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Abstract. Tikhonov regularization is a widely used technique in solving inverse problems that
can enforce prior properties on the desired solution. In this paper, we propose a Krylov subspace based
iterative method for solving linear inverse problems with general-form Tikhonov regularization term
xTMx, where M is a positive semidefinite matrix. An iterative process called the preconditioned
Golub--Kahan bidiagonalization (pGKB) is designed, which implicitly utilizes a proper precondi-
tioner to generate a series of solution subspaces with desirable properties encoded by the regularizer
xTMx. Based on the pGKB process, we propose an iterative regularization algorithm via projecting
the original problem onto small dimensional solution subspaces. We analyze the regularization prop-
erties of this algorithm, including the incorporation of prior properties of the desired solution into
the solution subspace and the semiconvergence behavior of the regularized solution. To overcome
instabilities caused by semiconvergence, we further propose two pGKB based hybrid regularization
algorithms. All the proposed algorithms are tested on both small-scale and large-scale linear inverse
problems. Numerical results demonstrate that these iterative algorithms exhibit excellent perfor-
mance, outperforming other state-of-the-art algorithms in some cases.

Key words. inverse problems, ill-posed, general-form Tikhonov regularization, preconditioned
Golub-Kahan bidiagonalization, subspace projection regularization, hybrid regularization
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1. Introduction. Inverse problems arise in various fields of science and engineer-
ing, where the aim is to recover unknown parameters or functions from observed data.
Such problems are often encountered in many applications, including image recon-
struction, medical imaging, geophysics, data assimilation, and so on [6, 28, 35, 38, 48].
Formally, a linear inverse problem after discretization leads to the following linear
system,

Ax\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} + e= b,(1.1)

whereA\in \BbbR m\times n is the (discretized) forward operator that maps the unknown quantity
to the observed data, e is the noise in the observed data, and x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} is the underlying
quantity we wish to reconstruct. One key issue with inverse problems is that they are
usually ill-posed. For (1.1) it means that A is extremely ill-conditioned such that a
small perturbation in b leads to large changes in the solution, or A is underdetermined
such that there may be multiple solutions that fit the data equally well [15, 25]. These
difficulties stem from the fact that the inverse of the forward operator is usually
discontinuous or fails to preserve certain properties of the desired solution, such as
smoothness or sparsity [15].

To overcome these challenges, regularization techniques are commonly employed,
which use prior knowledge about the underlying solution to constrain the set of pos-
sible solutions and improve their stability and uniqueness properties. The idea is to
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A2608 HAIBO LI

introduce a penalty term into the objective function to promote solutions that are
smooth, sparse, or have other desirable properties [15, 27]. Tikhonov regularization
seeks to solve the following regularized inverse problem:

x\lambda = argmin
x\in \BbbR n

\{ \| Ax - b\| 22 + \lambda R(x)\} ,(1.2)

where \lambda > 0 is a regularization parameter that controls the trade-off between data
fit and regularization, and R(x) is a regularizer that encodes our prior knowledge
about the solution. A popular choice of the regularizer is R(x) = \| Lx\| 22 with a linear
operator L \in \BbbR p\times n that maps x to a suitable space [52]. Regularization based on
Bayesian inference is another commonly used regularization method [35, 51]. Suppose
e\sim \scrN (0, \mu  - 1I) is a Gaussian random vector. In the paper we denote by I the identity
matrix with order clear from the context. Then the likelihood of b| x satisfies \pi (b| x)\propto 
exp

\bigl( 
 - \mu 

2 (Ax - b)T (Ax - b)
\bigr) 
. If we choose a Gaussian prior \pi (x)\propto exp

\bigl( 
 - \sigma 

2x
TMx

\bigr) 
to

model the distribution of x, where M is positive semidefinite, by the Bayes' formula
we have the posterior likelihood:

\pi (x| b)\propto \pi (x)\pi (b| x)\propto exp
\Bigl( 
 - \mu 
2
(Ax - b)T (Ax - b) - \sigma 

2
xTMx

\Bigr) 
.

By neglecting the scaling factor \mu /2, the maximum a posterior estimate of x is the
solution to

min
x\in \BbbR n

\biggl\{ 
\| Ax - b\| 22 +

\sigma 

\mu 
xTMx

\biggr\} 
.(1.3)

Comparing (1.3) with (1.2), we know that \sigma /\mu plays the role of the regularization
parameter \lambda , and if M = LTL is the square root decomposition of M (note in some
literature the square root of M requires LT = L), then xTMx = \| Lx\| 22 is just the
Tikhonov regularization term which comes from the prior distribution of x that en-
codes the structure we expect to enforce on x.

In this paper, we consider iterative methods for solving the two equivalent regu-
larized inverse problems

min
x\in \BbbR n

\{ \| Ax - b\| 22 + \lambda xTMx\} or min
x\in \BbbR n

\{ \| Ax - b\| 22 + \lambda \| Lx\| 22\} (1.4)

within the subspace projection regularization framework

min
x\in \scrX k

xTMx, \scrX k = \{ x : min
x\in \scrS k

\| Ax - b\| 2\} (1.5)

to avoid choosing in advance regularization parameters. A series of solution sub-
spaces \scrS k \subseteq \BbbR n of dimension k = 1,2, . . . should be constructed to incorporate prior
properties of the solution encoded by the regularizer xTMx. For standard-form regu-
larization with M = I, the most popular iterative regularization method is LSQR [44]
with an early stopping rule, which projects (1.1) onto a sequence of lower dimensional
Krylov subspaces to approximate x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} [5, 43]. The iteration should stop early to
overcome semiconvergence by some criteria such as L-curve, discrepancy principle, or
GCV [20, 24, 42]. For general-form regularization that M \not = I, if L is already avail-
able or the decomposition M =LTL can be obtained without too much computation,
there are many methods that deal with the regularizer \| Lx\| 22 instead of xTMx. For
an invertible L, we can use L as a preconditioner by the substitution y = Lx; see
[7, 8, 9] for preconditioned methods for Bayesian inverse problems. Otherwise, (1.4)
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2609

can be transformed to the standard form by using the A-weighted pseudoinverse L\dagger 
A;

see [14] or [25, section 2.3] for details. However, such transformations are often compu-
tationally unfeasible for large-scale matrices. For large-scale A and L, there are some
other iterative regularization methods, such as the modified truncated SVD method
[2, 31], joint bidiagonalization method [33, 34, 36, 41], methods based on randomized
generalized SVD (GSVD) of \{ A,L\} [55, 57, 58], methods based on generalized Krylov
subspace [32, 39, 46], and so on.

However, all of the above methods require L, which is not available in some scenar-
ios of applications. For example, for the Mat\'ern class of covariance functions describ-
ing the prior of x, which are also called Mat\'ern kernels [18, 49], the corresponding M
can be large scale and dense and thus computing L is extremely expensive. Another
class of frequently encountered examples arises in the lagged diffusivity fixed point
(LDFP) iteration method for nonlinear regularizers [11, 56], such as total variation
[50] or the Perona--Malik [45] regularizer used in image reconstruction and electrical
impedance tomography, where at each outer iteration of LDFP, a large-scale M is
constructed to linearize the nonlinear regularizer and a corresponding regularization
problem (1.4) needs to be solved. For these cases, we have to deal with xTMx instead
of \| Lx\| 22. If M is positive definite and M - 1 (i.e., the covariance matrix of the prior)
is already known, which is often the case for Mat\'ern kernels, the generalized Golub--
Kahan bidiagonalization method [13] is very efficient. For many cases that M - 1 is
unknown, a preconditioned LSQR method called MLSQR has been proposed where
a linear system Mx= y needs to be iteratively solved at each iteration [1], and it has
been used in the inner iteration of LDFP for many applications; see e.g. [4, 22, 29]. To
successfully apply MLSQR, a big challenge is that M is often noninvertible or nearly
singular. Even ifM is invertible, it is often the case thatM has a very large condition
number, which results in too many iterations being needed for solving Mx= y, thus
significantly reducing the efficiency of this algorithm. In some work such as [10, 23],
the researchers suggest replacing M by M\delta = M + \delta I to make M\delta positive definite
and well-conditioned. However, the proper value of \delta can only be set by numerical
trials, and there may be an accuracy sacrifice of the solution since the target problem
has been changed.

In this paper, we propose a new Krylov subspace based regularization method to
deal with the regularizer xTMx for positive semidefinite matrix M , and our method
does not need to replace M by a positive definite M\delta . To this end, we first design an
iterative process that generates a series of vectors spanning the solution subspaces,
where a proper preconditioner is implicitly constructed and exploited. This precon-
ditioner is proper in the sense that the generated solution subspaces can incorporate
prior properties of the desired solution encoded by the regularizer xTMx, resulting in
an iterative regularized solution of high quality. The main contributions of this paper
are listed as follows:

\bullet We design an iterative process similar to the Golub--Kahan bidiagonalization
(GKB) to generate a series of solution subspaces. This process is proven to be
mathematically equivalent to the standard GKB process of a preconditioned
A, where a right preconditioner is implicitly used, thereby we name it the
preconditioned GKB (pGKB) process.

\bullet By giving explicit expression of the solution subspace using the GSVD of
\{ A,L\} , we show that the above solution subspace can incorporate prior prop-
erties of the desired solution encoded by the regularizer. Based on the pGKB
process, we propose a subspace projection regularization algorithm via pro-
jecting the original problem onto the solution subspace at each iteration.
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A2610 HAIBO LI

\bullet We analyze the regularization property of the above proposed algorithm. We
prove that the iterative solution has a filtered GSVD expansion form, where
some dominant GSVD components are captured and others are filtered out.
This reveals that the algorithm exhibits typical semiconvergence behavior,
where the iteration number k plays the role of regularization parameter.

\bullet To overcome instabilities arising from semiconvergence, two pGKB based
hybrid regularization algorithms are proposed, where Tikhonov regularization
is applied to the projected small-scale problem at each iteration. To efficiently
determine regularization parameters for the projected small-scale problems,
the weighted GCV (WGCV) method and the ``secant update"" method based
on the discrepancy principle are adopted, respectively.

All these proposed iterative algorithms are tested on both small-scale and large-scale
linear inverse problems to show excellent effectiveness and performance.

The paper is organized as follows. In section 2, we review basic properties of
the general-form Tikhonov regularization using the GSVD of \{ A,L\} . In section 3, we
design the pGKB process and propose the pGKB based subspace projection regular-
ization (pGKB SPR) algorithm. In section 4, we analyze the regularization effect of
pGKB SPR and reveal the semiconvergence behavior of it. To overcome instabilities
caused by semiconvergence, in section 5 we propose two pGKB based hybrid regular-
ization algorithms. In section 6, we choose several small-scale and large-scale linear
inverse problems to test the proposed algorithms. Finally, we give some concluding
remarks in section 7.

Throughout the paper, we denote by I and 0 the identity matrix and zero
matrix/vector, respectively, with orders clear from the context, and denote by span\{ \cdot \} 
the subspace spanned by a group of vectors or columns of a matrix.

2. General-form Tikhonov regularization and GSVD. Although in this
paper, the square root decomposition M =LTL is not needed, it is convenient to use
L to make some analysis. Since M is positive semidefinite, we write L in the compact
form, i.e., L \in \BbbR p\times n with p \leq n and rank(L) = p. Taking the gradient of x in (1.4)
leads to

(ATA+ \lambda M)x=AT b.(2.1)

Denote by \scrN (\cdot ) the null space of a matrix. In order to ensure that there exists a
unique regularized solution for any \lambda > 0, the sufficient and necessary condition is

rank(ATA+ \lambda M) = n \Leftarrow \Rightarrow \scrN (A)\cap \scrN (M) = \{ 0\} ,(2.2)

and the solution is

x\lambda = (ATA+ \lambda M) - 1AT b.(2.3)

Note that \scrN (A) \cap \scrN (M) = \{ 0\} \leftrightarrow \scrN (A) \cap \scrN (L) = \{ 0\} since \scrN (L) = \scrN (M). The
above solution can be expressed in a more convenient form using the GSVD of \{ A,L\} 
[54], which is given by

A=UADAZ
 - 1, L=ULDLZ

 - 1,(2.4)

where UA \in \BbbR m\times m and UL \in \BbbR p\times p are orthogonal, Z \in \BbbR n\times n is invertible, and

DA =

⎛
⎝

rI

ΣA q
0 m− r − q

r q n− r − q

⎞
⎠ , DL =

⎛
⎝
0 p+ r − n

ΣL q
I n− r − q

r q n− r − q

⎞
⎠
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2611

with diagonal matrices \Sigma A =diag(\sigma r+1, . . . , \sigma r+q) and \Sigma L =diag(\rho r+1, . . . , \rho r+q). The
identity \Sigma T

A\Sigma A+\Sigma T
L\Sigma L = I holds. If we arrange \sigma i and \rho i in decreasing order of values

such that

1>\sigma r+1 \geq \sigma r+2 \geq \cdot \cdot \cdot \geq \sigma r+q > 0, 0<\rho r+1 \leq \rho r+2 \leq \cdot \cdot \cdot \leq \rho r+q < 1,(2.5)

then \sigma 2
i +\rho 

2
i = 1, and \gamma i := \sigma i/\rho i is called the ith generalized singular value of \{ A,L\} .

We define \gamma i = \infty for 1 \leq i \leq r and \gamma i = 0 for r + q + 1 \leq i \leq n. Note that
dim(\scrN (A)) = n - r - q and dim(\scrN (L)) = r, thereby q= n - dim(\scrN (A)\oplus \scrN (L)).

Denote the columns of UA and Z by \{ uA,i\} mi=1 and \{ zi\} ni=1, respectively. The
discrete Picard condition (DPC) plays a central role in the regularization of discrete
ill-posed problems, which says that the Fourier coefficients | uTA,ib\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}| on average decay
to zero faster than the corresponding \gamma i, where b\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} = Ax\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}. Any regularization is
based on an underlying requirement that the DPC is satisfied, only under which can
one compute a regularized solution with some accuracy [25, section 4.5]. Using the
decomposition (2.4), the Tikhonov solution x\lambda can be written as

x\lambda =

r\sum 

i=1

(uTA,ib)zi +

r+q\sum 

i=r+1

\gamma 2i
\gamma 2i + \lambda 

uTA,ib

\sigma i
zi.(2.6)

The factors fi := \gamma 2i /(\gamma 
2
i + \lambda ) can be viewed as filters applied to noisy coefficients

uTA,ib. A proper value of \lambda should satisfy that fi \approx 1 for small i and fi \approx 0 for
large i, and thereby dampen noisy components appearing in the regularized solution.
Although there are several methods for choosing regularization parameter, one big
challenge is that in order to find a suitable \lambda , many different values of \lambda must be
tried to solve (1.4) in advance or the GSVD of \{ A,L\} should be computed, which is
computationally expensive for large-scale problems.

For large-scale problems, an alternative is the subspace projection regularization
method [15, section 3.3], which seeks to compute a series of xk as the solution to

min
x\in \scrX k

xTMx, \scrX k = \{ x : min
x\in \scrS k

\| Ax - b\| 2\} ,(2.7)

where \scrS k is the subspace of \BbbR n of dimension k = 1,2, . . . and the iteration proceeds
until an early stopping criterion is satisfied to overcome underregularizing caused by
semiconvergence.

Remark 2.1. Under the condition (2.2), the subspace projected problem (2.7) has
a unique solution for k = 1, . . . , n. Let Sk be an n \times k column orthonormal matrix
whose columns span \scrS k. By writing any x \in \scrS k as x = Sky, we get the solution
to (2.7) as xk = Skyk, where yk is the solution to minx\in \scrY k

\| LSky\| 2, \scrY k = \{ y :
miny\in \BbbR k \| ASky - b\| 2\} . By [14, Theorem 2.1], there exists a unique solution yk if and
only if \scrN (ASk) \cap \scrN (LSk) = \{ 0\} , which is equivalent to rank((AL )Sk) = n. Since Sk

has full column rank, it means that rank((AL )) = n\leftrightarrow \scrN (A)\cap \scrN (L) = \{ 0\} . Thus (2.2)
is the sufficient and necessary condition for (2.7) having a unique solution.

We call \scrS k the solution subspace, which should be constructed elaborately so
that the prior information about the desired solution is incorporated in \scrS k. For
the general-form regularizer, from the expression (2.6) we know that the most ideal
choice is \scrS k = span\{ Zk\} , where Zk = (z1, . . . , zk). This leads to the truncated GSVD
(TGSVD) solution

x\mathrm{T}\mathrm{G}\mathrm{S}\mathrm{V}\mathrm{D}
k =

k\sum 

i=1

uTA,ib

\sigma i
zi,(2.8)
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A2612 HAIBO LI

where we let \sigma i = 1 for 1 \leq i \leq r [25, section 3.2]. By truncating the GSVD at
a proper k, the obtained solution can capture the main information corresponding
to dominant right generalized singular vectors while suppressing noise corresponding
to others. For large-scale problems that the GSVD is computationally expensive,
a legitimate subspace projection regularization method should construct a series of
solution subspaces that can approximate well the dominant right generalized singular
vectors zi as the iterations progress. To this end, we first gain an insight into the
relation between zi and the matrix pair \{ A,M\} .

Proposition 2.1. Let G = ATA+ \alpha M with any \alpha > 0. The generalized eigen-
values of ATAz = \xi Gz in decreasing order are

1, . . . ,1\underbrace{}  \underbrace{}  
r

, \gamma 2r+1/(\gamma 
2
r+1 + \alpha ), . . . , \gamma 2r+q/(\gamma 

2
r+q + \alpha )

\underbrace{}  \underbrace{}  
q

,0, . . . ,0\underbrace{}  \underbrace{}  
n - r - q

,(2.9)

and the corresponding generalized eigenvectors are \{ zi\} ni=1.

Proof. Observing from (2.4) that

ATA=Z - TDT
ADAZ

 - 1, M =LTL=Z - TDT
LDLZ

 - 1,

where DT
ADA and DT

LDL are diagonal matrices of the following form:

DT
ADA =diag(1, . . . ,1\underbrace{}  \underbrace{}  

r

, \sigma 2
r+1, . . . , \sigma 

2
r+q\underbrace{}  \underbrace{}  

q

,0, . . . ,0\underbrace{}  \underbrace{}  
n - r - q

),

DT
LDL =diag(0, . . . ,0\underbrace{}  \underbrace{}  

r

, \rho 2r+1, . . . , \rho 
2
r+q\underbrace{}  \underbrace{}  

q

,1, . . . ,1\underbrace{}  \underbrace{}  
n - r - q

),

we have G=ATA+ \alpha M =Z - TD\alpha Z
 - 1 with

D\alpha =diag(1, . . . ,1\underbrace{}  \underbrace{}  
r

, \sigma 2
r+1 + \alpha \rho 2r+1, . . . , \sigma 

2
r+q + \alpha \rho 2r+q\underbrace{}  \underbrace{}  

q

, \alpha , . . . , \alpha \underbrace{}  \underbrace{}  
n - r - q

).(2.10)

Therefore, the \{ zi\} ni=1 are generalized eigenvectors of ATAz = \xi Gz with generalized
eigenvalues being the diagonals of DT

ADAD
 - 1
\alpha , which are

1, . . . ,1\underbrace{}  \underbrace{}  
r

, \sigma 2
r+1/(\sigma 

2
r+1 + \alpha \rho 2r+1), . . . , \sigma 

2
r+q/(\sigma 

2
r+q + \alpha \rho 2r+q)\underbrace{}  \underbrace{}  

q

,0, . . . ,0\underbrace{}  \underbrace{}  
n - r - q

= 1, . . . ,1\underbrace{}  \underbrace{}  
r

, \gamma 2r+1/(\gamma 
2
r+1 + \alpha ), . . . , \gamma 2r+q/(\gamma 

2
r+q + \alpha )

\underbrace{}  \underbrace{}  
q

,0, . . . ,0\underbrace{}  \underbrace{}  
n - r - q

.

Note that \gamma 2i /(\gamma 
2
i + \alpha ) increases with respect to \gamma i. The desired result is obtained.

We remark that \alpha can be any positive number; more discussions about setting a
good value of \alpha can be found at the end of section 3. Note that G is positive definite.
Inspired by Proposition 2.1, we consider constructing solution spaces in the G-inner
product space, where the G-inner product in \BbbR n is defined by \langle x,x\prime \rangle G = xTGx\prime for any
x,x\prime \in \BbbR n. We hope those dominant zi can be well captured by the solution subspaces
so that the iterative solution will incorporate main features described by those zi.

3. pGKB and subspace projection regularization algorithm. For
standard-form regularization, the most popular LSQR algorithm is based upon the
GKB that constructs solution subspaces in the standard inner product space \BbbR n. In
order to construct proper solution subspaces for regularizer xTMx, we consider the
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2613

GKB process using the G-inner product. Note that the standard GKB process needs
A and its transpose AT . For the G-inner product case, we need the matrix-form ex-
pression of the adjoint of a linear operator between the G- and standard inner product
Hilbert spaces (\BbbR n, \langle \cdot , \cdot \rangle G) and (\BbbR m, \langle \cdot , \cdot \rangle 2).

Lemma 3.1. For the linear operator A : (\BbbR n, \langle \cdot , \cdot \rangle G) \rightarrow (\BbbR m, \langle \cdot , \cdot \rangle 2) between the
two Hilbert spaces, define A\ast G : (\BbbR m, \langle \cdot , \cdot \rangle 2)\rightarrow (\BbbR n, \langle \cdot , \cdot \rangle G), which is the adjoint of A,
by \langle Ax,y\rangle 2 = \langle x,A\ast Gy\rangle G for any x \in \BbbR n and y \in \BbbR m. Then the matrix form of A\ast G

is

A\ast G =G - 1AT .(3.1)

Proof. First note that A\ast G is well-defined, which can be found in any functional
analysis textbook. Since \langle Ax,y\rangle 2 = xTAT y and \langle x,A\ast Gy\rangle G = xTGA\ast Gy, letting
xTAT y = xTGA\ast Gy for any vectors x and y, it must hold that AT = GA\ast G , and we
immediately obtain (3.1).

For the standard inner product in \BbbR n, i.e., G = I, we have A\ast G = AT , which
is just the standard matrix transpose. Now we seek to construct solution subspaces
\scrS k \subseteq (\BbbR n, \langle \cdot , \cdot \rangle G) to iteratively solve minx\in \scrS k

\| Ax - b\| 2. With the help of Lemma 3.1,
the construction of \scrS k can be done by the GKB process applied to A and b between
the two Hilbert spaces (\BbbR n, \langle \cdot , \cdot \rangle G) and (\BbbR m, \langle \cdot , \cdot \rangle 2). This process can be written as
the following recursive relations:

\beta 1u1 = b, \alpha 1w1 =A\ast Gu1,(3.2)

\beta i+1ui+1 =Awi  - \alpha iui,(3.3)

\alpha i+1wi+1 =A\ast Gui+1  - \beta i+1wi,(3.4)

where ui \in (\BbbR m, \langle \cdot , \cdot \rangle 2), wi \in (\BbbR n, \langle \cdot , \cdot \rangle G), and \alpha i, \beta i should be computed such that
\| ui\| 2 = \| wi\| G = 1. Thus we have u1 = b/\beta 1 with \beta 1 = \| b\| 2. Using the matrix-form
expression of A\ast G we have

\alpha i+1wi+1 =G - 1ATui+1  - \beta i+1wi(3.5)

with \alpha i+1 = \| G - 1ATui+1  - \beta i+1wi\| G. Note that for i= 0 we define w0 = 0.
Based on the coupled recursive relations (3.3) and (3.5), we get the pGKB process,

which is summarized in Algorithm 3.1. The usage of the name ``preconditioned"" will
be explained later.

After k steps, the pGKB generates two groups of vectors \{ ui\} k+1
i=1 and \{ wi\} k+1

i=1 .
Define two matrices as Uk = (u1, . . . , uk) and Wk = (w1, . . . ,wk). Then by (3.2), (3.3),
and (3.5), we have the matrix-form recursive relations

\beta 1Uk+1e1 = b,(3.6)

AWk =Uk+1Bk,(3.7)

G - 1ATUk+1 =WkB
T
k + \alpha k+1wk+1e

T
k+1,(3.8)

where

Bk =

\left( 
       

\alpha 1

\beta 2 \alpha 2

\beta 3
. . .

. . . \alpha k

\beta k+1

\right) 
       

\in \BbbR (k+1)\times k(3.9)
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A2614 HAIBO LI

Algorithm 3.1. pGKB.
Input: A\in \BbbR m\times n, b\in \BbbR m, M \in \BbbR n\times n, \alpha > 0
1: G=ATA+ \alpha M
2: \beta 1 = \| b\| 2, u1 = b/\beta 1
3: Compute s by solving Gs=ATu1
4: \alpha 1 = (sTGs)1/2, w1 = s/\alpha 1

5: for i= 1,2, . . . , k, do
6: r=Awi  - \alpha iui
7: \beta i+1 = \| r\| 2, ui+1 = r/\beta i+1

8: Compute s by solving Gs=ATui+1

9: s= s - \beta i+1wi

10: \alpha i+1 = (sTGs)1/2, wi+1 = s/\alpha i+1

11: end for

Output: \{ \alpha i, \beta i\} k+1
i+1 , \{ ui,wi\} k+1

i+1

and e1 and ek+1 are the first and (k + 1)th columns of the identity matrix of order
k+1, respectively. In fact, Uk+1 is a 2-orthonormal matrix andWk is a G-orthonormal
matrix, which will be proved in the following lemma. Thus by (3.7) we have Bk =
UT
k+1AWk, which implies that Bk is a projection of A onto two subspaces, span\{ Uk+1\} 

and span\{ Wk\} . Now we analyze the structure of these two subspaces.

Lemma 3.2. The group of vectors \{ ui\} ki=1 is a 2-orthonormal basis of the Krylov
subspace

\scrK k(AG
 - 1AT , b) = span\{ (AG - 1AT )ib\} k - 1

i=0 ,(3.10)

and \{ wi\} ki=1 is a G-orthonormal basis of the Krylov subspace

\scrK k(G
 - 1ATA,G - 1AT b) = span\{ (G - 1ATA)iG - 1AT b\} k - 1

i=0 .(3.11)

Proof. In order to get more insights into the pGKB process, we give two proofs.
The first proof. This proof exploits the property of the GKB process of A between

the two Hilbert spaces (\BbbR n, \langle \cdot , \cdot \rangle G) and (\BbbR m, \langle \cdot , \cdot \rangle 2), which states that \{ ui\} ki=1 and
\{ zi\} ki=1 are the 2-orthonormal basis and G-orthonormal basis of the Krylov subspaces
\scrK k(AA

\ast G , b) and\scrK k(A
\ast GA,A\ast Gb), respectively. Note thatAA\ast G =AG - 1AT , A\ast GA=

G - 1ATA, and A\ast Gb=G - 1AT b. The proof is completed.
The second proof. Suppose the Cholesky factorization of G is G = RTR. Let

\=A=AR - 1, vi =Rwi, and Vk = (v1, . . . , vk). Then by (3.7) and (3.8) we have

\=AVk =Uk+1Bk, \=ATUk+1 = VkB
T
k + \alpha k+1vk+1e

T
k+1.(3.12)

Since \| wi\| G = 1, we have \| vi\| 2 = (wiR
TRwi)

1/2 = (wT
i Gwi)

1/2 = 1. Combining rela-
tions (3.6) and (3.12) and using \| ui\| 2 = \| vi\| 2, we know that \{ ui\} ki=1 and \{ vi\} ki=1 are
the Lanczos vectors generated by the GKB process of \=A with starting vector b under
the standard inner product. Therefore, \{ ui\} ki=1 and \{ vi\} ki=1 are 2-orthonormal bases
of Krylov subspaces \scrK k( \=A \=AT , b) = \scrK k(AG

 - 1AT , b) and \scrK k( \=A
T \=A, \=AT b) = \scrK k(R

 - T

ATAR - 1,R - TAT b), respectively. Using wi = R - 1vi, we obtain that \{ wi\} ki=1 is a
G-orthonormal basis of the subspace

R - 1\scrK k( \=A
T \=A, \=AT b) =R - 1span\{ (R - TATAR - 1)iR - TAT b\} k - 1

i=0 .
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2615

Note that
R - 1(R - TATAR - 1)iR - TAT b=R - 1R - TAT (AR - 1R - TAT )ib

=G - 1AT (AG - 1AT )ib

= (G - 1ATA)iG - 1AT b.

The proof is completed.

The second proof explains why we use the name ``preconditioned"" for Algorithm
3.1. The pGKB is essentially the standard GKB process of the preconditioned matrix
AR - 1 with starting vector b, where R - 1 is the right preconditioner. It reduces AR - 1

to a bidiagonal form Bk while generating two orthonormal matrices Uk+1 and Vk+1,
and the desired vectors wi are obtained by wi =R - 1vi. In Algorithm 3.1, the Cholesky
factor R and R - 1 need not be explicitly computed to get wi, while instead a linear
system Gs=ATui must be solved.

Based on the pGKB process, we propose the subspace projection regularization
algorithm by letting \scrS k = span\{ Wk\} and solving (2.7). Suppose the k-step pGKB
does not terminate, that is, \alpha i, \beta i \not = 0 for 1 \leq i \leq k. Then Bk has full column rank
and, thus,

min
x=Wky

\| Ax - b\| 2 = min
y\in \BbbR k

\| AWky - Uk+1\beta 1e1\| 2

= min
y\in \BbbR k

\| Uk+1Bky - Uk+1\beta 1e1\| 2

= min
y\in \BbbR k

\| Bky - \beta 1e1\| 2,

which has a unique solution. By writting x =Wky with y \in \BbbR k for any x \in \scrS k, the
problem (2.7) with \scrS k = span\{ Wk\} becomes

min
y\in \scrY k

yWT
k MWky, \scrY k =

\biggl\{ 
y : min

y\in \BbbR k
\| Bky - \beta 1e1\| 2

\biggr\} 
.

Since \scrY k has only one element, the solution to (2.7) is

xk =Wkyk, yk = argmin
y\in \BbbR k

\| Bky - \beta 1e1\| 2(3.13)

for k = 1,2 . . . . This is a very similar procedure to the LSQR solver for least squares
problems. In practical computations, there is a recursive formula to update xk+1 from
xk without solving the projected problem miny \| Bky - \beta 1e1\| 2 at each iteration. This
will be discussed later. Now we investigate the structure of solution subspace \scrS k.

Proposition 3.1. Let the solution subspace be \scrS k = span\{ Wk\} . Then

\scrS k = span\{ Z(D - 1
\alpha DT

ADA)
iD - 1

\alpha DT
AU

T
A b\} k - 1

i=0 .(3.14)

Proof. By Lemma 3.2 we have \scrS k = span\{ (G - 1ATA)iG - 1AT b\} k - 1
i=0 . Using the

GSVD expression (2.4) and Proposition 2.1, we have

G - 1AT b=ZD - 1
\alpha ZTZ - TDT

AU
T
A b=ZD - 1

\alpha DT
AU

T
A b,

G - 1ATA=ZD - 1
\alpha ZTZ - TDT

ADAZ
 - 1 =ZD - 1

\alpha DT
ADAZ

 - 1.

Therefore, we obtain

(G - 1ATA)iG - 1AT b= (ZD - 1
\alpha DT

ADAZ
 - 1)iZD - 1

\alpha DT
AU

T
A b

=Z(D - 1
\alpha DT

ADA)
iZ - 1ZD - 1

\alpha DT
AU

T
A b

=Z(D - 1
\alpha DT

ADA)
iD - 1

\alpha DT
AU

T
A b

for i= 0,1, . . . , k - 1, which is the desired result.
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A2616 HAIBO LI

Algorithm 3.2. Updating procedure.
1: Let x0 = 0, p1 =w1, \=\phi 1 = \beta 1, \=\rho 1 = \alpha 1

2: for i= 1,2, . . . , k, do
3: \rho i = (\=\rho 2i + \beta 2

i+1)
1/2

4: ci = \=\rho i/\rho i, si = \beta i+1/\rho i
5: \theta i+1 = si\alpha i+1, \=\rho i+1 = - ci\alpha i+1

6: \phi i = ci \=\phi i, \=\phi i+1 = si \=\phi i
7: xi = xi - 1 + (\phi i/\rho i)pi
8: pi+1 =wi+1  - (\theta i+1/\rho i)pi
9: end for

As will be shown in section 4, the subspace \scrS k can be used to approximate domi-
nant vectors among \{ zi\} ni=1. Hence we can expect that the iterative regularized solu-
tion can include prior properties about the desired solution encoded by the regularizer
xTMx. We emphasize that the good property of \scrS k stems from implicitly utilizing
the appropriate preconditioner R for constructing Wk. Here the term preconditioned
is not aimed at accelerating the convergence of iterative solvers but rather at forcing
some specific regularity into the associated solution subspace. In [21], the authors
proposed a preconditioned conjugate gradient algorithm for discrete linear inverse
problems with block Toeplitz coefficient matrices, which shares a similar spirit. In
fact, the regularized solution xk has a filtered GSVD expansion form, which sheds
light on the regularization effect of the proposed algorithm. We will analyze it in the
next section.

Now we discuss how to efficiently update solutions and stop the iteration early to
get a good final regularized solution. By applying Givens QR factorization to (3.13),
the updating procedure for xk can be derived similarly to that for LSQR; see [44] for
details. Starting from x0 = 0, xi is computed recursively by the following algorithm.

The identity

\=\phi k+1 = \| Bkyk  - \beta 1e1\| 2 = \| Axk  - b\| 2(3.15)

holds, similarly to that for LSQR [44]. Thus the residual norm can be updated very
quickly by Algorithm 3.2 without explicitly computing \| Axk  - b\| 2. Note that \=\phi k+1

decreases monotonically since xk minimizes \| Ax  - b\| 2 in the gradually expanding
subspace span\{ Wk\} .

In order to estimate the optimal early stopping iteration, if we have an accurate
estimate of \| e\| , the discrepancy principle (DP) is a common choice. It states that we
should stop iteration at the first k satisfying

\=\phi k+1 = \| Axk  - b\| 2 \leq \tau \| e\| 2,(3.16)

where \tau > 1 slightly. The DP method usually suffers from underestimating the optimal
k and thus the solution is overregularized. Another approach is the L-curve criterion,
which does not need \| e\| in advance. We plot the L-curve

\Bigl( 
log \| Axk  - b\| 2, log(xTkMxk)

1/2
\Bigr) 
=
\Bigl( 
log \=\phi k+1, log(x

T
kMxk)

1/2
\Bigr) 

(3.17)

and choose the k corresponding to the corner of it as a good estimate of the optimal
early stopping iteration. We remark that an underlying assumption for the use of the
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2617

Algorithm 3.3. pGKB SPR.
Input: A, M , \alpha > 0, b, x0 = 0  \triangleleft require \tau \| e\| 2 for DP
1: for k= 1,2, . . . , do
2: Compute uk, wk, \alpha k, \beta k by pGKB

3: Compute \rho k, \theta k+1, \=\rho k+1, \phi k, \=\phi k+1 by updating procedure

4: Compute xk, pk+1 by updating procedure

5: if Early stopping criterion is satisfied then  \triangleleft DP or L-curve
6: Denote the estimated iteration by k1, terminate iteration at k1
7: end if
8: end for
Output: Final regularized solution xk1

L-curve criterion is that \| Axk  - b\| 2 and (xTkMxk)
1/2 are monotonically decreasing

and increasing with respect to k, respectively. Although the latter cannot be proved
rigorously, we find experimentally that the L-curve criterion almost always works well.

The whole process of the pGKB SPR algorithm is summarized in Algorithm 3.3.

At the end of this section, we discuss several implementation details for the pGKB
process, which are important for increasing computational efficiency, especially for
large-scale problems. There are three main issues that need to be considered.

\bullet The pGKB process has the structure of nested inner-out iteration, where at
each outer iteration, a linear system Gs=ATui needs to be solved. Although
for some cases where A and M have special structures, this system can be
solved via a direct matrix factorization, for most large-scale problems, how-
ever, the only advisable approach is using an iterative solver, such as the con-
jugate gradient (CG) or minimum residual algorithm. Meanwhile, The value
of \alpha > 0 should be set such that the condition number of G=ATA+ \alpha M is
small to make the iterative solver converge quickly. The default value \alpha = 1
is often fruitful, and we also try other moderate values \alpha \in [0.001,100] in the
numerical experiments.

\bullet For large-scale problems, iteratively solving Gs = ATui may still be costly,
especially when the solution accuracy is high. Since there is a limit to the
accuracy of the best regularized solution, which is affected by the noise level
and other factors, we can expect that the accuracy of the final regularized
solution will not be affected even if inner iterations are not computed exactly.
When the noise level \varepsilon = \| e\| 2/\| b\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2 is not extremely small, we numerically
find that the solution accuracy of Gs=ATui can be relaxed considerably (the
stopping tolerance for the MATLAB function pcg.m can be set larger than the
default value 1e-6), which improves the overall efficiency of the algorithm.

\bullet Due to the computational errors and rounding errors coming from inaccu-
rate inner iterations and finite precision arithmetic, respectively, the 2- and
G-orthogonality of computed ui and wi gradually lose, which leads to a de-
lay of convergence of iterative solutions. In our implementation, we do full
reorthogonalization on ui and wi based on the modified Gram--Schmidt or-
thogonalization to maintain their numerical 2- and G-orthogonality to ensure
the normal convergence behavior.

In this paper, the above issues are only investigated numerically. We will make a
theoretical analysis of the required accuracy of inner iterations as well as efficient
reorthogonalization strategies in the forthcoming work.
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A2618 HAIBO LI

4. Regularization property of pGKB SPR. The dominant GSVD compo-
nents of \{ A,L\} can be approximated well by the solution subspaces generated by
pGKB as the iteration proceeds. This is a desirable property for a regularization
method to ensure that the obtained solution captures the main information corre-
sponding to dominant right generalized singular vectors while filtering out noise cor-
responding to others.

Lemma 4.1. Suppose the singular values of Bk are \theta 
(k)
1 > \theta 

(k)
2 > \cdot \cdot \cdot > \theta 

(k)
k > 0.

Then (\theta 
(k)
i )2 converges to one of the generalized eigenvalues of ATAz = \xi Gz as k

increases.

Proof. Since \alpha 1w1 =G - 1ATu1 and \beta 1u1 = b, we have

\alpha 1\beta 1w1 =G - 1AT b.(4.1)

By (3.7) and (3.8), we have

ATAWk =ATUk+1Bk

= (GWkB
T
k + \alpha k+1Gwk+1e

T
k+1)Bk

=GWk(B
T
k Bk) + \alpha k+1\beta k+1Gwk+1e

T
k+1.(4.2)

Define Tk as

Tk =BT
k Bk =

\left( 
     

\alpha 2
1 + \beta 2

2 \alpha 2\beta 2

\alpha 2\beta 2 \alpha 2
2 + \beta 2

3

. . .

. . .
. . . \alpha k\beta k
\alpha k\beta k \alpha 2

k + \beta 2
k+1

\right) 
     
,

which is a symmetric tridiagonal matrix. Combining (4.1) and (4.2) we find that Tk
is the Ritz--Galerkin projection of ATA onto subspace span\{ Wk\} that is generated
by the Lanczos tridiagonalization process of ATA with starting vector G - 1AT b under
the G-inner product [3, section 5.5].

By the convergence theory of Lanczos tridiagonalization for generalized eigenvalue
problem of matrix pair \{ ATA,G\} , the eigenvalues of Tk will converge to the general-
ized eigenvalues of ATAz = \xi Gz as k increases; see [30] and [19, section 10.1.5]. Note

that the ith eigenvalue of Tk is (\theta 
(k)
i )2. The proof is completed.

The convergence behavior of \theta 
(k)
i is governed by the same Kaniel--Paige--Saad

theory as in the standard case for a single matrix; see e.g.[19, section 10.1.5]. It states
that we get a faster convergence for those generalized eigenvalues that are at the two
ends of the spectrum and well separated. For simplicity of expression, we use \xi i to
denote the ith largest generalized eigenvalue of ATAz = \xi Gz. By Proposition 2.1,
it means \xi 1 = \cdot \cdot \cdot = \xi r = 1, \xi i = \gamma 2i /(\gamma 

2
i + \alpha ) for r + 1 \leq i \leq r + q and \xi r+q+1 =

\cdot \cdot \cdot = \xi n = 0. Note that the \xi i are decreasing and clustered at zero. Thus we can get
a faster convergence of (\theta 

(k)
i )2 to some largest generalized eigenvalues \xi i, while the

corresponding generalized eigenvectors zi are also preferentially approximated by Ritz
vectors extracted from span\{ Wk\} . Since the regularized solution lies in span\{ Wk\} , this
ensures that the dominant information encoded by some leading zi can be captured
by pGKB SPR while the noisy components are filtered out. To be more precise, we
have the following result.
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2619

Theorem 4.1. Suppose A has full column rank, which means r + q = n in the
GSVD of \{ A,L\} . Let \sigma i = 1 for 1\leq i\leq r. Then the kth regularized solution obtained
by pGKB SPR can be written as

xk =

n\sum 

i=1

f
(k)
i

uTA,ib

\sigma i
zi(4.3)

with filter factors

f
(k)
i = 1 - 

k\prod 

j=1

(\theta 
(k)
j )2  - \xi i

(\theta 
(k)
j )2

, i= 1, . . . , n.(4.4)

Proof. Note from (2.4) that rank(A) = r + q, which implies r + q = n if A has
full column rank. In this case \sigma i > 0 for all 1\leq i\leq n. Following the second proof of
Lemma 3.2, xk is the solution of

min
x\in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ Wk\} 

\| Ax - b\| 2 = min
Rx\in R\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ Wk\} 

\| AR - 1Rx - b\| 2 = min
\=x\in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ Vk\} 
x=R - 1\=x

\| \=A\=x - b\| 2,

which means that xk = R - 1\=xk with \=xk = argmin\=x\in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ Vk\} \| \=A\=x - b\| 2. Since \{ vi\} ki=1

are the right Lanczos vectors generated by the standard GKB process of \=A with
starting b, we know \=xk is the kth CGLS solution applied to the normal equation
\=AT \=A = \=AT b, where the initial solution is set to 0 [25, section 6.3]. Since \=A = AR - 1

has full column rank, using [53, Property 2.8], the expression of \=xk is given by

\=xk = (I  - \scrR k( \=A
T \=A))( \=AT \=A) - 1 \=AT b,(4.5)

where \scrR k is the so-called Ritz polynomial

\scrR k(\theta ) =

k\prod 

j=1

(\theta 
(k)
j )2  - \theta 

(\theta 
(k)
j )2

.

From the proof of Proposition 2.1 we have ZTGZ =D\alpha . Let \=Z =ZD
 - 1/2
\alpha . Then \=Z is a

G-orthonormal matrix, and \=A= UADAZ
 - 1R - 1 = UA(DAD

 - 1/2
\alpha )(R \=Z) - 1. Therefore,

we have \=AT \=A= (R \=Z) - T (DT
ADAD

 - 1
\alpha )(R \=Z) - 1. Using the fact that

(R \=Z) - 1(R \=Z) - T = [(R \=Z)T (R \=Z)] - 1 = ( \=ZTG \=Z) - 1 = I,

we obtain

I  - \scrR k( \=A
T \=A) = (R \=Z) - T (I  - \scrR k(D

T
ADAD

 - 1
\alpha ))(R \=Z) - 1 = (R \=Z) - T\Lambda (R \=Z) - 1,

where \Lambda = diag(\{ 1 - \scrR k(\xi i)\} ni=1). Substituting the expression of I  - \scrR k( \=A
T \=A) into

(4.5), we get

\=xk = (R \=Z) - T\Lambda D1/2
\alpha (DT

ADA)
 - 1DT

AU
T
A b

=R \=Z\Lambda D1/2
\alpha (DT

ADA)
 - 1DT

AU
T
A b

=RZD - 1/2
\alpha \Lambda D1/2

\alpha (DT
ADA)

 - 1DT
AU

T
A b

=RZ\Lambda (DT
ADA)

 - 1DT
AU

T
A b.

Therefore, we finally obtain

xk =R - 1\=xk =

n\sum 

i=1

(1 - \scrR k(\xi i))
uTA,ib

\sigma i
zi,

and the filter factors are f
(k)
i = 1 - \scrR k(\xi i) for i= 1, . . . , n.
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A2620 HAIBO LI

This theorem shows that xk has a filtered GSVD expansion form. If the k Ritz
values \{ (\theta (k)j )2\} kj=1 approximate the first k generalized singular values \{ \xi i\} ki=1 in nat-

ural order, i.e., (\theta 
(k)
j )2 \approx \xi i for i = 1, . . . , k, from (4.4) we can justify that f

(k)
i \approx 1

for i = 1, . . . , k and f
(k)
i decreases monotonically to zero for i = k + 1, . . . , n. This

means that xk mainly contains the first k dominant GSVD components and filters
out the others. Therefore, the pGKB SPR algorithm exhibits the typical semicon-
vergence behavior, which means that \| xk  - x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2 first decreases, then as k becomes
fairly large, xk will diverge from x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} since too many noisy components are included.
The transition point is called the semiconvergence point, at which we get the best
regularized solution.

Finally, we give a connection of the pGKB based regularization method with
another common regularization method, which is based on the joint bidiagonalization
of \{ A,L\} .

Theorem 4.2. If \alpha = 1, the solution subspaces generated by the pGKB process of
\{ A,M\} are the same as those generated by the joint bidiagonalization of \{ A,L\} .

Proof. Note that \sigma 2
i + \rho 2i = 1 for r + 1 \leq i \leq r + q. From (2.10) we have D\alpha = I

when \alpha = 1. By Proposition 3.1, we have

\scrS k = span\{ Z(DT
ADA)

iDT
AU

T
A b\} k - 1

i=0 .

By checking the solution subspace given in [36], we find that \scrS k is just the subspace
generated by the joint bidiagonalization of \{ A,L\} .

The joint bidiagonalization based regularization method is effective when L is
available. If L is not known or the square root decomposition of M is costly, the
pGKB based regularization method is a very good alternative.

5. Hybrid regularization method based on pGKB. Although the DP or
L-curve criterion can be used to stop iteration early to avoid semiconvergence, the
corresponding solution is still often over- or under-regularized since the relative error
is very sensitive near the semiconvergence point. The hybrid regularization method is
another type of iterative method that can stabilize the convergence behavior, which
usually applies Tikhonov regularization to the projected problem at each iteration;
see, e.g., [12, 37, 47].

By writting x = Wky with y \in \BbbR k for any x \in \scrS k, the Tikhonov regularization
problem (1.4) projected onto \scrS k = span\{ Wk\} becomes

min
x=Wky

\{ \| Ax - b\| 22 + \lambda xTMx\} = min
y\in \BbbR k

\{ \| Bky - \beta 1e1\| 22 + \lambda yT (WT
k MWk)y\} .

Note that WT
k MWk \in \BbbR k\times k. First we compute the square root decomposition

WT
k MWk = CT

k Ck, which can be done directly by the eigenvalue decomposition of
WT

k WZk for small k. The hybrid method solves the regularized projected problem

y\mu k

k = argmin
y\in \BbbR k

\{ \| Bky - \beta 1e1\| 2 + \mu k\| Cky\| 2\} ,(5.1)

and let x\mu k

k =Wky
\mu k

k for k= 1,2, . . . , where \mu k should be determined at each iteration.
Let \lambda \mathrm{o}\mathrm{p}\mathrm{t} and \mu \mathrm{o}\mathrm{p}\mathrm{t}

k denote the optimal regularization parameters of the original problem
and kth projected problem, respectively. The main idea of the hybrid method is that
as k gradually increases, the projected problem approximates the original problem.
Then for a large enough k, we can hope that \mu \mathrm{o}\mathrm{p}\mathrm{t}

k converges to \lambda \mathrm{o}\mathrm{p}\mathrm{t} and thus the
corresponding regularized solution will also converge [37, 47].
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2621

To determine \mu \mathrm{o}\mathrm{p}\mathrm{t}
k at each iteration, we adapt the WGCV, which was first pro-

posed in [12] for standard-form Tikhonov regularization. From (5.1) we have y\mu k =

(BT
k Bk + \mu CT

k Ck)
 - 1BT

k \beta 1e1 :=B\dagger 
k,\mu \beta 1e1. At the kth step, the WGCV method finds

the minimizer of the following function with the weight parameter \omega k:

G(\omega k, \mu ) =
\| Bky

\mu 
k  - \beta 1e1\| 22\Bigl( 

trace(I  - \omega kBkB
\dagger 
k,\mu )

\Bigr) 2 ,(5.2)

and use this minimizer as \mu k. We remark that if wk = 1 for all k, it is the standard
GCV method. The weight parameter \omega k is initialized and automatically updated
following the same strategy in [12]. By writing the analytical expression of G(\omega k, \mu )
using the GSVD of \{ Bk,Ck\} , we can find its minimizer using the MATLAB built-
in function fminbnd.m. This approach is at a cost of O(k3) flops, dominated by
computing the GSVD of \{ Bk,Ck\} . In the ideal situation, as k increases, \mu k will
converge and G(1, \mu k) will converge to a fixed value. We terminate the iteration at
k+ s1 with k the first iteration satisfying

\bigm| \bigm| \bigm| \bigm| 
G(1, \mu i+1) - G(1, \mu i)

G(1, \mu 1)

\bigm| \bigm| \bigm| \bigm| < tol1, i= k, . . . , k+ s1,(5.3)

where s1 + 1 is the length of the window to avoid bumps. We set s1 = 4 and tol1=
10 - 6 by default.

If we have a good estimate of \| e\| 2, there is another method that can update \mu k

step by step quickly based on DP. This method is called secant update (SU), which
was first proposed for the Arnoldi--Tikhonov hybrid method [17]. Here we show how
this method is adapted to update \mu k for the pGKB based hybrid method. A heuristic
derivation is as follows. At each iteration, we define the function

\psi k(\mu ) = \| Ax\mu k  - b\| 2 = \| Bky
\mu 
k  - \beta 1e1\| 2.(5.4)

In order to estimate \mu k by DP, we consider determining the proper k and \mu k simul-
taneously by solving the nonlinear equation \psi k(\mu ) = \tau \| e\| 2 with a fixed \tau > 1 slightly.
We remark that this equation has a solution only when k is sufficiently large. We
use the following secant method to solve the above equation. Starting from an initial
value \mu 0, suppose we already have \mu k - 1 at the (k - 1)th iteration. Notice that \psi k(\mu )
monotonically increases with respect to \mu [40]. It can be approximated by the linear
function

f(\mu ) =\psi k(0) +
\psi k(\mu k - 1) - \psi k(0)

\mu k - 1
\mu ,

which interpolates \psi k(\mu ) at 0 and \mu k - 1. To update \mu k for the next step, we replace
\psi k(\mu ) by f(\mu ) and solve f(\mu ) = \tau \| e\| 2, which leads to

\mu k =
\tau \| e\| 2  - \psi k(0)

\psi k(\mu k - 1) - \psi k(0)
\mu k - 1.

This update formula may suffer from instability for small k, since it holds that \psi k(0)>
\tau \| e\| 2. Therefore, we finally use

\mu k =

\bigm| \bigm| \bigm| \bigm| 
\tau \| e\| 2  - \psi k(0)

\psi k(\mu k - 1) - \psi k(0)

\bigm| \bigm| \bigm| \bigm| \mu k - 1(5.5)
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A2622 HAIBO LI

Algorithm 5.1. pGKB HR.
Input: A, b, M , \alpha > 0, \omega 1 or \mu 0  \triangleleft require \tau \| e\| 2 for SU
1: for k= 1,2, . . . , do
2: Compute uk, wk, \alpha k, \beta k by pGKB

3: Compute decomposition WT
k MWk =CT

k Ck to get Ck

4: if `hybrid = WGCV' then  \triangleleft WGCV
5: Compute the GSVD of \{ Bk,Ck\} 
6: Determine \mu k by minimizing (5.2)
7: Compute y\mu k

k by solving (5.1)
8: Update \omega k following [12]
9: else if `hybrid = SU' then  \triangleleft SU
10: Compute y

\mu k - 1

k by solving (5.1)
11: Compute the residual norm \psi k(\mu k - 1) by (5.4)
12: Computing \=\phi k+1 recursively by Algorithm 3.2, lines 3--6
13: Update \mu k by (5.5)
14: end if
15: Terminate iteration by (5.3) or (5.6) at k2
16: end for

17: Compute x
\mu k2

k2
=Wk2

y
\mu k2

k2

Output: Final regularized solution xk2

as the practical formula to update \mu k. We set \mu 0 = 1.0 by default. Numerically we
find that (5.5) is very stable in the sense that when k is sufficiently large, both the
regularization parameter \mu k and residual norm \psi k(\mu k - 1) tend to plateau.

Since \psi k(0) = \| Axk - b\| 2 = \=\phi k+1, which is the residual norm of the kth pGKB SPR
solution, it can be updated efficiently by Algorithm 3.2 (without computing pk and
xk). To terminate the iteration, we choose k+ s2 as the stopping iteration with k the
first iteration satisfying

\psi k(0)\leq \tau \| e\| 2 and
\bigm| \bigm| \bigm| \psi i+1(\mu i) - \psi i(\mu i - 1)

\psi i(\mu i - 1)

\bigm| \bigm| \bigm| \leq tol2, i= k, . . . , k+ s2,(5.6)

where s2 + 1 is the length of the window to avoid bumps. We set s2 = 4 and tol2=
0.001 by default.

To summarize, we show the pseudocode of the pGKB based hybrid regularization
(pGKB HR) algorithm using WGCV or SU in Algorithm 5.1.

6. Experimental results. We use some numerical examples to show the effec-
tiveness and performance of the proposed algorithms, including pGKB SPR with DP
and the L-curve as early stopping criteria and pGKB HR with WGCV and SU for de-
termining \mu k. All experiments are performed with MATLAB R2019b. The codes are
available at https://github.com/Machealb/InverProb IterSolver, where some codes in
the packages of [16, 26] are exploited. We compare the accuracy of the regularized
solutions and show convergence behaviors by using the relative reconstruction error

RE(k) =
\| xk  - x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 

\| x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 
or RE(k) =

\| x\mu k

k  - x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 
\| x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 

(6.1)

to plot the convergence curve of each algorithm.

6.1. Small-scale inverse problems. For the first test problem, we choose
deriv2 from [26] by setting m = n = 2000, which is a discretization of the first kind
Fredholm integral equation
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Fig. 1. Illustration of the true solution and noisy observed data. Top: true and observed func-
tions for deriv2. Bottom: true and noisy deblurred signals for gauss1d. Note: color appears only in
the online article.

b(s) =

\int 1

0

K(s, t)x(t)dt, K(s, t) =

\Biggl\{ 
s(t - 1), s < t,

t(s - 1), s\geq t,
(6.2)

where x(t) = t and (s, t) \in [0,1]2. For the second test problem, we use the Gaussian
convolution of a one-dimensional (1D) piecewise constant signal

b(s) =

\int +\infty 

 - \infty 
K(s - t)x(t)dt, K(s - t) =

1\surd 
2\pi \sigma 

exp

\biggl( 
 - (s - t)2

2\sigma 2

\biggr) 
,(6.3)

where K is the Gaussian kernel with \sigma = 10, and the discretized signal x(t) on 800
uniform grids over [0,1] is shown in Figure 1. The Gaussian kernel K is discretized
correspondingly with zero boundary condition such that A \in \BbbR 800\times 800 is a Toeplitz
matrix. This problem is named as gauss1d. For each problem, we add a Gaussian
white noise with noise level \varepsilon = \| e\| 2/\| b\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2 to b\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} and form b = b\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} + e, where
we set \varepsilon = 5\times 10 - 4 and \varepsilon = 5\times 10 - 3 for deriv2 and gauss1d, respectively. The true
solutions and noisy observed data for these two problems are shown in Figure 1.

For deriv2, we set the regularization matrix L\in \BbbR (n - 1)\times n as the scaled discretiza-
tion of the 1D differential operator, which is a bidiagonal matrix with one more row
than columns and values  - 1 and 1 on the subdiagonal and diagonal parts, respec-
tively. Then we let M = LTL to get M . Since L is available, we can compare
pGKB SPR with the joint bidiagonalization (JBD) based subspace projection regu-
larization (JBD SPR) algorithm.

First, we illustrate the regularization effect of pGKB SPR by plotting its semi-
convergence curve and comparing it with JBD SPR. In this experiment, the inner
iteration is computed accurately using matrix inversion, and the values of \alpha are set
as 1, 0.001 and 100. From Figure 2(a), we find that pGKB SPR exhibits typical
semiconvergence behavior, and the relative errors at the semiconvergence point for
the three different \alpha 's are the same as that of JBD SPR. This confirms that the
pGKB based regularization method has a good regularization effect. To illustrate the
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Fig. 2. Comparison of semiconvergence curves between JBD and pGKB based subspace pro-
jection regularization algorithms for deriv2. (a) Comparison for different \alpha 's where inner itera-
tions are computed accurately. (b) Comparison for different solution accuracies of inner iterations.
Note: color appears only in the online article.

(a) Convergence history
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Fig. 3. The relative error curves of regularized solutions computed by the pGKB based algo-
rithms and corresponding reconstructed solutions for deriv2. Note: color appears only in the online
article.

impact of computing accuracy of inner iteration on the accuracy of the regularized
solution, for pGKB SPR with \alpha = 10, we use the MATLAB function pcg.m to solve
Gs = ATui at each outer iteration with stopping tolerance tol = 10 - 6,10 - 4, and
plot the semiconvergence curves in Figure 2(b). We remark that tol= 0 means that
the inner iterations are computed accurately using matrix inversion. We find that for
tol= 10 - 6 the best regularized solution has the same relative error as that for tol= 0,
and the two curves almost coincide for many steps even after semiconvergence. For a
much lower computing accuracy with tol = 10 - 4, there is a loss of accuracy for the
regularized solution. The required solution accuracy of the inner iteration affects the
accuracy of the algorithm, but a theoretical analysis of it is complicated. This will be
a part of our forthcoming work.

Then we illustrate the convergence behavior of pGKB SPR and pGKB HR, where
DP, L-curve (LC) are used to stop iteration early and WGCV, SU are used to de-
termine \mu k. In this experiment, we set \alpha = 10 and tol = 10 - 6. The convergence
history curves and the corresponding reconstruct solutions are shown in Figure 3.
The stopping iterations of pGKB SPR with DP and pGKB HR with SU and WGCV
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2625

Table 1
Relative errors of the final regularized solutions and corresponding early stopping iterations (in

parentheses), where \varepsilon = 5\times 10 - 4 for deriv2 and \varepsilon = 5\times 10 - 3 for gauss1d.

\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m} \mathrm{B}\mathrm{e}\mathrm{s}\mathrm{t} \mathrm{D}\mathrm{P} \mathrm{L}\mathrm{C} \mathrm{S}\mathrm{U} \mathrm{W}\mathrm{G}\mathrm{C}\mathrm{V}
deriv2 0.0064 (12) 0.0087 (10) 0.0120 (8) 0.0105 (16) 0.0165 (24)

gauss1d 2.2395\times 10 - 4 (4) 3.0393\times 10 - 4 (3) 5.6806\times 10 - 4 (5) 6.4605\times 10 - 4 (11) 6.1523\times 10 - 4 (25)

Fig. 4. Comparison of regularization effect between LSQR, JBD, and pGKB based algorithms
for deriv2: relative error curves and the best reconstructed solutions by JBD SPR and LSQR.
Note: color appears only in the online article.

are marked by circles in the relative error curves. Note that the reconstructed solution
for pGKB SPR with LC is omitted since it is similar to that for pGKB SPR with DP.
The relative errors of the final regularized solutions and the corresponding iteration
number are shown in Table 1. Although both DP and LC underestimate the semicon-
vergence point k0, the estimated early stopping iterations do not deviate far from k0,
and the reconstructed solutions approximate well to the true solution. For pGKB HR
with WGCV and SU, the relative error eventually decays flat as k becomes sufficiently
large, and is slightly higher than the best relative error of pGKB SPR at k0. Although
it is not shown here, in this experiment we find that both WGCV and SU overestimate
regularization parameters, and the estimate by WGCV is higher, thereby it computes
a more oversmoothed solution.

We use Figure 4 to compare the regularization effect between LSQR, JBD, and
pGKB based algorithms for deriv2, where we set \alpha = 10, and use tol = 10 - 6 for
inner iterations of both JBD and pGKB. We can clearly find that LSQR is a worse
choice for reconstructing a good solution. In contrast, the JBD and pGKB based algo-
rithms compute solutions with similar high accuracies, since both of them efficiently
incorporate prior information about x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} encoded by L or M .

For gauss1d with a piecewise constant x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}, the total variation regularization
TV(x) =

\int 
\BbbR | \nabla x| dt is the most suitable. Since TV(x) is nonlinear, we construct M

to approximate TV(x) at x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} by xTMx using the procedure in the LDFP method.
We remark that this M is only used for experimental purposes, while in practice we
can not construct such a good M since x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} is unknown. The LDFP method first
replaces TV(x) by TV\beta (x) =

\int 
\BbbR 

\sqrt{} 
| \nabla x| 2 + \beta 2dt with \beta a small positive value, and

then linearizes TV\beta at x using its gradient L(x):

L(x)y := - \nabla \cdot 
\Biggl( 

1\sqrt{} 
| \nabla x| 2 + \beta 2

\nabla y
\Biggr) 
.(6.4)

We choose \beta = 10 - 6 and construct M by discretizing L(x) at x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} using the finite
difference procedure. For details, see [11, 56].
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Fig. 5. Comparison of semiconvergence curves between MLSQR and pGKB based subspace
projection regularization algorithms for gauss1d. (a) Comparison for different \alpha 's where inner itera-
tions are computed accurately. (b) Comparison for different solution accuracies of inner iterations.
Note: color appears only in the online article.

(a) Convergence history
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Fig. 6. The relative error curves of regularized solutions computed by the pGKB based algo-
rithms and corresponding reconstructed solutions for gauss1d. Note: color appears only in the online
article.

In this experiment, we first compare the pGKB method with the MLSQR method
proposed in [1]. Since the rank of M is n  - 1, we let M\delta = M + \delta I with \delta = 10 - 6

and apply MLSQR to \{ A,M\delta \} . The semiconvergence curves are shown in Figure
5(a), where the inner iteration is computed accurately using matrix inversion, and
the values of \alpha are set as 1, 0.01, and 10. We find that pGKB SPR exhibits typical
semiconvergence behavior, and the relative errors at the semiconvergence point for the
three different \alpha 's are almost the same as that of MLSQR. The impact of computing
the accuracy of an inner iteration on the accuracy of the regularized solution for
pGKB SPR is shown in Figure 5(b), where we use \alpha = 1. All three curves almost
coincide for many steps even after semiconvergence. This indicates that a much
relaxed computing accuracy such as tol = 10 - 4 for inner iterations does not reduce
the accuracy of the final regularized solution.

The convergence behavior of pGKB SPR and pGKB HR algorithms and the
corresponding reconstructed 1D signals are shown in Figure 6, where \alpha = 1 and
tol= 10 - 6. The stopping iterations of pGKB SPR with LC and pGKB HR with SU
and WGCV are marked by circles in the relative error curves. The relative errors of
the final regularized solutions and the corresponding iteration numbers are shown in
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2627

Fig. 7. Comparison of regularization effect between LSQR, MLSQR, and pGKB based algo-
rithms for gauss1d: relative error curves and the best reconstructed solutions by MLSQR and LSQR.
Note: color appears only in the online article.

Table 1. For pGKB HR with WGCV and SU, the relative errors eventually decay
flat as k becomes sufficiently large and they are very close. Note that the iteration
of WGCV does not satisfy the stopping criterion (5.3) when the maximum iteration
number 25 is reached, since the default value for tol1 is too small in this case. All the
reconstructed signals approximate well to the original piecewise constant signal. This
is due to the well-constructed regularizer matrix M based on TV regularization and
the incorporation of prior information about x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} in the solution subspace span\{ Wk\} .
Further comparison of the regularization effect between LSQR, MLSQR, and pGKB
based algorithms for gauss1d is shown in Figure 7, where we set \alpha = 1 for pGKB,
\delta = 10 - 6 for MLSQR, and use tol = 10 - 6 for inner iterations of both MLSQR and
pGKB. Clearly, LSQR is a worse choice for reconstructing a good solution, while, in
contrast, both MLSQR and pGKB based algorithms exhibit very good regularization
effects.

6.2. Large-scale inverse problems. The two large-scale test problems are
chosen from [16]. The first test problem is PRblurdefocus PRblurdefocus, which models
an image blurring problem caused by a spatially invariant out-of-focus blur. We use
the true image ``Hubble Space Telescope"" with 256\times 256 pixels, and set the blur level
as ``mild"" and use the zero boundary condition to get A \in \BbbR 2562\times 2562 . The second
test problem is PRdiffusion, which is a two-dimensional (2D) inverse diffusion problem
\partial tu = \nabla 2u in the domain [0, T ]\times [0,1]2 with Neumann boundary condition, and we
aim to reconstruct the initial function u0 from uT . We set T = 0.005 with 100 time
steps, and discretize the PDE on a 128\times 128 uniform finite element mesh to get the
forward operator A \in \BbbR 1282\times 1282 , which maps x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} (the discretized u0) to b\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} (the
discretized uT ). The noise levels are set as \varepsilon = 0.002 and \varepsilon = 0.001 for PRblurdefocus
and PRdiffusion, respectively. The true solutions and noisy observed data are shown
in Figure 8.

For PRblurdefocus, we use the same procedure as for gauss1d to construct M .
Here the deblurring matrix A is an object so that only the matrix-vector products
Av or AT v are available. Therefore, we can only compute the inner iteration by
iteratively solving Gs = ATui. We set \alpha = 0.1 and use pcg.m with stopping toler-
ance tol= 10 - 6 to compute inner iterations. We compare the convergence behaviors
of pGKB SPR and pGKB HR by plotting their convergence history curves. The
convergence history curves and the corresponding reconstructed solutions are shown
in Figure 9, where the stopping iterations of pGKB SPR with DP and pGKB HR
with SU and WGCV are marked by circles in the relative error curves. The rela-
tive errors of the final regularized solutions and the corresponding iteration numbers
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Fig. 8. Illustration of the true solution and noisy observed data. Top: true and noisy blurred
image for PRblurdefocus. Bottom: x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} corresponding to u0 and b corresponding to noisy uT for
PRdiffusion. Note: color appears only in the online article.

(a) Convergence history
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(b) Reconstructed solution

Fig. 9. The relative error curves of regularized solutions computed by the pGKB based algo-
rithms and corresponding reconstructed images for PRblurdefocus. Note: color appears only in the
online article.

are shown in Table 2. From Figure 9(a) we observe the typical semiconvergence
behavior of pGKB SPR, and both DP and LC underestimate the semiconvergence
point k0. For pGKB HR with SU, the relative error gradually decreases to a con-
stant value for sufficiently large k, and it is slightly higher than the relative error of
pGKB SPR at k0. For pGKB HR with WGCV, the relative error eventually stag-
nates at a value much higher than that of pGKB SPR at k0, since WGCV significantly
overestimates the regularization parameter. The corresponding reconstructed images
are shown in Figure 9(b), where we can clearly see that the reconstruction quality
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Table 2
Relative errors of the final regularized solutions and corresponding early stopping iterations (in

parentheses), where \varepsilon = 0.002 for PRblurdefocus and \varepsilon = 0.001 for PRdiffusion.

Problem Best DP LC SU WGCV

PRblurdefocus 0.0422 (141) 0.0515 (77) 0.0508 (79) 0.0539 (101) 0.1717 (195)

PRdiffusion 0.0497 (90) 0.0602 (71) 0.0526 (83) 0.0578 (93) 0.0946 (91)

Fig. 10. Comparison of regularization effect between LSQR, MLSQR, and pGKB based algo-
rithms for PRblurdefocus: relative error curves and the best reconstructed images by MLSQR and
LSQR. Note: color appears only in the online article.

for WGCV is much poorer than other algorithms. This is because the estimated
\mu k by WGCV does not converge to a good regularization parameter of the original
problem (1.4).

To further illustrate the regularization effect of the pGKB based algorithm, we de-
pict together the relative error curves of pGKB SPR, MLSQR, and LSQR in
Figure 10, where we set \delta = 10 - 8 for MLSQR and also use tol = 10 - 6 for inner
iterations of MLSQR. It is clear that MLSQR and pGKB SPR achieve similar rela-
tive errors at the semiconvergence point, much smaller than that obtained by LSQR.
Correspondingly, the best reconstructed image by LSQR is much worse than those by
MLSQR and pGKB SPR. This is attributed to the effective treatment of the regular-
ization matrix M by MLSQR or pGKB SPR.

For PRdiffusion, we setM as the discretized 2D negative Laplacian to enforce some
smoothness on the desired initial u0. Here the forward operator matrix A is a function
handle that represents the computation process of the numerical solution of \partial tu =
\nabla 2u. Therefore, we can only compute the inner iteration by solving Gs=ATui using
an iterative solver that is based on matrix-vector products. We set \alpha = 1 in pGKB
and use pcg.m with stopping tolerance tol= 10 - 6 to compute inner iterations. The
relative errors, the marked stopping iterations for pGKB SPR with LC and pGKB HR
with SU and WGCV, and the reconstructed solutions are shown in Figure 11. We can
find from Figure 11 and Table 2 that both DP and LC slightly underestimate k0 for
pGKB SPR, and both the corresponding reconstructed solutions are of high quality.
For pGKB HR, as k becomes sufficiently large, both WGCV and SU compute iterative
solutions with relative errors decreasing toward a value slightly larger than the best
for pGKB SPR, and the corresponding final regularized solutions approximate well
to x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}. The comparison of regularization effects between pGKB SPR, MLSQR, and
LSQR is shown in Figure 12. Since M is invertible, here we do not need to set a \delta for
MLSQR. Although this M may not be the best regularization matrix for PRdiffusion,
we still find that the best regularized solution computed by pGKB SPR has similar
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(a) Convergence history (b) Reconstructed solution

Fig. 11. The relative error curves of regularized solutions computed by the pGKB based algo-
rithms and corresponding reconstructed solutions for PRdiffusion. Note: color appears only in the
online article.

Fig. 12. Comparison of regularization effect between LSQR, MLSQR, and pGKB based algo-
rithms for PRdiffusion: relative error curves and the best reconstructed solutions by MLSQR and
LSQR. Note: color appears only in the online article.

accuracy to that by MLSQR, where the solution by LSQR is slightly less accurate.
This confirms the good regularization effect of the pGKB based algorithm.

7. Conclusion and outlook. For linear inverse problems with general-form
Tikhonov regularization term xTMx, where M is positive semidefinite, we have pro-
posed several iterative regularization algorithms. These algorithms are based upon a
new iterative process called the pGKB that implicitly utilizes a proper preconditioner
to generate solution subspaces incorporating prior properties of the desired solution.
The pGKB SPR algorithm is proposed, where the DP or LC is used as an early stop-
ping criterion. The regularization effect of pGKB SPR is analyzed by showing that
the iterative solution has a filtered GSVD expansion form, thus revealing the semi-
convergence behavior of it. To avoid semiconvergence of pGKB SPR, two pGKB HR
algorithms are proposed that adopt WGCV and SU for determining regularization
parameters at each iteration, respectively. Both small-scale and large-scale linear in-
verse problems are used to test the proposed algorithms and illustrate their excellent
effectiveness and performance.

There are several issues remaining to be further studied. For example, numerical
results indicate that the accuracy of an inner iteration in pGKB may be moderately
relaxed without compromising the accuracy of the final regularized solution, raising
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PRECONDITIONED METHOD FOR TIKHONOV REGULARIZATION A2631

the need for theoretical analysis about the required accuracy of inner iteration. An-
other issue concerns the SU method for pGKB HR, which numerically exhibits good
convergence for iterative solutions. Thus it is necessary to analyze the convergence
behaviors of the regularization parameter \mu k and iterative solution.
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