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A NEW INTERPRETATION OF THE WEIGHTED
PSEUDOINVERSE AND ITS APPLICATIONS\ast 

HAIBO LI\dagger 

Abstract. Consider the generalized linear least squares (GLS) problem min\| Lx\| 2 such that

\| M(Ax - b)\| 2 =min. The weighted pseudoinverse A\dagger 
ML is the matrix that maps b to the minimum

2-norm solution of this GLS problem. By introducing a linear operator induced by \{ A,M,L\} be-
tween two finite-dimensional Hilbert spaces, we show that the minimum 2-norm solution of the GLS
problem is equivalent to the minimum norm solution of a linear least squares problem involving this
linear operator, and A\dagger 

ML can be expressed as the composition of the Moore--Penrose pseudoinverse
of this linear operator and an orthogonal projector. With this new interpretation, we establish the
generalized Moore--Penrose equations that completely characterize the weighted pseudoinverse, give
a closed-form expression of the weighted pseudoinverse using the generalized singular value decompo-
sition (GSVD), and propose a generalized LSQR (gLSQR) algorithm for iteratively solving the GLS
problem. We construct several numerical examples to test the proposed iterative algorithm for solv-
ing GLS problems. Our results highlight the close connections between GLS, weighted pseudoinverse,
GSVD, and gLSQR, providing new tools for both analysis and computations.

Key words. generalized least squares, weighted pseudoinverse, generalized Moore--Penrose
equations, GSVD, generalized Golub--Kahan bidiagonalization, generalized LSQR

MSC codes. 15A09, 15A22, 65F10, 65F20

DOI. 10.1137/24M1686073

1. Introduction. Consider the generalized linear least squares (GLS) problem

min
x\in \BbbR n

\| Lx\| 2 such that \| M(Ax - b)\| 2 =min,(1.1)

where A \in \BbbR m\times n, M \in \BbbR q\times m, and L \in \BbbR p\times n. In some of the literature it is also
called the weighted linear least squares problem. The GLS problem generalizes the
standard least squares (LS) problem min\| x\| 2 such that \| Ax - b\| 2 = min by incor-
porating weighting matrices M and L, which introduces additional constraints and
objectives tailored to specific data characteristics. For instance, M might be used
to increase the relative importance of accurate measurements, while L could adjust
the regularization or constraint structure to improve stability or enforce certain prop-
erties in the solution [11, Chap. 6.1]. Such problems arise in a variety of practical
applications, including scatter data approximation [35], functional data analysis [17],
ill-posed inverse problems [9], surface fitting problems [34], and many others.

The GLS problem is relatively simple when L has full column rank, where it must
have a unique solution. The case that both L and M have full column rank has been
extensively studied in earlier literature; see, e.g., [1, 31]. For general rectangular matri-
ces M and L, in [24] the authors proposed the concept of projection under seminorms
to study the existence and structure of the solutions of (1.1). A well-known result is
that the uniqueness of the solution of (1.1) is equivalent to \scrN (MA) \cap \scrN (L) = \{ 0\} ,
where \scrN (\cdot ) is the null space of a matrix. In the case of nonuniqueness, there is a
unique minimum 2-norm solution of (1.1). The GLS problem was then intensively
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 935

studied in [8], where the author gave the expression of the general solutions. Specifi-
cally, the author demonstrated that the minimum 2-norm solution can be written as
A\dagger 

MLb, where A\dagger 
ML \in \BbbR n\times m is the so-called M,L weighted pseudoinverse of A that

shares several properties analogous to the Moore--Penrose pseudoinverse.
The weighted pseudoinverse is a generalization of the Moore--Penrose pseudoin-

verse of a single matrix. Since the concept of the pseudoinverse was first introduced by
Moore [25, 26] and later by Penrose [29, 30], it has received considerable attention and
many applications [3, 10, 21, 22], and there have been several various generalizations
of the Moore--Penrose pseudoinverse, such as the restricted pseudoinverse proposed
for linear-constrained LS problems [2, 16, 23], the product generalized inverse [6], and
another type of weighted pseudoinverse (different from that in this paper) [5, 32, 33].
Among these generalizations, the weighted pseudoinverse proposed in [8] has attracted
significant attention. For example, in [13], the authors proposed an algorithm for com-
puting the GSVD of \{ A,L\} , where at each iteration L\dagger 

IAz needs to be computed for

some vector z; here I is the identity matrix. Moreover, using L\dagger 
IA, the general-form

Tikhonov regularization problem minx\in \BbbR n\{ \| Ax - b\| 22 + \lambda \| Lx\| 22\} can be transformed
to a standard-form problem, which is much easier for analysis and computations; see,
e.g., [14, 15].

However, computing the weighted pseudoinverse and solving the GLS problem are
both quite challenging. Existing methods primarily depend on matrix factorizations,
which are effective only for small-scale problems. For the case that \scrN (MA)\cap \scrN (L) =
\{ 0\} with M = Im, the identity matrix of order m, the author in [8] gave a closed-
form expression of A\dagger 

IL using the generalized singular value decomposition (GSVD)
of \{ A,L\} , which can be used to compute the solution of (1.1). Furthermore, he
proposed a more efficient algorithm for computing A\dagger 

IL based on QR factorizations,
which avoids the GSVD computation. For large-scale matrices, however, there is a
lack of efficient methods for computing A\dagger 

ML or for iteratively computing A\dagger 
MLb for

a given b. This may partly be due to an insufficient understanding of the properties
of the weighted pseudoinverse. In contrast, the properties of the Moore--Penrose
pseudoinverse A\dagger are well-established, and a variety of computational methods are
available for it. For example, there is a closed-form expression of A\dagger by using the
singular value decomposition (SVD) of A, and A\dagger b is the minimum 2-norm solution
of minx\in \BbbR n \| Ax - b\| 2, which can be approximated efficiently by the iterative solver
LSQR [28]. It would be beneficial to gain new insights into the weighted pseudoinverse
and to establish deeper analogies with the Moore--Penrose pseudoinverse. This could
enable the development of efficient iterative methods for computing A\dagger 

ML.
In this paper, we provide a new interpretation of the weighted pseudoinverse and

use it to design an iterative algorithm for computing A\dagger 
MLb. To achieve this, we first

introduce a linear operator \scrA between two finite-dimensional Hilbert spaces, with
non-Euclidean inner products induced by the matrices \{ A,M,L\} . Then we formulate
an operator-type LS problem involving \scrA , showing that its minimum norm solution
coincides with the minimum 2-norm solution of (1.1). This result establishes a con-
nection between A\dagger 

ML and \scrA \dagger , the Moore--Penrose pseudoinverse of \scrA . Building on
this connection, we derive a set of generalized Moore--Penrose equations that fully
characterize the weighted pseudoinverse. Additionally, by using the GSVD of \{ A,L\} ,
we give a closed-form expression for A\dagger 

IL, which is applicable regardless of whether
or not \scrN (A) \cap \scrN (L) = \{ 0\} . To address the practical computational challenges in-
volving A\dagger 

ML, we extend the classical Golub--Kahan bidiagonalization (GKB) method
[10] and propose a novel iterative algorithm called the generalized LSQR (gLSQR).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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936 HAIBO LI

The design of this algorithm leverages the connection between A\dagger 
ML and \scrA \dagger , which

can efficiently compute A\dagger 
MLb by iteratively refining the solutions to the GLS problem

(1.1) without requiring any matrix factorizations. To demonstrate the effectiveness
of gLSQR, we construct several numerical examples of GLS problems and show its
ability to compute solutions with high accuracy across these diverse scenarios. The
results in this paper highlight the close connections between GLS, weighted pseudoin-
verse, GSVD, and gLSQR, providing new tools for both analysis and computations
of related applications.

The paper is organized as follows. In section 2 we review several basic properties
of the LS problem and the Moore--Penrose pseudoinverse. In section 3 we analyze the
GLS problem from the perspective of an equivalent operator-type LS problem. Build-
ing on this perspective, we offer a new interpretation of the weighted pseudoinverse
and present several basic properties. In section 4 we generalize the GKB method and
propose the gLSQR algorithm for iterative computing A\dagger 

MLb. In section 5 we con-
struct several nontrivial numerical examples to test the gLSQR algorithm. Finally,
we conclude the paper in section 6.

Throughout the paper, we denote by \scrN (\cdot ) and \scrR (\cdot ) the null space and range
space of a matrix or linear operator, respectively, denote by 0 the zero matrix/vector
with orders clear from the context, and denote by span\{ \cdot \} the subspace spanned by
a group of vectors or columns of a matrix.

2. Linear least squares and pseudoinverse of linear operators. We review
several basic properties of the LS problems and the pseudoinverse of linear operators
in the context of Hilbert spaces; see, e.g., [1, 12] for more details. These properties
will be used in the subsequent sections.

Let \scrX and \scrY be two Hilbert spaces, and let T : \scrX \rightarrow \scrY be a bounded linear
operator where its adjoint is denoted by T \ast . Consider the linear operator equation
Tx= y, which has a solution if and only if y \in \scrR (T ). Otherwise, we consider the least
squares solution. An element x \in \scrX is called a least squares solution of Tx = y if it
satisfies

\| Tx - y\| \scrY = inf\{ \| Tz  - y\| \scrY : z \in \scrX \} .(2.1)

If the set of all least squares solutions has an element of minimum \scrX -norm, i.e.,

\| x\| \scrX = inf\{ \| z\| \scrX : z is a least squares solution of Tx= y\} ,(2.2)

then we call such an x a best-approximate solution of Tx = y. The following well-
known result describes the existence and uniqueness of the least squares solution and
best-approximate solution.

Theorem 2.1. For the linear operator equation Tx= y, the following properties
hold:

(1) It has a least squares solution if and only if y \in \scrR (T ) +\scrR (T )\bot .
(2) If (1) is satisfied, then x is a least squares solution if and only if

T \ast Tx= T \ast y(2.3)

holds, which is called the normal equation.
(3) If (1) is satisfied, then x is the unique best-approximate solution if and only

if (2.3) is satisfied and x\in \scrN (T )\bot .

The best-approximate solution is closely related to the Moore--Penrose pseudoin-
verse of T , which is the linear operator mapping y to the best-approximate solution

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 937

of Tx= y. Based on Theorem 2.1, the definition of the Moore--Penrose pseudoinverse
is as follows.

Definition 2.2. For the bounded linear operator T :\scrX \rightarrow \scrY , define its restriction
as \widetilde T := T | \scrN (T )\bot : \scrN (T )\bot \rightarrow \scrR (T ). The Moore--Penrose pseudoinverse T \dagger of T is

defined as the unique linear extension of \widetilde T - 1 to \scrD (T \dagger ) := \scrR (T ) +\scrR (T )\bot such that
\scrN (T \dagger ) =\scrR (T )\bot .

It has been proved that the following four ``Moore--Penrose"" equations hold:\left\{         
TT \dagger T = T,

T \dagger TT \dagger = T \dagger ,

T \dagger T =\scrP \scrN (T )\bot ,

TT \dagger =\scrP 
R(T )
| \scrD (T \dagger ),

(2.4)

where \scrP \scrS is the orthogonal operator onto a closed subspace \scrS . Moreover, the Moore--
Penrose equations uniquely characterize T \dagger , i.e., there exists a unique linear operator
T \dagger that satisfies equations (2.4), and the last two conditions can even be relaxed as
that TT \dagger and T \dagger T are two orthogonal projectors. The following limit property holds:

T \dagger = lim
\delta \searrow 0

(T \ast T + \delta I)
 - 1

T \ast = lim
\delta \searrow 0

T \ast (TT \ast + \delta I)
 - 1

,(2.5)

where I : \scrX \rightarrow \scrX is the identity operator. Using the pseudoinverse, the following
well-known result describes the structure of the least squares solutions.

Theorem 2.3. Let y \in \scrD (T \dagger ). Then x\dagger := T \dagger y is the unique best-approximate
solution of Tx= y, and the set of all least squares solutions is x\dagger +\scrN (T ).

Now we come back to the settings with matrices. By treating A \in \BbbR m\times n as
a linear operator between the Euclidean spaces \BbbR n and \BbbR m, all the above results
directly apply to A. Let the SVD of A be U\top AV = \Sigma , where \Sigma = (\Sigma r

0 ) \in \BbbR m\times n

with \Sigma r = diag(\sigma 1, . . . , \sigma r) \in \BbbR r\times r, \sigma 1 \geq \cdot \cdot \cdot \geq \sigma r > 0, and U = (u1, . . . , um) \in 
\BbbR m\times m and V = (v1, . . . , vn) \in \BbbR n\times n are orthogonal matrices. The pseudoinverse of
A has the expression A\dagger = V \Sigma \dagger U\top with \Sigma \dagger = (\Sigma 

 - 1
r

0
) \in \BbbR n\times m, and the LS problem

minx\in \BbbR n \| Ax - b\| 2 has a unique minimum 2-norm solution x\dagger =A\dagger b=
\sum r

i=1
u\top 
i b
\sigma i

vi. We
remark that for a compact linear operator T , there exists an analogous decomposition
to SVD, called the singular value expansion (SVE). Using the SVE of T , we can also
give a similar expression of x\dagger for the linear operator equation; see, e.g., [19, Chap.
15.4].

For large-scale matrix A, the LSQR algorithm is an efficient iterative approach
for the LS problems minx\in \BbbR n \| Ax - b\| 2. This algorithm is based on the GKB process,
where the main computations are matrix-vector products involving A and A\top . At
the kth step, the GKB process of A and b generates two groups of 2-orthogonal
vectors, which form orthonormal bases of the Krylov subspaces \scrK k+1(AA\top , b) and
\scrK k(A

\top A,A\top b), respectively. Meanwhile, it reduces A to a (k + 1) \times k lower bidi-
agonal matrix, which is then used in the LSQR algorithm to iteratively compute an
approximate solution. Besides, the GKB process is often used as a precursor for
computing a partial SVD of a large-scale matrix.

To summarize this section, we remark that the LS problem, Moore--Penrose pseu-
doinverse, SVD, GKB process, and LSQR algorithm are all closely related. Each of
them plays an important role in matrix computation problems, from providing theo-
retical analysis tools to enhancing the efficiency of numerical computations. Clearer
relationships among these concepts are illustrated in Figure 4.1 at the end of section 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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938 HAIBO LI

3. Generalized linear least squares and weighted pseudoinverse. First,
we present a result that characterizes the solutions of the GLS problem, which allows
us to reformulate the GLS problem as an equivalent operator-type LS problem. We
then provide a new interpretation of the weighted pseudoinverse and establish several
of its basic properties.

3.1. Generalized linear least squares. In the following part, we use \| x\| C to
denote the seminorm (x\top Cx)1/2 for a symmetric positive semidefinite C. It becomes
a norm when C is strictly positive definite. The following result provides a criterion
for determining a solution of the GLS problem.

Theorem 3.1. For the GLS problem

min
x\in \BbbR n

\| x\| Q such that \| Ax - b\| P =min,(3.1)

where A \in \BbbR m\times n, and P \in \BbbR m\times m, Q \in \BbbR n\times n are symmetric positive semidefinite
matrices, let G=A\top PA+Q. The following properties hold:

(1) If x is a solution of (3.1), then \scrP \scrR (\scrG )x is also a solution; conversely, if x \in 
\scrR (G) is a solution, then x+ z is a solution for any z \in \scrN (G).

(2) The vector x\in \BbbR n is a solution of (3.1) if and only if\Biggl\{ 
A\top P (Ax - b) = 0,

x\top Gz = 0 \forall z \in \scrN (A\top PA).
(3.2)

Proof. First note that G is symmetric positive semidefinite. Thus, any vector
x\in \BbbR n has the decomposition x=\scrP \scrR (G)x+\scrP \scrN (G)x=: x1 + x2 and x1 \bot x2, where \bot 
is the orthogonal relation in Euclidean spaces. Using the relation\scrN (G) =\scrN (A\top PA)\cap 
\scrN (Q), we can verify that

\| A(x1 + x2) - b\| P = \| Ax1  - b\| P , \| x1 + x2\| Q = \| x1\| Q.

The first property immediately follows.
To prove the second property, suppose x is a solution to (3.1). Then it is a solution

to the problem minx \| Ax - b\| P . Taking the gradient of it leads to A\top P (Ax - b) = 0.
Now \scrP \scrR (G)x is a solution to (3.1). Note that

x\top Gz = (\scrP \scrR (G)x)
\top G(G\dagger Gz) = (\scrP \scrR (G)x)

\top G(\scrP \scrR (G)z),(3.3)

and (\scrR (G), \langle \cdot , \cdot \rangle G) is a Hilbert space with inner product \langle x,x\prime \rangle G := x\top Gx\prime . We only
need to prove \scrP \scrR (G)x \bot G \scrP \scrR (G)(\scrN (A\top PA)), where \bot G is the orthogonal relation
in (\scrR (G), \langle \cdot , \cdot \rangle G). Since \scrP \scrR (G)(\scrN (A\top PA)) is a closed subspace of (\scrR (G), \langle \cdot , \cdot \rangle G),
we have the decomposition \scrP \scrR (G)x = \=x1 + \=x2 such that \=x1 \in \scrP \scrR (G)(\scrN (A\top PA))
and \=x2 \bot G \scrP \scrR (G)(\scrN (A\top PA)). We only need to prove \=x1 = 0. First we prove
\scrP \scrR (G)(\scrN (A\top PA))\subseteq \scrN (A\top PA). To see it, for any z \in \BbbR n we use the decomposition
z = z1+z2 such that z1 \in \scrN (G) and z2 \in \scrN (G)\bot =\scrR (G), which indicates \scrP \scrR (G)z = z2.
Thus, if z \in \scrN (A\top PA), then A\top PAz2 = A\top PAz  - A\top PAz1 = A\top PAz = 0 since
z1 \in \scrN (G)\subseteq \scrN (A\top PA).

Notice that \=x1 \in \scrN (A\top PA), which leads to \| A(\=x1+\=x2) - b\| P = \| A\=x2 - b\| P . This
indicates that \=x2 is a solution to minx \| Ax - b\| P . Since

\=x\top 
2 Q\=x1 = \=x\top 

2 (A
\top PA+Q)\=x1 = \=x\top 

2 G\=x1 = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 939

we have

\| \scrP \scrR (G)x\| 2Q = \| \=x1\| 2Q + 2\=x\top 
2 Q\=x1 + \| \=x2\| 2Q = \| \=x1\| 2Q + \| \=x2\| 2Q \geq \| \=x2\| 2Q.

Specifically, if the second relation of (3.2) is not satisfied, which means \=x1 \not = 0, it must
hold that \| \=x1\| Q > 0, which can be proved as follows. If \| \=x1\| Q = 0, then \=x1 \in \scrN (Q).
Combining this with \=x1 \in \scrP \scrR (G)(\scrN (A\top PA)) \subseteq \scrN (A\top PA), it must hold that \=x1 \in 
\scrN (Q)\cap \scrN (A\top PA) =\scrN (G). Using the relation \=x1 \in \scrR (G) and \scrN (G)\cap \scrR (G) = \{ 0\} , we
obtain \=x1 = 0. Therefore, if \=x1 \not = 0, then \| \=x2\| Q < \| \scrP \scrR (G)x\| Q = \| x\| Q, contradicting
that x is a solution.

Now we prove that (3.2) is a sufficient condition. Since (3.1) has at least one
solution in \scrR (G), by the first property, we only need to prove that there is only one
solution in \scrR (G) that satisfies (3.2). The existence has already been proved. To see
the uniqueness, suppose x1 and x2 are two such solutions. Then it must hold that x1 =
x2 + z with z \in \scrN (A\top PA). From x1, x2 \in \scrR (G) and x1, x2 \bot G \scrP \scrR (G)(\scrN (A\top PA)) we
obtain z \in \scrR (G) and z \bot G \scrP \scrR (M)(\scrN (A\top PA)). Combining this with z \in \scrN (A\top PA)
leads to z \in \scrP \scrR (G)(\scrN (A\top PA)). Therefore, we have z \bot G z, leading to z = 0. This
proves the uniqueness of the solution in \scrR (G) that satisfies (3.2).

From Theorem 3.1 and its proof, we have the following result.

Corollary 3.2. There exists a unique solution of (3.1) in \scrR (G), which is the
minimum 2-norm solution of (3.1). Denoting this solution by x\dagger , the set of all the
solutions of (3.1) is x\dagger +\scrN (G).

Therefore, in order to solve (3.1), a key step is to seek the solution x\dagger in \scrR (G).
To investigate the property of x\dagger , we introduce the following linear operator:

\scrA : (\scrR (G), \langle \cdot , \cdot \rangle G)\rightarrow (\scrR (P ), \langle \cdot , \cdot \rangle P ), v \mapsto \rightarrow \scrP \scrR (P )Av,(3.4)

where v and Av are column vectors under the canonical bases of \BbbR n and \BbbR m. It is
obvious that \scrA is a bounded linear operator. Let

\scrA \ast : (\scrR (P ), \langle \cdot , \cdot \rangle P )\rightarrow (\scrR (G), \langle \cdot , \cdot \rangle G), u \mapsto \rightarrow \scrA \ast u

be the adjoint operator of \scrA , which is defined by the relation \langle \scrA v,u\rangle P = \langle \scrA \ast u, v\rangle G
for any v \in (\scrR (G), \langle \cdot , \cdot \rangle G) and u \in (\scrR (P ), \langle \cdot , \cdot \rangle P ). The following result describes the
effect of \scrA on a vector under the canonical bases.

Lemma 3.3. Under the canonical bases of \BbbR n and \BbbR m, for any u\in (\scrR (P ), \langle \cdot , \cdot \rangle P ),
it holds that

\scrA \ast u=G\dagger A\top Pu.(3.5)

Proof. Under the canonical bases, it holds that

\langle \scrA v,u\rangle P = \langle \scrA \ast u, v\rangle G \leftrightarrow (\scrP \scrR (P )Av)\top Pu= v\top G(\scrA \ast u).

Since v \in \scrR (G), we have \scrP \scrR (G)v= v and

(\scrP \scrR (P )Av)
\top P = (\scrP \scrR (P )A\scrP \scrR (G)v)

\top P = v\top \scrP \scrR (G)A
\top \scrP \scrR (P )P = v\top \scrP \scrR (G)A

\top P.

Thus, we have

v\top \scrP \scrR (G)A
\top Pu= v\top G(\scrA \ast u) \leftrightarrow v\top (\scrP \scrR (G)A

\top Pu - G(\scrA \ast u)) = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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940 HAIBO LI

for any v \in \scrR (G). Noticing that \scrP \scrR (G)A
\top Pu  - G(\scrA \ast u) \in \scrR (G), it follows that

\scrP \scrR (G)A
\top Pu=G(\scrA \ast u). This equality can also be written as

GG\dagger A\top Pu=G(\scrA \ast u) \Rightarrow G\dagger GG\dagger A\top Pu=G\dagger G(\scrA \ast u) \leftrightarrow G\dagger A\top Pu=\scrP \scrR (G)(\scrA \ast u).

Since \scrA \ast u\in \scrR (G), we immediately obtain \scrA \ast u=G\dagger A\top Pu.

Now we can reformulate the minimum 2-norm solution of (3.1) as the solution of
the following equivalent operator-type LS problem.

Theorem 3.4. Let \scrX := (\scrR (G), \langle \cdot , \cdot \rangle G) and \scrY := (\scrR (P ), \langle \cdot , \cdot \rangle P ). The minimum
\| \cdot \| \scrX -norm solution of the LS problem

min
v\in \scrX 
\| \scrA v - \scrP \scrR (P )b\| \scrY (3.6)

is the unique solution of (3.1) in \scrR (G).

Proof. First note that (3.6) has a unique \| \cdot \| \scrX -norm solution. In fact, v is such
a solution if and only if \Biggl\{ 

\scrA \ast (\scrA v - \scrP \scrR (P )b) = 0,

v\bot \scrX \scrN (\scrA ),
(3.7)

where \bot \scrX is the orthogonal relation in the Hilbert space \scrX . We only need to prove
the equivalence between (3.2) and (3.7) for x \in \scrR (G). For notational consistency,
here we uniformly use v instead of x. The proof includes the following two steps.

Step 1: Prove A\top P (Av  - b) = 0\leftrightarrow \scrA \ast (\scrA v  - \scrP \scrR (P )b) = 0 for any v \in \scrR (G). By
Lemma 3.3, we have

\scrA \ast (\scrA v - \scrP \scrR (P )b) =G\dagger A\top P (\scrP \scrR (P )Av - \scrP \scrR (P )b) =G\dagger A\top P (Av - b).

Thus, the ``\Rightarrow "" relation is obvious. To get the ``\Leftarrow "" relation, suppose G\dagger A\top P (Av - b) :
=G\dagger u= 0. Let the Cholesky factorization of P be P =L\top 

PLP . Then

u\in \scrN (G\dagger ) =\scrN (G) =\scrN (A\top PA)\cap \scrN (Q) =\scrN (LPA)\cap \scrN (Q)\subseteq \scrN (LPA),

since G is symmetric and \scrN (A\top PA) = \scrN (LPA). On the other hand, we have u =
A\top P (Av - b)\in \scrR ((LPA)\top ) =\scrN (LPA)\bot . Therefore, u\in \scrN (LPA)\cap \scrN (LPA)\bot = \{ 0\} ,
leading to u= 0. This proves the ``\Leftarrow "" relation.

Step 2: Prove v\bot G \scrP \scrR (G)(\scrN (A\top PA))\leftrightarrow v\bot \scrX \scrN (\scrA ) for any v \in \scrR (G). Since v is
a vector under the canonical basis, we only need to prove \scrP \scrR (G)(\scrN (A\top PA)) =\scrN (\scrA ).
Note that \scrN (\scrA ) = \{ v \in \scrR (G) : \scrP \scrR (P )Av = 0\} . In the proof of Theorem 3.1 we
have already shown that \scrP \scrR (G)(\scrN (A\top PA)) = \scrR (G) \cap \scrN (A\top PA). Thus, for any
v \in \scrP \scrR (G)(\scrN (A\top PA)), we have

A\top PAv= 0 \Rightarrow LPAv= 0 \Rightarrow \scrP \scrR (P )Av= P \dagger L\top 
PLPAv= 0.

This implies that v \in \scrN (\scrA ), and then \scrP \scrR (G)(\scrN (A\top PA))\subseteq \scrN (\scrA ). To prove the ``\supseteq ""
relation, let v \in \scrN (\scrA ). Then v \in \scrR (G) and Av \in \scrN (P ). It follows that A\top PAv = 0,
leading to v \in \scrR (G) \cap \scrN (A\top PA). This proves \scrP \scrR (G)(\scrN (A\top PA)) \supseteq \scrN (\scrA ). The
whole proof is then completed.

Theorem 3.4 enables us to study the GLS problem by applying the extensive
tools available for LS problems, thereby facilitating both analysis and computations.
Building on this theorem, we give a new interpretation of the weighted pseudoinverse
in the following subsection.
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 941

3.2. Weighted pseudoinverse and its properties. In this subsection, we
come back to the GLS problem of the form (1.1). By setting P = M\top M and Q =
L\top L, the two problems (1.1) and (3.1) are essentially the same. The following result
proposed in [8] gives the structure of a solution of the GLS problem.

Theorem 3.5 (see [8]). For any A \in \BbbR m\times n, M \in \BbbR q\times m, and L \in \BbbR p\times n, the
problem

min
x\in \BbbR n

\| Lx\| 2 such that \| M(Ax - b)\| 2 =min(3.8)

has the general solution

x= (In  - (L\scrP \scrN (MA))
\dagger L)(MA)\dagger Mb+\scrP \scrN (MA)(In  - (L\scrP \scrN (MA))

\dagger L\scrP \scrN (MA))z,(3.9)

where z \in \BbbR n is arbitrary.

Remark 3.1. In (3.1), if we let P =M\top M and Q= L\top L, then it is equivalent to
(3.8). In the remainder of the paper, we always treat (3.1) and (3.8) as two equivalent
formulations with P =M\top M and Q=L\top L.

It is shown that \scrN (MA) \cap \scrN (L) = \{ \scrP \scrN (MA)(In  - (L\scrP \scrN (MA))
\dagger L\scrP \scrN (MA))z : z \in 

\BbbR n\} , and x\dagger := (In  - (L\scrP \scrN (MA))
\dagger L)(MA)\dagger Mb is 2-orthogonal to \scrN (MA) \cap \scrN (L);

thereby it is the minimum 2-norm solution of (3.8). To describe the map that takes
b to x\dagger , define the matrix

A\dagger 
ML := (In  - (L\scrP \scrN (MA))

\dagger L)(MA)\dagger M,(3.10)

which is called the M,L-weighted pseudoinverse of A. Note that x\dagger = A\dagger 
MLb, and

note from Theorem 3.4 that x\dagger = \scrA \dagger \scrP \scrR (P )b for any b \in \BbbR m. We immediately have
the following result.

Theorem 3.6. Following the notation in Theorems 3.5 and 3.4, under the canon-
ical bases of \BbbR n and \BbbR m, it holds that

A\dagger 
ML =\scrA \dagger \scrP \scrR (P ).(3.11)

Theorem 3.6 establishes a connection between the weighted pseudoinverse and the
Moore--Penrose pseudoinverse. Specifically, if M has full column rank, then \scrP \scrR (P ) =

Im, and A\dagger 
ML is essentially the pseudoinverse \scrA \dagger . Using this new interpretation,

we derive the following ``generalized"" Moore--Penrose equations to characterize the
weighted pseudoinverse.

Theorem 3.7. For the weighted pseudoinverse X :=A\dagger 
ML, the following general-

ized Moore--Penrose equations hold:\left\{               

XAX =X,

MAXA=MA,

(M\top MAX)\top =M\top MAX,

(GXAG\dagger )\top =XA,

XM\dagger M =X.

(3.12)

Moreover, A\dagger 
ML is the unique solution of the above matrix equations.
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942 HAIBO LI

Proof. Using (3.11) and \scrP \scrR (P ) = \scrP \scrN (P )\bot = \scrP \scrN (M)\bot = M\dagger M , the fifth identity
immediately follows. We use the identities (2.4) to prove the first four identities. Since
\scrA \dagger \scrA \scrA \dagger =\scrA \dagger , for any u\in \BbbR m under the canonical basis, it holds that

A\dagger 
MLu=\scrA \dagger \scrP \scrR (P )u=\scrA \dagger \scrA \scrA \dagger \scrP \scrR (P )u=\scrA \dagger \scrP \scrR (P )AA\dagger 

MLu=A\dagger 
MLAA\dagger 

MLu,

which implies the first identity. Notice that \scrP \scrR (P )A\scrP \scrN (G)v = P \dagger PA\scrP \scrN (G)v = 0 due
to \scrN (G) \subseteq \scrN (A\top PA), implying that \scrP \scrR (P )Av = \scrP \scrR (P )A\scrP \scrR (G)v for any v \in \BbbR n.
Therefore, it holds that

\scrP \scrR (P )Av=\scrA \scrP \scrR (G)v=\scrA \scrA \dagger \scrA \scrP \scrR (G)v

=\scrP \scrR (P )A\scrA \dagger \scrP \scrR (P )A\scrP \scrR (G)v=\scrP \scrR (P )AA\dagger 
MLAv.

This implies M\dagger MA = M\dagger MAA\dagger 
MLA, leading to the second identity. For the third

identity, use the relation

\langle \scrA \scrA \dagger \scrP \scrR (P )u,\scrP \scrR (P )u
\prime \rangle P = \langle \scrP \scrR (P )u, (\scrA \scrA \dagger )\ast \scrP \scrR (P )u

\prime \rangle P

for any u,u\prime \in \BbbR m, which is equivalent to\Bigl( 
\scrP \scrR (P )AA\dagger 

MLu
\Bigr) \top 

P\scrP \scrR (P )u
\prime = (\scrP \scrR (P )u)

\top P (\scrA \scrA \dagger )\ast \scrP \scrR (P )u
\prime 

\leftrightarrow u\top 
\Bigl( 
AA\dagger 

ML

\Bigr) \top 
Pu\prime = u\top P (\scrA \scrA \dagger )\ast \scrP \scrR (P )u

\prime .

It follows that P (\scrA \scrA \dagger )\ast \scrP \scrR (P )u
\prime = (AA\dagger 

ML)
\top Pu\prime for any u\prime \in \BbbR m. Using the fourth

identity of (2.4), which implies (\scrA \scrA \dagger )\ast =\scrA \scrA \dagger , we have

PAA\dagger 
MLu

\prime = P\scrA \scrA \dagger \scrP \scrR (P )u
\prime =

\Bigl( 
AA\dagger 

ML

\Bigr) \top 
Pu\prime ,

leading to (AA\dagger 
ML)

\top M\top M =M\top MAA\dagger 
ML, which is just the third identity. For the

fourth identity, use the relation

\langle \scrA \dagger \scrA \scrP \scrR (G)v,\scrP \scrR (G)v
\prime \rangle G = \langle \scrP \scrR (G)v, (\scrA \dagger \scrA )\ast \scrP \scrR (G)v

\prime \rangle G

for any v, v\prime \in \BbbR n, which is equivalent to\Bigl( 
A\dagger 

MLA\scrP \scrR (G)v
\Bigr) \top 

G\scrP \scrR (G)v
\prime = (\scrP \scrR (G)v)

\top G(\scrA \dagger \scrA )\ast \scrP \scrR (G)v
\prime 

\leftrightarrow v\top (A\dagger 
MLA)\top Gv\prime = v\top G(\scrA \dagger \scrA )\ast \scrP \scrR (G)v

\prime ,

where we have used \scrP \scrR (P )A\scrP \scrR (G)v = \scrP \scrR (P )Av. It follows that G(\scrA \dagger \scrA )\ast \scrP \scrR (G)v
\prime =

(A\dagger 
MLA)\top Gv\prime for any v\prime \in \BbbR n. Using the third identity of (2.4), which implies

(\scrA \dagger \scrA )\ast =\scrA \dagger \scrA , we have

GA\dagger 
MLAv\prime =G\scrA \dagger \scrA \scrP \scrR (G)v

\prime =
\Bigl( 
A\dagger 

MLA
\Bigr) \top 

Gv\prime ,

leading to A\dagger 
MLAv\prime =G\dagger GA\dagger 

MLAv\prime =G\dagger (A\dagger 
MLA)\top Gv\prime . Thus, it holds that A\dagger 

MLA=

G\dagger (A\dagger 
MLA)\top G, which is the fourth identity.

To show that X is unique, first we prove that if X satisfies the first four identities,
then X must satisfy

\scrP \scrR (G)X =X.(3.13)
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 943

Using the first and fourth identities, we get

G\dagger GX =G\dagger GXAX =G\dagger G(G\dagger A\top X\top G)X =G\dagger A\top X\top GX =XAX =X.

Suppose Y is another matrix satisfying equations (3.12); then Y also satisfies (3.13).
Note that the fifth identity implies X =X\scrP \scrR (P ) =XP \dagger P . It follows that

X = (XA)X =
\bigl( 
GX\scrP \scrR (P )AG\dagger \bigr) \top X =

\bigl( 
\scrP \scrR (P )AG\dagger \bigr) \top X\top GX

(1)
=

\bigl( 
\scrP \scrR (P )A\scrP \scrR (G)Y AG\dagger \bigr) \top X\top GX =

\bigl( 
G\dagger A\top Y \top \scrP \scrR (G)

\bigr) 
A\top (X\scrP \scrR (P ))

\top GX

(2)
= Y AG\dagger A\top X\top GX = Y A(XA)X = Y AX = Y AY AX = (Y P \dagger P )AY AX

= Y P \dagger (PAY )\top AX = Y P \dagger Y \top A\top PAX = Y (X\top A\top PAY P \dagger )\top 

= Y (PAXAY P \dagger )\top = Y (PAY P \dagger )\top 
(3)
= Y \scrP \scrR (P )AY = Y AY = Y,

where for ``
(1)
="" we use (3.13) and \scrP \scrR (P )A=\scrP \scrR (P )AY A due to the second identity, for

``
(2)
="" we use G\dagger A\top Y \top \scrP \scrR (G) = Y AG\dagger due to the fourth identity, and for ``

(3)
="" we use

(PAY P \dagger )\top =\scrP \scrR (P )AY due to the third identity. This proves the uniqueness of X.

In [8], the author presented four identities similar to the Moore--Penrose equations
of the pseudoinverse. The first three of them are identical to the first three listed in
(3.12), while the fourth identity is (L\top LXA)\top = L\top LXA. However, it remains an
open problem whether the weighted pseudoinverse is uniquely determined by these
four equations. In contrast, equations (3.12) completely characterize the weighted
pseudoinverse. The first four identities correspond to the Moore--Penrose equations
of a matrix, while the last identity describes an additional constraint on A\dagger 

ML arising
from M . Specifically, the fifth identity is trivial when M has full column rank.

The weighted pseudoinverse satisfies the following limit property.

Theorem 3.8. Following the notation in Theorems 3.5 and 3.6, let G=A\top PA+
Q. It holds that

lim
\delta \searrow 0

(A\top PA+ \delta G)\dagger A\top P =A\dagger 
ML.(3.14)

Proof. First we show that for any \delta > 0, under the canonical bases of \BbbR n and \BbbR m,
it holds for any u\in \scrR (P ) that

(\scrA \ast \scrA + \delta I) - 1\scrA \ast u= (A\top PA+ \delta G)\dagger A\top Pu.(3.15)

Notice that\scrN (A\top PA+\delta G) =\scrN (A\top PA)\cap \scrN (G) =\scrN (G), which leads to\scrR ((A\top PA+
\delta G)\dagger ) =\scrR (A\top PA+\delta G) =\scrR (G). Thus, we have (A\top PA+\delta G)\dagger A\top Pu\in (\scrR (G), \langle \cdot , \cdot \rangle G),
and we only need to prove (\scrA \ast \scrA + \delta I)(A\top PA+ \delta G)\dagger A\top Pu=\scrA \ast u. By Lemma 3.3,
we have

(\scrA \ast \scrA + \delta I)(A\top PA+ \delta G)\dagger A\top Pu=
\bigl( 
G\dagger A\top P\scrP \scrR (P )A+ \delta In

\bigr) 
(A\top PA+ \delta G)\dagger A\top Pu

=
\bigl( 
G\dagger A\top PA+ \delta In

\bigr) 
(A\top PA+ \delta G)\dagger A\top Pu=:w,

and \scrA \ast u=G\dagger A\top Pu. Therefore, we only need to show that w is the minimum 2-norm
solution of minx \| Gx - A\top Pu\| 2, which is equivalent to showing that w \in \scrN (G)\bot =
\scrR (G) and G\top Gw=G\top A\top Pu. Since \scrR (G\dagger ) =\scrR (G) and \scrR ((A\top PA+ \delta G)\dagger ) =\scrR (G),
it follows that w \in \scrR (G). Also, using G=G\top we have
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944 HAIBO LI

G\top Gw=GG
\bigl( 
G\dagger A\top PA+ \delta In

\bigr) 
(A\top PA+ \delta G)\dagger A\top Pu

=G(A\top PA+ \delta G)(A\top PA+ \delta G)\dagger A\top Pu

=G\scrP \scrR (A\top PA+\delta G)A
\top Pu

=G\scrP \scrR (G)A
\top Pu=G\top A\top Pu.

This proves (3.15).
By (3.15), for any b\in \BbbR m, it holds that

(\scrA \ast \scrA + \delta I) - 1\scrA \ast \scrP \scrR (P )b= (A\top PA+ \delta G)\dagger A\top P\scrP \scrR (P )b= (A\top PA+ \delta G)\dagger A\top Pb,

which indicates that (\scrA \ast \scrA +\delta I) - 1\scrA \ast \scrP \scrR (P ) = (A\top PA+\delta G)\dagger A\top P under the canonical
bases. Using Theorem 3.6 and (2.5), we obtain

lim
\delta \searrow 0

(A\top PA+ \delta G)\dagger A\top P =

\biggl( 
lim
\delta \searrow 0

(\scrA \ast \scrA + \delta I) - 1\scrA \ast 
\biggr) 
\scrP \scrR (P ) =\scrA \dagger \scrP \scrR (P ) =A\dagger 

ML.

This completes the proof.

In [8, Theorem 2.4], the author gave a similar limit property,

lim
\delta \searrow 0

(A\top PA+ \delta Q)\dagger A\top P =A\dagger 
ML,(3.16)

but did not include a proof. Notice that A\top PA + \delta G = (1 + \delta )(A\top PA + \delta 
1+\delta Q).

Therefore, (3.14) and (3.16) are equivalent.
In many scenarios, researchers are more interested in (3.8) with M = Im. In this

case, we have AIL = \scrA \dagger , which means that the I,L-weighted pseudoinverse of A is
nothing but the pseudoinverse of the linear operator \scrA . Moreover, it has a direct
relation with the GSVD of the matrix pair \{ A,L\} . Let us review the GSVD proposed
in [27].

Theorem 3.9 (GSVD). Let A \in \BbbR m\times n and L \in \BbbR p\times n. There exist orthogonal
matrices UA \in \BbbR m\times m, UL \in \BbbR p\times p and invertible matrix X \in \BbbR n\times n, such that the
GSVD of \{ A,L\} has the form

A=UA\Sigma AX
 - 1, L=UL\Sigma LX

 - 1,(3.17a)

with

\Sigma A =

\biggl( 
CA 0
r n - r

\biggr) 
m, \Sigma L =

\biggl( 
SL 0
r n - r

\biggr) 
p(3.17b)

and

CA =

\left(    
Iq1

Cq2

0
q1 q2 q3

\right)    q1
q2

m - q1  - q2

, SL =

\left(    
0

Sq2

Iq3
q1 q2 q3

\right)    p - r+ q1
q2
q3

,

(3.17c)

where q1 + q2 + q3 = r= rank((A\top ,L\top )\top ) and C\top 
ACA + S\top 

L SL = Ir.

In [8], the author shows that if \scrN (A)\cap \scrN (L) = \{ 0\} , then A\dagger 
IL =X\Sigma \dagger 

AU
\top 
A . In the

following result, we give a similar expression for A\dagger 
IL, which is applicable regardless

of whether \scrN (A)\cap \scrN (L) = \{ 0\} or not.
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 945

Theorem 3.10. For any two matrices A \in \BbbR m\times n and L \in \BbbR p\times n with the GSVD
as described in Theorem 3.9, let G=A\top A+L\top L. Then

A\dagger 
IL =\scrP \scrR (G)X\Sigma \dagger 

AU
\top 
A .(3.18)

Proof. First we prove that x :=X\Sigma \dagger 
AU

\top 
A b is a solution of (3.8). We only need to

verify that the two conditions in (3.2) are satisfied. Since AX =UA\Sigma A, we have

A\top (Ax - b) =X - \top \Sigma \top 
AU

\top 
A

\Bigl( 
UA\Sigma A\Sigma 

\dagger 
AU

\top 
A b - b

\Bigr) 
=X - \top 

\Bigl( 
\Sigma \top 

A\Sigma A\Sigma 
\dagger 
A  - \Sigma \top 

A

\Bigr) 
U\top 
A b= 0,

since we can easily verify that \Sigma \top 
A\Sigma A\Sigma 

\dagger 
A = \Sigma \top 

A. For the second condition in (3.2), if
we partition X as

X =

\biggl( 
X1 X2 X3 X4

q1 q2 q3 n - r

\biggr) 
n(3.19)

we can verify that \scrN (A\top A) =\scrN (A) =\scrR ((X3 X4)). On the other hand, it holds that
x\in \scrR (X\Sigma \dagger 

A) and

X\Sigma \dagger 
A =

\bigl( 
X1 X2 X3

\bigr) 
C\dagger 

A =
\bigl( 
X1 X2C

 - 1
q2 0

\bigr) 
,(3.20)

which means that x\in \scrR ((X1 X2)). Notice that

G=X - \top 
\biggl( \biggl( 

C\top 
ACA

0

\biggr) 
+

\biggl( 
S\top 
L SL

0

\biggr) \biggr) 
X - 1 =X - \top 

\biggl( 
Ir

0

\biggr) 
X - 1,

leading to X\top GX = ( Ir 0 ). Thus, \scrR (X4) = \scrN (G) and the columns of (X1 X2 X3)
are mutually G-orthonormal. It follows that x\top Gz = 0 for any z \in \scrN (A\top A) =
\scrR ((X3 X4)).

Note that \scrP \scrR (G)x = \scrP \scrR (G)X\Sigma \dagger 
AU

\top 
A b \in \scrR (G), which is the minimum 2-norm

solution of (3.8) for an arbitrary b\in \BbbR n. We immediately obtain (3.18).

This theorem provides a direct computational approach for A\dagger 
IL using the GSVD.

However, if the matrices are very large, computing the GSVD is extremely expensive.
In this case, we need an iterative approach to approximate A\dagger 

MLb for any given b.

4. Iterative method for computing weighted pseudoinverse. By Theorem
3.5 and (3.10), computing A\dagger 

MLb is equivalent to computing the minimum 2-norm
solution of the GLS problem (3.1). We aim to approximate the solution of the GLS
problem through an iterative process. The starting point comes from Theorem 3.4.
To solve the LS problem (3.6), we apply the GKB process to the operator \scrA between
the two Hilbert spaces \scrX and \scrY ; see [4] for the GKB for LS problems in Hilbert
spaces. Starting from the initial vector \scrP \scrR (P )b, the recursive relations of GKB can
be expressed as follows: \left\{     

\beta 1u1 =\scrP \scrR (P )b,

\alpha ivi =\scrA \ast ui  - \beta ivi - 1,

\beta i+1ui+1 =\scrA vi  - \alpha iui,

(4.1)

where ui \in \scrY and vi \in \scrX , and \alpha i and \beta i are positive scalars such that \| vi\| \scrX =
\| ui\| \scrY = 1. Note that v0 := 0 for the initial step. We remark that it is assumed that
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946 HAIBO LI

\scrP \scrR (P )b \not = 0; otherwise, the case is trivial because A\dagger 
MLb = 0. Using Lemma 3.3, we

present the matrix form of the above recursive relations:\left\{     
\beta 1u1 = PP \dagger b,

\alpha ivi =G\dagger A\top Pui  - \beta ivi - 1,

\beta i+1ui+1 = PP \dagger Avi  - \alpha iui.

(4.2)

Note that if G= In and P = Im, then the above recursive relations correspond to the
standard GKB process of the matrix A. We name the iterative process corresponding
to (4.2) the generalized Golub--Kahan bidiagonalization (gGKB). Before giving the
practical computation procedure, let us explore how to further reduce the computa-
tional cost. In fact, computations involving P \dagger can be avoided, as demonstrated by
the following result.

Lemma 4.1. For the recursive relations\left\{     
\beta 1\~u1 = b,

\alpha i\~vi =G\dagger A\top P \~ui  - \beta i\~vi - 1,

\beta i+1\~ui+1 =A\~vi  - \alpha i\~ui,

(4.3)

where \~v0 := 0 and the values of \alpha i and \beta i are the same as in (4.2), it follows that
vi = \~vi and ui = PP \dagger \~ui.

Proof. We prove it by mathematical induction. For i = 1, we have \beta 1PP \dagger \~u1 =
PP \dagger b = \beta 1u1, implying u1 = PP \dagger \~u1. Note that \~v0 = v0 and Pu1 = PPP \dagger \~u1 = P \~u1.
It follows that \alpha 1v1 = \alpha 1\~v1, meaning v1 = \~v1. Now assume vi = \~vi and ui = PP \dagger \~ui

for i\geq 1. Then

PP \dagger Avi  - \alpha iui = PP \dagger A\~vi  - \alpha iPP \dagger \~ui = PP \dagger (A\~vi  - \alpha i\~ui) = \beta i+1PP \dagger \~ui+1.

Thus, we have \beta i+1ui+1 = \beta i+1PP \dagger \~ui+1, meaning ui+1 = PP \dagger \~ui+1. Similar to the
proof for i= 1, using Pui+1 = PPP \dagger \~ui+1 = P \~ui+1, we can also prove vi+1 = \~vi+1.

Using the above result, we can simplify the computation if we only need to gen-
erate vi but not ui. At the initial step, we have

\beta 1 = \| PP \dagger b\| P = [(PP \dagger b)\top PPP \dagger b]1/2 = (b\top Pb)1/2.

At the ith step, to compute \beta i+1, let ri =Avi - \alpha i\~ui. Then we have \beta i+1ui+1 = PP \dagger ri.
Thus, it follows that

\beta i+1 =
\bigm\| \bigm\| PP \dagger ri

\bigm\| \bigm\| 
P
=
\Bigl[ \bigl( 
PP \dagger ri

\bigr) \top 
PPP \dagger ri

\Bigr] 1/2
=
\bigl( 
r\top i Pri

\bigr) 1/2
.

Now we can give the whole iterative procedure of the gGKB process, as shown in
Algorithm 4.1.

Note that at each iteration of gGKB we need to compute G\dagger \=s. For large-scale
matrices, it is generally impractical to obtain G\dagger directly. If G is sparse and pos-
itive definite, we can first apply the sparse Cholesky factorization to G and then
compute G\dagger . Otherwise, using the fact that G\dagger is the minimum 2-norm solution of
mins\in \BbbR n \| Gs - \=s\| 2, we can apply the iterative solver LSQR to mins\in \BbbR n \| Gs - \=s\| 2 to
approximate G\dagger \=s [28].
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 947

Algorithm 4.1. Generalized Golub--Kahan bidiagonalization (gGKB).

Input: A\in \BbbR m\times n, P \in \BbbR m\times m, Q\in \BbbR n\times n, b\in \BbbR m

1: Form G=A\top PA+Q
2: Compute \beta 1 = (b\top Pb)1/2, \~u1 = b/\beta 1

3: Compute \=s=A\top Pu1, s=G\dagger \=s
4: \alpha 1 = (s\top Gs)1/2, v1 = s/\alpha 1

5: for i= 1,2, . . . , k, do
6: r=Avi  - \alpha i\~ui

7: \beta i+1 = (r\top Pr)1/2, \~ui+1 = r/\beta i+1

8: \=s=A\top P \~ui+1, s=G\dagger \=s - \beta i+1vi
9: \alpha i+1 = (s\top Gs)1/2, vi+1 = s/\alpha i+1

10: end for

Output: \{ \alpha i, \beta i\} k+1
i=1 , \{ \~ui, vi\} k+1

i=1  \triangleleft ui = PP \dagger \~ui

We remark that in [20] the author generalized the GKB process for computing
nontrivial GSVD components of \{ A,L\} . Here the proposed gGKB process is used to
iteratively solve the GLS problem and is more versatile, as it can handle cases where
P is noninvertible.

The following result describes the subspaces generated by gGKB.

Proposition 4.2. The gGKB process generates vectors vi \in \scrR (G) and ui \in \scrR (P ),
and \{ vi\} ki=1 is a G-orthonormal basis of the Krylov subspace

\scrK k(G
\dagger A\top PA,G\dagger A\top Pb) = span\{ (G\dagger A\top PA)iG\dagger A\top Pb\} k - 1

i=0 ,(4.4)

and \{ ui\} ki=1 is a P -orthonormal basis of the Krylov subspace

\scrK k(PP \dagger AG\dagger A\top P,PP \dagger b) = PP \dagger span\{ (AG\dagger A\top P )ib\} k - 1
i=0 .(4.5)

Proof. The proof is based on the property of GKB for linear compact operators.
As demonstrated above, the gGKB of A is essentially the GKB of \scrA between the
two Hilbert spaces \scrX and \scrY . Therefore, the generated vectors satisfy vi \in \scrR (G) and
ui \in \scrR (P ), and \{ vi\} ki=1 and \{ ui\} ki=1 are G- and P -orthonormal bases of the Krylov
subspaces \scrK k(\scrA \ast \scrA ,\scrA \ast \scrP \scrR (P )b) and \scrK k(\scrA \scrA \ast ,\scrP \scrR (P )b), respectively. By Lemma 3.3,
we have

(\scrA \ast \scrA )i\scrA \ast \scrP \scrR (P )b= (G\dagger A\top PPP \dagger A)iG\dagger A\top PPP \dagger b= (G\dagger A\top PA)iG\dagger A\top Pb

and

(\scrA \scrA \ast )i\scrP \scrR (P )b= (PP \dagger AG\dagger A\top P )iPP \dagger b= PP \dagger (AG\dagger A\top P )ib.

The desired result immediately follows.

Using (4.3), one can also verify that span\{ \~ui\} ki=1 = \scrK k(AG\dagger A\top P, b). Since the
dimensions of \scrX and \scrY are rG = rank(G) and rP = rank(P ), respectively, by Propo-
sition 4.2 the gGKB process will eventually terminate in at most min\{ rG, rP \} steps.
Here ``terminate"" means that \alpha i or \beta i equals zero at the current step, thereby the
Krylov subspaces cannot expand any longer. The ``terminate step"" can be defined as

kt =min\{ k : \alpha k+1\beta k+1 = 0\} .(4.6)
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948 HAIBO LI

Suppose gGKB does not terminate before the kth iteration, i.e., \alpha i\beta i \not = 0 for 1\leq i\leq k.
Then the k-step gGKB process generates a G-orthonormal matrix Vk = (v1, . . . , vk) \in 
\BbbR n\times k and a P -orthonormal matrix Uk = (u1, . . . , uk) \in \BbbR m\times k, which satisfy the rela-
tions \left\{     

\beta 1Uk+1e1 = PP \dagger b,

PP \dagger AVk =Uk+1Bk,

G\dagger A\top PUk+1 = VkB
T
k + \alpha k+1vk+1e

\top 
k+1,

(4.7)

where e1 and ek+1 are the first and (k+ 1)th columns of Ik+1, and

Bk =

\left(        

\alpha 1

\beta 2 \alpha 2

\beta 3
. . .

. . . \alpha k

\beta k+1

\right)        \in \BbbR 
(k+1)\times k(4.8)

has full column rank. Note that it may happens that \beta k+1 = 0, which means that
gGKB terminates just at the kth step and uk+1 = 0.

Based on gGKB, we can design an iterative approach for solving (3.6), which will
also solve (3.1). Note that under the canonical bases, we can rewrite (3.6) as

min
x\in \scrR (G)

\| PP \dagger A - PP \dagger b\| P .(4.9)

From k = 1 onwards, we seek an approximate solution to (4.9) in the subspace
span\{ Vk\} . By letting x= Vky with y \in \BbbR k, we obtain from (4.7) that

min
x\in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ Vk\} 

\| PP \dagger Ax - PP \dagger b\| P = min
y\in \BbbR k

\bigm\| \bigm\| PP \dagger AVky - \beta 1Uk+1e1
\bigm\| \bigm\| 
P

= min
y\in \BbbR k

\| Uk+1(Bky - \beta 1e1)\| P = min
y\in \BbbR k

\| Bky - \beta 1e1\| 2,

where we have used that \{ ui\} are P -orthonormal. Note that

argmin
y\in \BbbR k

\| Bky - \beta 1e1\| 2 =B\dagger 
k\beta 1e1 =: yk

since Bk has full column rank. Therefore, at the kth iteration, the iterative approxi-
mation to (4.9) is given by

xk = Vkyk = VkB
\dagger 
k\beta 1e1.(4.10)

The above approach is very similar to the LSQR algorithm for the standard
LS problem [28]. Moreover, the bidiagonal structure of Bk enables the design of a
recursive procedure to update xk step by step, without explicitly computing B\dagger 

k\beta 1e1
at each iteration. This procedure is based on the Givens QR factorization of Bk; see
[28, section 4.1] for details. Note that ui is not required for computing xk, so there is
no need to compute PP \dagger in gGKB. We summarize the iterative algorithm for solving
(4.9) in Algorithm 4.2, which is named the generalized LSQR (gLSQR) algorithm.

As the iteration proceeds, the kth solution xk gradually approximates the true
solution of (4.9), and consequently of (3.1). We now state this property precisely.
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 949

Algorithm 4.2. Generalized LSQR (gLSQR).

Input: A\in \BbbR m\times n, P \in \BbbR m\times m, Q\in \BbbR n\times n, b\in \BbbR m

1: (Initialization)
2: Compute \beta 1\~u1 = b, \alpha 1v1 =G\dagger A\top P \~u1

3: Set x0 = 0, w1 = v1, \=\phi 1 = \beta 1, \=\rho 1 = \alpha 1

4: for i= 1,2, . . . until convergence, do
5: (Applying the gGKB process)
6: \beta i+1\~ui+1 =Avi  - \alpha i\~ui

7: \alpha i+1vi+1 =G\dagger A\top P \~ui+1  - \beta i+1vi
8: (Applying the Givens QR factorization to \bfitB \bfitk )
9: \rho i = (\=\rho 2i + \beta 2

i+1)
1/2

10: ci = \=\rho i/\rho i
11: si = \beta i+1/\rho i
12: \theta i+1 = si\alpha i+1

13: \=\rho i+1 = - ci\alpha i+1

14: \phi i = ci \=\phi i

15: \=\phi i+1 = si \=\phi i

16: (Updating the solution)
17: xi = xi - 1 + (\phi i/\rho i)wi

18: wi+1 = vi+1  - (\theta i+1/\rho i)wi

19: end for
Output: Approximate minimum 2-norm solution of (3.1): xk

Theorem 4.3. Suppose the gGKB process terminates at step kt. Then xkt
ob-

tained by gLSQR is the exact minimum 2-norm solution of (3.1).

Proof. Since xkt \in span\{ Vk\} \subseteq \scrR (G), by Theorem 3.1, we only need to verify that
xkt satisfies the two conditions in (3.2).

Step 1: Prove A\top P (Axkt
 - b) = 0. By writing xkt

as xkt
= Vkt

ykt
, we obtain from

(4.7) that

P (Axkt  - b) = P\scrP \scrR (P )(Axkt
 - b) = PUkt+1(Bkt

yt  - \beta 1e1).

Using (4.7) again, we get

G\dagger A\top P (Axkt
 - b) =G\dagger A\top PUkt+1(Bkt

ykt
 - \beta 1e1)

=
\bigl( 
Vkt

B\top 
kt

+ \alpha kt+1vkt+1e
\top 
k+1

\bigr) 
(Bkt

ykt
 - \beta 1e1)

= Vkt

\bigl( 
B\top 

kt
Bktykt  - B\top 

kt
\beta 1e1

\bigr) 
+ \alpha kt+1\beta kt+1vkt+1e

\top 
kt
ykt

= \alpha kt+1\beta kt+1vkt+1e
\top 
kt
ykt

= 0,

since \alpha kt+1\beta kt+1 = 0 and B\top 
kt
Bkt

ykt
=B\top 

kt
\beta 1e1 due to ykt

= argminy \| Bkt
y  - \beta 1e1\| 2.

Note that xkt
\in \scrR (G). Using the same approach as in the proof (Step 1) of

Theorem 3.4, we obtain A\top P (Axkt
 - b) = 0.

Step 2: Prove x\top 
kt
Gz = 0 for any z \in \scrN (A\top PA). By Proposition 4.2, we have

xkt \in \scrR (Vkt) \subseteq \scrR (G\dagger A\top P ). Let xkt = G\dagger A\top Pw. Then for any z \in \scrN (A\top PA) we
have

x\top 
kt
Gz = (G\dagger A\top Pw)\top Gz =w\top PAG\dagger Gz.
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950 HAIBO LI

Recall that \scrP \scrR (G)(\scrN (A\top PA))\subseteq \scrN (A\top PA) =\scrN (LPA), which has been proved in the
proof of Theorem 3.1. Thus, PAG\dagger Gz =L\top 

p LPA\scrP \scrR (G)z = 0, leading to x\top 
kt
Gz = 0.

An iterative algorithm should include a stopping criterion to decide whether the
current iteration can be stopped to obtain a solution with acceptable approximation
accuracy. Notice from Theorem 3.4 that \scrA \ast (\scrA xk - \scrP \scrR (P )b) =:\scrA \ast rk would be zero at
the iteration where the accurate solution is computed. The scaling invariant quantity
\| \scrA \ast rk\| G/(\| \scrA \| \| \scrP \scrR (P )b\| P ) can be used to measure the accuracy of the iterative solu-

tion, where \| \scrA \| is the operator norm defined as \| \scrA \| := max v\in \scrR (G)
v \not =\bfzero 

\| \scrA v\| P

\| v\| G
. Thus, we

can use

\| \scrA \ast rk\| G
\| \scrA \| \| \scrP \scrR (P )b\| P

\leq \ttt \tto \ttl (4.11)

as a stopping criterion for gLSQR. We note that (4.11) is analogous to the stopping
criterion of LSQR for the standard LS problem minx \| Ax - b\| 2, which is expressed as
\| A\top rk\| 2

\| A\| 2\| rk\| 2
\leq \ttt \tto \ttl ; see [28, section 6]. To ensure computational practicality, we discuss

how to compute the quantities in (4.11). It is obvious that \| \scrP \scrR (P )b\| P = (b\top Pb)1/2.
Using Lemma 3.3 and the procedure in the proof of Theorem 4.3, we get

\| \scrA \ast rk\| G = \| G\dagger A\top P\scrP \scrR (P )(Axk  - b)\| G =
\bigm\| \bigm\| \alpha k+1\beta k+1vk+1e

\top 
k yk

\bigm\| \bigm\| 
G
= \alpha k+1\beta k+1

\bigm| \bigm| e\top k yk\bigm| \bigm| ,
where we have used \| vi\| G = 1. Therefore, \| \scrA \ast rk\| G can be computed quickly with
very little additional cost.

To obtain an accurate estimate of \| \scrA \| , here we consider the GLS problem (3.8)
with M = Im for simplicity. Note that any GLS problem can be reduced to this form
by substituting A\leftarrow MA and b\leftarrow Mb. We give a matrix expression for \| \scrA \| using
the GSVD of \{ A,L\} .

Proposition 4.4. Suppose the GSVD of \{ A,L\} has the form (3.17). Then we
have

\| \scrA \| = \sigma \mathrm{m}\mathrm{a}\mathrm{x}(CA),(4.12)

which is the largest singular value of CA.

Proof. Using the expression of \scrA under the canonical bases, we have

\| \scrA \| = max
v\in \scrR (G)

v \not =\bfzero 

\| \scrA v\| 2
\| v\| G

= max
v\in \scrR (G)

v \not =\bfzero 

v\top A\top Av

v\top Gv
.

In the GSVD of \{ A,L\} , we use the partition of X as described in (3.19) and denote\widetilde X1 = (X1 X2 X3). In the proof of Theorem 3.10 we have shown that \scrN (G) =\scrR (X4).
Now we show \scrR (G) = \scrP \scrR (G)\scrR ( \widetilde X1). We only need to show dim(\scrP \scrR (G)\scrR ( \widetilde X1)) =

r = rank(G), which is equivalent to \scrP \scrR (G)
\widetilde X1 having full column rank. Suppose

\scrP \scrR (G)
\widetilde X1w = 0 for a w \in \BbbR r. Then z := \widetilde X1w \in \scrN (G). Thus, we have 0 = z\top Gz =

w\top \widetilde X\top 
1 G \widetilde X1w=w\top w, leading to w= 0 and z = 0. This proves that \scrP \scrR (G)

\widetilde X1 has full
column rank.

For any v \in \scrR (G), write v=\scrP \scrR (G)
\widetilde X1y with y \in \BbbR r. Then we have

v\top Gv= y\top \widetilde X\top 
1 GG\dagger GGG\dagger \widetilde X1y= y\top \widetilde X\top 

1 G \widetilde X1y= \| y\| 2,

and

Av=A\scrP \scrR (G)
\widetilde X1y=A \widetilde X1y - A\scrP \scrN (G)

\widetilde X1y=A \widetilde X1y=UACAy,
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NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 951

where we have used \scrN (G)\subseteq \scrN (A). It follows that v\top A\top Av = \| UACAy\| 2 = \| CAy\| 2.
Therefore, we obtain

\| \scrA \| =max
y\in \BbbR r
y \not =\bfzero 

\| CAy\| 2
\| y\| 2

= \| CA\| 2 = \sigma \mathrm{m}\mathrm{a}\mathrm{x}(CA).

The proof is completed.

Notice that CA is a diagonal matrix (not necessarily square). Thus, \sigma \mathrm{m}\mathrm{a}\mathrm{x}(CA) is
the maximum value of the diagonals of CA. For a regular matrix pair \{ A,L\} , i.e., G
is nonsingular, several iterative algorithms exist that can rapidly compute the largest
generalized singular values of \{ A,L\} [18, 36], thereby providing an accurate estimate
of \| \scrA \| . For a nonregular \{ A,L\} , the method proposed in [20] can accomplish the
same task.

To the best of our knowledge, gLSQR is the first iterative method designed to
solve (3.8) and, consequently, to approximate A\dagger 

MLb for any given b \in \BbbR n. A direct

method for computing A\dagger 
ML is proposed in [8], which relies on the QR factorization

and requires a basis for \scrN (L). This limits its applicability to large-scale problems.
In contrast, gLSQR does not require any matrix factorizations. Instead, the main
computational bottleneck is the need to approximate G\dagger s at each iteration. As will
be shown in the experiments, the final accuracy of A\dagger 

MLb is influenced by the accuracy
for approximating G\dagger s.

At the end of this section, we present a diagram in Figure 4.1 to summarize the
main ideas and findings of this paper. It illustrates how various concepts related to
the LS problem and pseudoinverse have been generalized. Our results reveal the close
connections between the GLS problem, weighted pseudoinverse, GSVD, and gLSQR.
These insights improve theoretical understanding and offer tools for developing more
effective computational methods for related applications.

Fig. 4.1. The generalization of several concepts is illustrated as follows: PI and MPE stand
for the Moore--Penrose pseudoinverse and Moore--Penrose equations, respectively. WPI and gMPE
refer to the weighted pseudoinverse and generalized Moore--Penrose equations, respectively.

5. Numerical experiments. We use several numerical examples to demon-
strate the performance of gLSQR for solving GLS problems. All the experiments are
performed in MATLAB R2023b using double precision. We note that much of the
existing literature on GLS problems is lacking in numerical results, partly because
constructing nontrivial test problems, especially for large-scale matrices, is challeng-
ing. Based on Theorem 3.1, we construct a test GLS problem using the following
steps:

(1) Choose two matrices A \in \BbbR m\times n and L \in \BbbR p\times n, where m \leq n. Compute
G=A\top A+L\top L.

(2) Construct a vector w \in \scrR (G). Compute a matrix B with columns that form
a basis for \scrN (A). The true solution is constructed as

x\dagger =w - B(B\top GB) - 1B\top Gw.(5.1)
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(3) Choose a vector z \in \scrR (A)\bot . Let the right-hand side vector be b=Ax\dagger + z.
Note that (5.1) ensures that x\dagger satisfies (3.2). According to Theorem 3.1, x\dagger is the
unique minimum 2-norm solution of (3.8) with M = Im. For large-scale matrices,
computing (5.1) can be very challenging. Therefore, in our experiments, we only test
small- and medium-sized problems.

Experiment 1. The matrix A \in \BbbR 2324\times 4486, named lp bnl2, comes from linear
programming problems and is sourced from the SuiteSparse Matrix Collection [7].
The matrix L=L1 is defined as the scaled discretization of the first-order differential
operator:

L1 =

\left(   1  - 1
. . .

. . .

1  - 1

\right)   \in \BbbR (n - 1)\times n.

In this setup, G is positive definite. We construct w \in \BbbR n by evaluating the function
f(t) = t on a uniform grid over the interval [0,1], i.e., w(k) = k - 1

n - 1 for k = 1, . . . , n.
To obtain the vector z, we compute the projection of the random vector \ttr \tta \ttn \ttd \ttn (\ttm ,\ttone )
onto \scrR (A)\bot . In this experiment, we directly compute G\dagger \=s at each iteration of gGKB
to simulate the exact computation.

The computational results obtained by gLSQR are displayed in Figures 5.1 and 5.2.
For the residual norm, we use the directly computed quantity, i.e., the left-hand side
of (4.11), as the true value and \alpha k+1\beta k+1| e\top k yk| /(\sigma \mathrm{m}\mathrm{a}\mathrm{x}(CA)\| b\| 2) for its estimation.
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Fig. 5.1. Convergence history of gLSQR for the GLS problem with matrices \{ lp bnl2, L1\} : (a)
relative error of iterative solutions; (b) directly computed relative residual norm and its estimation.
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Fig. 5.2. True and computed solutions of the GLS problem with matrices \{ lp bnl2, L1\} .
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These two quantities should be the same if all computations are performed accurately.
This can be observed from Figure 5.1(b), where the value gradually decreases at a
very low level. The relative error curve shows that x\dagger is gradually approximated by
xk. We plot the curve corresponding to xk at the final iteration alongside x\dagger , which
shows that the two solutions match very closely.

Experiment 2. The matrix A \in \BbbR 6334\times 7742 named TF15 arising from linear pro-
gramming problems is taken from [7]. The matrix L = L2 is defined as the scaled
discretization of the second-order differential operator:

L2 =

\left(    - 1 2  - 1
. . .

. . .
. . .

 - 1 2  - 1

\right)   \in \BbbR (n - 2)\times n.

In this set, G is positive definite. We construct w \in \BbbR n by evaluating the function
f(t) = t3  - t2 on a uniform grid over the interval [ - 1,1], i.e., w(k) = ( 2(k - 1)

n - 1  - 1)3  - 
( 2(k - 1)

n - 1  - 1)2 for k = 1, . . . , n. In this experiment, we directly compute G\dagger \=s at each
iteration of gGKB to simulate the exact computation.

The computational results obtained with gLSQR are presented in Figures 5.3
and 5.4, which are very similar to the first experiment. The results demonstrate the
effectiveness of gLSQR in iteratively solving the GLS problem.

Experiment 3. The matrix A\in \BbbR 3700\times 8291, named ch and originating from linear
programming problems, is taken from [7]. Here, L is set as L = L1. In this set, G
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Fig. 5.3. Convergence history of gLSQR for the GLS problem with matrices \{ TF15, L2\} : (a)
relative error of iterative solutions; (b) directly computed relative residual norm and its estimation.
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Fig. 5.4. True and computed solutions of the GLS problem with matrices \{ TF15, L2\} .
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Fig. 5.5. Computed results of the GLS problem with matrices \{ ch, L1\} by gLSQR, where at each
iteration we use LSQR to approximate s = G\dagger \=s by solving mins \| Gs  - \=s\| 2 with different stopping
tolerance value \tau : (a) relative error of iterative solutions with different \tau ; (b) true and computed
solutions with \tau = 10 - 8.

is positive definite. We construct w \in \BbbR n by evaluating the function f(t) = sin(5t) - 
2cos(t) on a uniform grid over the interval [ - \pi ,\pi ], i.e., w(k) = sin( 10\pi (k - 1)

n - 1  - 5\pi ) - 
2cos( 2\pi (k - 1)

n - 1  - \pi ) for k= 1, . . . , n.

We use this example to examine how the inaccurate computation of s=G\dagger \=s affects
the numerical behavior of gLSQR. At each iteration, we approximately compute s=
G\dagger \=s using the MATLAB built-in function \ttl \tts \ttq \ttr .\ttm to iteratively solve mins \| Gs - \=s\| 2.
The stopping tolerance value \tau for \ttl \tts \ttq \ttr .\ttm is set to three different values. From
Figure 5.5(a), we observe that the value of \tau significantly impacts the final accuracy
of xk, with the accuracy being approximately on the order of \scrO (\tau ). We suspect that
the final accuracy may be influenced by both the value of \tau and the condition number
of G. This should be explored further in future work.

Although constructing a very large-scale test example is difficult, we note that
the main computational bottleneck of gLSQR is the computation of G\dagger \=s. If a sparse
Cholesky factorization of G is available, it can be computed using a direct solver.
Otherwise, an iterative solver such as LSQR or conjugate gradient (CG) is the only
option. In this case, employing an effective preconditioner is crucial to accelerate
the convergence for solving mins \| Gs  - \=s\| 2. Future work will involve constructing
more large-scale test problems to evaluate the algorithm and exploring additional
theoretical and computational aspects to enhance the performance of gLSQR.

6. Conclusion. In this paper, we provide a new interpretation of the weighted
pseudoinverse arising from the GLS problem min\| Lx\| 2 such that \| M(Ax  - b)\| 2 =
min. By introducing the operator \scrA : \scrX = (\scrR (G), \langle \cdot , \cdot \rangle G) \rightarrow (\scrR (P ), \langle \cdot , \cdot \rangle P ), v \mapsto \rightarrow 
\scrP \scrR (P )Av with P =M\top M and G=A\top PA+L\top L, we have shown that the minimum 2-
norm solution of the GLS problem is the minimum \scrX -norm solution of the LS problem
minx\in \scrX \| \scrA x - \scrP \scrR (P )b\| P . Consequently, the weighted pseudoinverse A\dagger 

ML is shown to
be equivalent to \scrA \dagger \scrP \scrR (P ) under the canonical bases. With this new interpretation of

A\dagger 
ML, we have derived a set of generalized Moore--Penrose equations that completely

characterize the weighted pseudoinverse, and provided a closed-form expression for
A\dagger 

IL using the GSVD of \{ A,L\} . We have generalized the GKB process and proposed

the gLSQR algorithm for iteratively computing A\dagger 
MLb for any given b \in \BbbR m, which

allows us to compute the minimum 2-norm solution of the GLS problem. Several
numerical examples have been used to test the gLSQR algorithm, demonstrating that
it can compute the solution of a GLS problem with satisfactory accuracy.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

4/
25

 to
 1

28
.2

50
.0

.3
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



NEW INTERPRETATION OF WEIGHTED PSEUDOINVERSE 955

The results in this paper suggest that the closely related concepts---GLS, weighted
pseudoinverse, GSVD, gGKB, and gLSQR---are appropriate generalizations of the
classical concepts LS, pseudoinverse, SVD, GKB, and LSQR. This provides new tools
for both analysis and computation of related applications.
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