 4.1, which implies that NSR-
LSQR is a Krylov subspace iterative method applied to the operator-type LS problem
minx∈X ‖Ax − b‖2. For the standard LS problem minx ‖Ax − b‖2, a commonly used

stopping criterion is ‖ATrk‖2
‖A‖2‖bk‖2 , where rk = ‖Axk − b‖2 (here we use rk and xk to

denote the quantities computed by LSQR without ambiguity); see [37, Section 6].
Similarly, for the NSR-LSQR algorithm, we use the following relative residual norm for
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Algorithm 3 Null Space Restricted LSQR (NSR-LSQR) for computing A†N (C)b

Input: A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm
1: (Initialization)
2: Compute δ1p1 = b, γ1q1 = PN (C)A

Tp1
3: Set x0 = 0, z1 = q1, φ̄1 = δ1, ρ̄1 = γ1
4: for i = 1, 2, . . . until convergence, do
5: (Applying the NSR-GKB process)
6: δi+1pi+1 = Aqi − γipi
7: γi+1qi+1 = PN (C)A

Tpi+1 − δi+1qi
8: (Applying the Givens QR factorization to Bk)
9: ρi = (ρ̄2i + δ2i+1)1/2

10: ci = ρ̄i/ρi
11: si = βi+1/ρi
12: θi+1 = siγi+1

13: ρ̄i+1 = −ciγi+1

14: φi = ciφ̄i
15: φ̄i+1 = siφ̄i
16: (Updating the solution)
17: xi = xi−1 + (φi/ρi)zi
18: wi+1 = vi+1 − (θi+1/ρi)zi
19: end for
Output: Approximation to A†N (C)b

the stopping criterion:

‖A∗rk‖2
‖A‖‖b‖2

=
‖PN (C)A

Trk‖2
‖b‖2

≤ tol, (4.14)

where rk = Axk − b, and ‖A‖ := max
v∈N(C)

v 6=0

‖Av‖2
‖v‖2 . From the proof of Theorem 4.1 we

know that A∗rk would be zero when the exact solution is obtained. Furthermore, at
each iteration, we also have

‖A∗rk‖2 = ‖PN (C)A
T(Axk − b)‖2 = ‖γk+1δk+1vk+1e

T
kyk‖2 = γk+1δk+1|eTkyk|.

This means that ‖A∗rk‖2 can be quickly obtained with almost no additional cost. The
following result provides an approach for estimating A.

Proposition 4.3. Suppose {wi}ti=1 is an arbitrary 2-orthonormal basis of N (C) and
Wt = (w1, . . . , wt) ∈ Rn×t. Then it holds that

‖A‖ = σmax(AWt), (4.15)

which is the largest singular value of AWt.

Proof. For any v ∈ N (C), there exist a unique y ∈ Rt such that v = Wty, and
‖v‖2 = ‖y‖2. Therefore, we have

‖A‖ = max
v∈N(C)

v 6=0

‖Av‖2
‖v‖2

= max
y∈Rt
y 6=0

‖AWty‖2
‖Wty‖2

= max
y∈Rt
y 6=0

‖AWty‖2
‖y‖2

= ‖AWt‖2 = σmax(AWt).

The proof is completed.
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Note from Proposition 4.3 that ‖A‖ = σmax(AWt) does not depend on the choice of
the 2-orthonormal basis of N (C). To estimate σmax(AWt), a very practical approach
is to apply the GKB based SVD algorithm [25]. Combining (4.6) and (4.7), we can
find that NSR-GKB generates the same {γi, δi} as that generated by the GKB of AWt,
whenever which 2-orthonormal basis {wi}ti=1 is used. Therefore, we can use the largest
singular value of Bk generated by NSR-GKB to approximate σmax(AWt), and it will
not take too many iterations to get an accurate estimate.

4.3 Two Krylov iterative methods for the LSE problem

Based on Algorithm 1 and Algorithm 3, we give two Krylov subspace based iterative
algorithms for the LSE problem, which correspond to the two approaches at the end of
Section 3, respectively. The first algorithm named Krylov Iterative Decomposed Solver-
I (KIDS-I) is shown in Algorithm 4, and the second algorithm named Krylov Iterative
Decomposed Solver-II (KIDS-II) is shown in Algorithm 5.

Algorithm 4 Krylov Iterative Decomposed Solver-I (KIDS-I) for (3.1)

Input: A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp
1: Compute x†1 = C†Ad by Algorithm 1

2: Compute x†2 = A†N (C)b by Algorithm 3

3: Compute x† = x†1 + x†2
Output: Approximate solution of (3.1)

Algorithm 5 Krylov Iterative Decomposition Solver-II (KIDS-II) for (3.1)

Input: A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp
1: Compute x̃†1 = C†d by solving minx ‖Cx− d‖2
2: Compute b̃ = b−Ax̃†1
3: Compute x̃†2 = A†N (C)b̃ by Algorithm 3

4: Compute x† = x̃†1 + x̃†2
Output: Approximate solution of (3.1)

We give a brief comparison between the above two algorithms. Generally, for large-
scale problems, both the two algorithms have a nested inner-outer iteration structure:
for KIDS-II, we need to solve (4.8) at each iteration of Algorithm 3, while for KIDS-II,
we need to solve (4.4) and (4.8) at each iteration of Algorithm 1 and Algorithm 3,

respectively. In KIDS-I, the computation of x†1 and x†2 can be performed simultaneously.
However, in KIDS-II, the three steps (corresponding to lines 1–3 in Algorithm 5) must
be performed sequentially.

5 Numerical experiments

We present several numerical examples to illustrate the performance of the two pro-
posed algorithms for the LSE problems. All experiments are conducted in MATLAB
R2023b with double precision. It is worth noting that much of the existing literature
on LSE problems lacks numerical results, primarily due to the difficulty of constructing
nontrivial test problems, particularly for large-scale matrices. Based on the analysis
of the LSE problems in Section 3, we propose a procedure to construct LSE problems
for testing purposes.
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Construct test problems.

From the proof of Theorem 3.2, the minimum 2-norm solution of (3.1) is x† = x†1 +x†2,

where x†1 is the minimum 2-norm solutions of (3.2) with K = C and L = A, and x†2 is
the minimum 2-norm solutions of (3.7). With the help of the approach for constructing
test problems for the GLS problems (see [27, Section 5]), we can construct a test LSE
problem using the following steps:

(1) Choose two matrices A ∈ Rm×n and C ∈ Rp×n. Compute G = ATA+ CTC.
(2) Compute a matrix B ∈ Rn×t whose columns form a basis for N (C).
(3) Construct a vector w1 ∈ R(G). Compute

x†1 = w1 −B(BTGB)−1BTGw1. (5.1)

(4) Choose a vector z1 ∈ R(C)⊥ and let d = Cx†1 + z1.
(5) Construct a vector w2 ∈ Rt such that w2 ⊥ N (AB), and choose a vector z2 ∈
R(AB)⊥.

(6) Let x†2 = Bw2 and b = Ax†2 + z2.

(7) Compute x† = x†1 + x†2.

Note that the fourth step ensures that x†1 = C†Ad, while the sixth step ensures that

x†2 = A†N (C)b. By this construction, the minimum 2-norm solution of (3.1) is x†. We

remark that for large-scale matrices, computing (5.1) can be extremely challenging.
As a result, our experiments focus exclusively on small and medium-sized problems.

In the numerical experiments, we construct four test examples. For the first exam-
ple, we set A = D1, which is the scaled discretization of the first-order differential
operator:

D1 =

1 −1
. . .

. . .

1 −1

 ∈ R(n−1)×n.

The matrix C ∈ R2324×4486 named lp bnl2 comes from linear programming problems
and is sourced from the SuiteSparse Matrix Collection [38]. Let w1 = (1, · · · , 1)T ∈ Rn.
We use the MATLAB built-in function null.m to compute a basis matrix B for N (C),
and we let w2 be the first column of (AB)T. To obtain vectors z1 and z2, we we compute
the projections of the random vectors randn(p,1) and randn(m,1) onto R(C)⊥ and
R(AB)⊥, respectively.

For the second example, we set A = D2, which is the scaled discretization of the
second-order differential operator:

D2 =

−1 2 −1
. . .

. . .
. . .

−1 2 −1

 ∈ R(n−2)×n,

and the matrix C ∈ R5190×9690 named r05 comes from linear programming problems,
taken from [38]. We use almost the similar setting as the above for constructing the
LSE problem, where the only difference is that we construct w1 ∈ Rn by evaluating
the function f(t) = t on a uniform grid over the interval [0, 1], that is, w1(k) = k−1

n−1
for k = 1, . . . , n.

For the third example, we choose the matrix M ∈ R3534×3534 named cage9 from
[38], which arises from the directed weighted graph problem. Then we set A = M(:, 1 :
2500) and C = M(:, 2501 : 3534). Then we construct the LSE problem using almost
the same setting as the above, where the only difference is that we construct w1 ∈ Rn
by evaluating the function f(t) = t2 on a uniform grid over the interval [−1, 1], that
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is, wk(k) =
(

2(k−1)
n−1 − 1

)2
for k = 1, . . . , n. We use cage9-I and cage9-II to denote A

and C, respectively.

For the fourth example, we choose the matrix M ∈ R9728×9728 named pf2177 from
[38], which arises from the optimization problem. Then we set A = M(:, 1 : 6500)
and C = M(:, 6501 : 9728). Then we construct the LSE problem using almost the
same setting as the above, where the only difference is that we construct w1 ∈ Rn by
evaluating the function f(t) = sin(2t) + 3 cos(t) on a uniform grid over the interval

[−π, π], that is, w(k) = sin
(

4π(k−1)
n−1 − 2π

)
− 3 cos

(
2π(k−1)
n−1 − π

)
for k = 1, . . . , n. We

use pf2177-I and pf2177-II to denote A and C, respectively.

Several properties of the matrices in the four test examples are listed in Table 5.1.

Table 5.1 Properties of the test examples.

A C

Example name m× n κ(A) name p× n κ(C)

1 D1 4485× 4486 2855.90 lp bnl2 2324× 4486 7765.31
2 D2 9688× 9690 1.68× 107 r05 5190× 9690 121.82
3 cage9-I 2500× 3534 3.93 cage9-II 1034× 3534 12.48
4 pf2177-I 6500× 9728 134.84 pf2177-II 3228× 9728 44.00
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Fig. 5.1 The convergence history of KIDS-I and KIDS-II with respect to the true solution, where all
the inner iterations are computed accurately. (a) {D1, lp bnl2}; (b){D2, r05}; (c) {cage9-I, cage9-II};
(d) {pf2177-I, pf2177-II}.
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Experimental results.

In this experiment, we demonstrate the convergence behavior and the final accuracy of
the approximate solutions computed by KIDS-I and KIDS-II. For comparison, we also
compute two solutions using the null space method and the direct elimination method,
denoted as “NS” and “DE”, respectively. For the KIDS-I algorithm, at the k-th step,
we compute the approximations to x†1 and x†2, respectively, which are denoted by x1k
and x2k. We then compute the k-th approximate solution of (1.1) as xk = x1k + x2k.

For the KIDS-II algorithm, we first compute x̃†1, which is the solution to the LS problem

minx ‖Cx − d‖2. Then we apply Algorithm 3 to compute the approximations to x̃†2,
where we denote the k-th approximation by x̃2k. The k-th approximate solution of
(1.1) by KIDS-II is xk = x̃†1 + x̃2k. In this experiment, all the inner iterations are
computed accurately.

Figure 5.1 shows the convergence history of the two algorithms with respect to the
true solution. We have three key findings. First, for both algorithms, all the approx-
imate solutions eventually converge to the exact solution of the LSE problem, with
accuracy that is almost the same as, or slightly lower than, the solutions obtained by
the NS or DE methods. Second, both KIDS-I and KIDS-II exhibit a linear convergence
rate for the four test problems. Since the two algorithms are based on the operator-
form GKB process, we hypothesize that the convergence rate may share similarities
with the LSQR algorithm. However, a more detailed investigation is needed in the
future to confirm this. Third, compared with KIDS-II, KIDS-I requires fewer iterations
to achieve a solution with a given accuracy. However, it is not yet clear whether this
is a general property of the algorithms.
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Fig. 5.2 Curves for the true and computed solutions obtained by KIDS-I at the final iteration. (a)
{D1, lp bnl2}; (b){D2, r05}; (c) {cage9-I, cage9-II}; (d) {pf2177-I, pf2177-II}.
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In Figure 5.2 we plot the curve corresponding to xk computed by KIDS-I at the
final iteration, alongside the true solution x†. It is important to note that the curves
corresponding to the true solutions are not smooth, as the operations used in con-
structing the test problems can lead to oscillating vectors. We remark that constructing
a smooth true solution based on the proposed procedure for generating a test LSE
problem is quite challenging. From the figure, we observe that the computed solu-
tions closely match the true solution. These results demonstrate the effectiveness of
the proposed algorithms in iteratively solving LSE problems.
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Fig. 5.3 The convergence history of KIDS-I and KIDS-II with respect to the true solution, where
the inner iterations are approximated by solving (4.4) and (4.8) by LSQR with stopping tolerance
τ . (a) {D1, lp bnl2}, τ = 10−10; (b){D1, lp bnl2}, τ = 10−8; (c) {cage9-I, cage9-II}, τ = 10−10; (d)
{cage9-I, cage9-II}, τ = 10−8.

In this experiment, we investigate how the inaccuracy in computing the inner
iterations of both KIDS-I and KIDS-II affects the final accuracy of the approximate
solutions. For KIDS-I, at each iteration, we use LSQR with stopping tolerance τ to
iteratively solving (4.4) and (4.8) for approximating x†1 and x†2, respectively. For KIDS-

II, we first compute an exact solution x̃†1, and then use LSQR with stopping tolerance

τ to iteratively solving (4.8) for approximating x̃†2. The stopping tolerance value τ for
LSQR are set to 10−10 and 10−8. For simplicity, we only present the results for the
first and third examples, as the results for the other two examples are similar. From
Figure 5.3, we observe that the value of τ significantly impacts the final accuracy of xk,
with the accuracy being approximately on the order of O(τ). On the other hand, the
convergence rate is not affected very much. It is important to investigate how the final
accuracy of the computed solution is influenced by the value of τ , especially because,
for large-scale problems, it is not feasible to compute the inner iterations accurately.
This aspect should be explored further in future work.
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(a) τ2 = 0

0 10 20 30 40 50 60 70 80 90 100

Iteration

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

  
e

rr
o

r

(b) τ2 = τ1

Fig. 5.4 The convergence history of KIDS-II with respect to the true solution, where x̃†1 =
argminx ‖Cx−d‖2 is computed by LSQR with stopping tolerance τ1, and the inner iteration is approx-
imated by solving (4.8) by LSQR with stopping tolerance τ2. The test example is {D1, lp bnl2}.

In this experiment, we explore how the solution accuracy of x̃†1 = argminx ‖Cx−d‖2
influences the final accuracy of x†. To obtain an approximate x̃†1, we apply the LSQR
algorithm to solve minx ‖Cx− d‖2 with a stopping tolerance set to τ1. The inner iter-
ation is approximated by solving (4.8) using the LSQR algorithm, with the stopping
tolerance set to τ2. We only show the experimental results for the first example, as
the results for the other examples are similar. First, we set τ1 = 10−10 and τ1 = 10−8,
respectively, and set τ2 = 0, meaning that we compute the inner iteration accurately.
The convergence history is shown in Figure 5.4a. We observe that an inaccurate x̃†1
affects the final accuracy of x†, even when the inner iterations are computed accurately.
Second, we set τ1 = τ2 = 10−10 and τ1 = τ2 = 10−8, respectively. The convergence
history is shown in Figure 5.4b. We observe that when the inner iterations are per-
formed with the same accuracy as x̃†1, then the final accurately of x† is comparable to
the accuracy achieved when the inner iterations are computed accurately. Since the
solution error of x̃†1 may be amplified in the subsequent computation, analyzing the

impact of the inaccuracy in x̃†1 on the final accuracy of x† is more complex than simply
analyzing the inner iterations. This also implied that KIDS-II can be more susceptible
to computational errors than KIDS-I. A systematic comparison of the two algorithms
and their susceptibility to computational errors will be explored in future work.

6 Conclusion and outlook

In this paper, we have introduced a novel approach to solving the LSE problems
by reformulating them as operator-type LS problems. This perspective allows us to
decompose the solution of the LSE problem into two components, each corresponding
to a simpler operator-based LS problem. We have derived two types of decomposed-
form solutions, and building on the decompositions, we have developed two Krylov
subspace based iterative methods that efficiently approximate the solution without
relying on matrix factorizations. The two proposed algorithms, named KIDS-I and
KIDS-II, follow a nested inner-outer structure, where the inner subproblem can be
computed iteratively. We have proposed an approach to construct the LSE problems
for testing purposes, and used several test examples to demonstrate the effectiveness
of the algorithms.

The primary computational bottleneck of the proposed algorithms is the com-
putation of the inner iteration. Since constructing very large-scale test examples is
challenging, we have limited our numerical experiments to small and medium-sized
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matrices. In the future, we will explore additional theoretical and computational strate-
gies to improve the efficiency of the inner iteration as well as construct larger-scale
test problems to further assess the performance of the two algorithms.
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[30] Scott, J., Tůma, M.: Solving large linear least squares problems with linear
equality constraints. BIT Numerical Mathematics 62(4), 1765–1787 (2022)

22
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