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Abstract    The  growing  demand  for  semiconductor  devices  simulation  poses  a  big  challenge  for  large-scale  electronic

structure calculations. Among various methods, the linearly scaling three-dimensional fragment (LS3DF) method exhibits

excellent scalability in large-scale simulations. Based on algorithmic and system-level optimizations, we propose a highly

scalable and highly efficient implementation of LS3DF on the Sugon supercomputer, a domestic supercomputer equipped

with deep computing units. In terms of algorithmic optimizations, the original all-band conjugate gradient algorithm is re-

fined to achieve faster convergence, and mixed precision computing is adopted to increase overall efficiency. In terms of

system-level optimizations, the original two-layer parallel structure is replaced by a coarse-grained parallel method. Opti-

mization strategies such as multi-stream, kernel fusion, and redundant computation removal are proposed to increase fur-

ther utilization of the computational power provided by the heterogeneous machines. As a result, our optimized LS3DF

can scale to a 10-million silicon atoms system, attaining a peak performance of 34.8 PFLOPS (21.2% of the peak). All the

improvements can be adapted to the next-generation supercomputers for larger simulations.

Keywords    deep computing unit, electronic structure, high-performance computing, linearly scaling three-dimensional

fragment (LS3DF), Sugon supercomputer

 
 

1    Introduction

The exponential  increase of  the computing power

described by Moore's law has been steadily driven by

fundamental  advances  in  material  sciences.  To  date,

semiconductor  devices  such  as  field-effect  transistors

(FETs) are the cornerstone of integrated circuits (IC)

and  the  entire  information  industry.  As  the  size  of

FETs shrinks to less than 10 nm[1], quantum mechan-

ics  phenomena  (electronic  structure,  band  gap  open-
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ing, band alignment, and charge transfer[2]) are play-

ing a more essential role in modeling next-generation

semiconductor devices. To model the quantum effects,

the governing equation of quantum mechanics such as

Kohn-Sham  Density  Functional  Theory  (KS-DFT)[3]

is  evaluated.  One  fundamental  challenge  is  the  com-

putational  and  memory  requirement  of  large-scale

problems  on  high-performance  supercomputers.  The

computational  cost  of  DFT  scales  cubically  with  re-

spect  to  the  system  size,  which  leads  to  that  most

practical  DFT  softwares  such  as  the  plane  wave

methods[4, 5] and  finite  elements  methods[6–9] can

rarely reach a few thousands of atoms on current su-

percomputers[10].  Only  with  the  development  of  low

complexity  and  scalable  new  algorithms  in  the  past

decade,  it  is  now possible  to  carry  out  DFT calcula-

tion  for  systems  with  tens  of  thousands  of  atoms.

However, for a silicon FET of 100 nm 40 nm 7 nm,

the system size can easily reach 1 million atoms.

Many  efforts  are  endeavored  to  model  large-scale

materials from first-principles calculations, as listed in

Table 1. One notable point is the development of the

conventional cubic scaling methods. For example, Gy-

gi et  al.[11] calculated  a  Mo  system  of  1k  atoms  in

2006  with  QBox,  and  DFT-FE[10] reaches  up  to  11k

atoms  on  Summit  in  2019,  attaining  a  peak  perfor-

mance of  46 PFLOPS. Note that  the system size  in-

creases by a factor of 11 from 2006 to 2019, while the

theoretical  peak  of  the  top  supercomputers  increased

by a factor of  550.  This  nearly aligns with the cubic

scaling  curve  of  the  conventional  methods.  However,

to reach the size of a typical semiconductor device of

1 million atoms, the corresponding floating point op-

erations  of  individual  self-consistent  filed  calculation

can reach the order of EFLOPS, which is already be-

yond the scope of the top supercomputers available.

Besides  the  conventional  cubic  scaling  methods,

low-scaling  methods  such  as  the  linearly  scaling  and

Fermi  operator  expansion  (FOE)  methods[20–22] are

more  favorable  in  effectively  calculating  large-scale

calculations  with ab  initio accuracy.  The  RSDFT

code[13] uses  the  real-space  finite-difference  method

where  the  matrix  of  real-space  formulation  is  sparse

and  fast  Fourier  transformation  (FFT)  is  unneces-

sary  for  Hamiltonian  matrix  operations,  which  pro-

vides a great advantage by easing the communication

burden in parallel computations; it can calculate elec-

tronic  states  in  a  vast  range  of  physical  systems  in-

cluding crystals, interfaces, molecules, etc. The CP2K

code[15] uses a plane wave auxiliary basis set within a

Gaussian orbital scheme that sets it apart from most

other DFT softwares, and the linearly scaling compu-

tational complexity benefits from the use of Spatially

localized  molecular  orbitals;  it  can  perform atomistic

simulations  of  solid  state,  liquid,  molecular,  periodic,

material,  crystal,  and  biological  systems.  CON-
 

Table  1.    Performance Comparison of Massively Parallel DFT Software Packages on Modern Heterogeneous Supercomputers

Code Year Basis Eigensolver System Number of
Atoms

Machine Architecture Scale Peak
(FLOPS)

Qbox[11] 2006 PW Davidson Mo 1k BlueGene/L PowerPC 128k cores 207T

LS3DF[12] 2008 PW LS ZnTeO 16k BlueGene/R PowerPC 131k cores 108T

RSDFT[13] 2011 RS LS Si 107k K computer SPARC64 442k cores 3.1P

DFT-FE[10] 2019 RS-PW CheFSI Mg 11k Summit V100s 23k GPUs 46P

CONQUEST[14] 2020 NAOs LS Si 1M K computer SPARC64 200k cores \
CP2K[15] 2020 GAPW LS 2H O 1k PC2 Noctua 10k cores \
FHI-aims[16] 2021 NAOs LS

2 4 n

Polyethylene
(H[C H ] H)

500k New Sunway sw26010 pro 40M cores 468.5P

DGDFT[17] 2021 DG-PW CheFSI Graphene 13k Sunway
TaihuLight

sw26010 8.5M cores \

NOLSM[18] 2022 GTO LS Bulk water 102M JUWELS
Booster

A100s 1.5k GPUs 106P

DGDFT[19] 2022 DG-PW CheFSI MATBG,
Li/Na,
Cu/G/Cu,
LAO/STO

2.5M Sunway sw26010 pro 40M cores 64P

Optimized
LS3DF
(this work)

2022 PW LS Si 10M Sugon Z100SM 14.4k DCUs 34.8P

Note: The DFT methods include cubic-scaling plane-wave (PW) and localized real-space (RS) basis sets, numerical atomic orbitals
(NAOs),  linear-scaling  (LS)  solvers,  Gaussian  augmented  plane  wave  orbitals  (GAPW) and  Gaussian-type  orbitals  (GTO).  Qbox
adopts  cubic-scaling  conjugate  gradient  eigensolvers  (Davidson).  DGDFT  and  DFT-FE  can  use  CheFSI  eigensolver.  LS3DF,
RSDFT, CONQUEST, FHI-aims, and NOLSM exploit LS eigensolvers.
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QUEST[14] uses the NAOs basis and it is a linear-scal-

ing DFT code based on the density matrix minimiza-

tion  method  that  can  employ  structure  optimization

or molecular dynamics on very large-scale systems in-

cluding  more  than  millions  of  atoms.  The  FHI-aims

software[16] is  an  all-electron,  full-potential  electronic

structure code utilizing NAOs, and it can achieve all-

electron  accuracy  at  a  computational  cost  compara-

ble  to  plane-wave/pseudopotential  implementations

on large-scale system of hundreds of thousands atoms

thanks  to  its  linearly  scaling  computation  cost.  Re-

cently,  the  discontinuous  Galerkin  density  functional

theory  (DGDFT)  method  implements  a  highly  effi-

cient  pole  expansion  and  selected  inversion  (PEXSI)

sparse  direct  solver  to  achieve  a  2.5  million  atoms

metallic  heterostructure  simulation  on  the  new  Sun-

way  supercomputer[19].  Among  these  various  linear

scaling methods, the linearly scaling three-dimension-

al  fragment  (LS3DF)  method  proposed  by  Wang et
al.[12, 23] exploits  a  smart  divide-and-conquer  ap-

proach for large-scale systems, and is particularly ap-

plicable  for  large-scale  simulations  of  insulator  and

semiconductor systems that exhibit excellent scalabili-

ty,  i.e., 16k-atom  ZnTeO  system  is  calculated  on

BlueGene/R  (Table 1).  Furthermore,  the  recent  de-

velopment of the LS3DF method makes it possible to

model copper devices with 5 000 atoms[24].

The recent development of domestic supercomput-

ers built from in-house hardware such as Sugon, Sun-

way, and Tianhe supercomputers lays a solid founda-

tion for modeling nanometer devices, e.g., calculating

physical  systems  beyond  million  atoms.  One  crucial

issue is the increasing requirements for better parallel

performance and scalability of  the implementation in

order to achieve large-scale parallel DFT calculations.

Previous  attempts  to  push  the  boundaries  of  DFT

calculations are summarized in Table 1. For example,

the  massively  parallel  implemented  DGDFT  method

on  the  Sunway  TaihuLight  supercomputer  adopts  a

two-level  parallelization  strategy  that  makes  use  of

different  types  of  data  distribution,  task  scheduling,

and  data  communication  schemes,  which  finally

achieves the DFT calculation for tens of thousands of

atoms[17]. To achieve linear scaling and simulate large-

scale  systems,  LS3DF  uses  a  divide-and-conquer  ap-

proach  where  the  system  is  spatially  divided  into

small  pieces  and  each  piece  can  be  solved  indepen-

dently  by  a  small  group  of  processors.  The  crux  of

this  algorithm  is  a  novel  patching  scheme  that  can-

cels  out  the  artificial  boundary effects  caused by the

division  of  the  system into  smaller  fragments.  Up  to

now,  however,  there  is  still  a  gap  between  the  cur-

rent  implementation  of  LS3DF  and  the  state-of-the-

art DFT calculation software.  The previous GPU-ac-

celerated  LS3DF  is  performed  on  heterogeneous  ma-

chines[25], where the data communication task takes a

large  amount  of  time,  leading  to  relatively  low  effi-

ciency of the implementation.

In order to achieve much better implementation of

LS3DF,  there  are  three  main  challenges.  The  first  is

the need for a faster process for the eigenvalue decom-

position  of  Hamiltonian  matrices,  which  is  the  most

time-consuming part of the whole calculation. The all-

band  conjugate  gradient  (AB_CG)  algorithm[26],

which  is  proposed  for  LS3DF to  approximate  all  de-

sired occupied orbitals  simultaneously,  still  has  room

to  refine  to  obtain  a  faster  convergence.  Meanwhile,

the  availability  of  low-precision  floating  point  for-

mats on Sugon's deep computing units (DCUs) should

also  be  considered  to  save  the  cost  of  communica-

tions  and computations.  The  second is  the  two-layer

parallel  structure  of  LS3DF,  designed  for  the  small

memory of previous GPUs but resulting in a substan-

tial  amount  of  data  movement  overhead.  However,

considering  the  memory  advantage  of  high-paralleled

DCUs over those GPUs, this structure is not suitable

for  our  heterogeneous  supercomputer.  Finally,  there

are  some other  computational  tasks  with  lower  com-

putation efficiency in  DCUs,  such as  repeated use  of

Fourier transform and inverse Fourier transform, mul-

tiplication,  addition,  and  decomposition  of  matrices.

Thus  some  further  strategies  are  needed  to  enhance

computation efficiency and increase DCUs utilization.

In this paper, we focus on the implementation of a

high-performance and highly scalable LS3DF code on

the  heterogeneous  Sugon  platform  to  overcome  the

above  challenges.  To  this  end,  both  algorithmic  and

system-level  optimization  have  to  be  employed.  For

algorithmic  optimization,  we  modify  the  original

AB_CG algorithm to get  a  faster  convergence of  ap-

proximate  eigenvalues  and  eigenvectors,  which  can

lead to a faster convergence of the self-consistent field

(SCF) iteration. We also use mixed-precision comput-

ing  strategies  in  the  AB_CG  to  make  full  use  of

DCUs'  support  for  lower-precision  computing.  It  can

be seen from both theoretical  analysis  and numerical

results  that  these  algorithmic  optimizations  do  in-

crease computational efficiency while maintaining the

same computational correctness as the original imple-

mentation.  For  system-level  optimization,  the  origi-
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nal  two-layer  parallel  architecture,  which  is  com-

posed  of  task  parallelism  in  the  first  layer  and  data

parallelism  in  the  second  layer,  is  optimized  using

course-grained  parallelism  to  decrease  data  transfer

and speed up computations.  Moreover,  we  propose  a

multi-stream  3D  FFT  approach,  while  kernel  fusion

and redundant computation removal are also exploit-

ed to increase further DCUs' efficiency.

Numerical  results  on  an 8 000 silicon  atoms  sys-

tem  show  that  the  computation  time  of  our  opti-

mized  code  can  be  three  times  faster  compared  with

the  previous  implementation.  Scalability  tests  show

that  our  algorithm  can  maintain  81%  efficiency  in

strong scalability from 375 nodes to 3 000 nodes which

can  scale  to  a  10  million  silicon  system,  attaining  a

nearly perfect scaling and 21.2% of peak performance

of 34.8 PFLOPS on a domestic Sugon supercomputer

with 3 800 nodes.  All  these  improvements  can  be

transformed  into  next-generation  supercomputers  for

larger  system simulations,  which  will  play  an  impor-

tant  role  in  modeling  next-generation  semiconductor

devices. 

2    LS3DF Method

The  LS3DF method  is  used  in  large-scale ab  ini-
tio molecular  dynamics  (AIMD)  for  calculating  the

ground  state  total  energy  of  a  material  system.  It

adopts a divide-and-conquer strategy to break a large

system into several fragments and get the total ener-

gy  of  the  whole  system  by  solving  each  fragment.

These two parts are discussed in more detail below. 

2.1    System Division

By the Kohn-Sham density functional theory, the

total energy can be divided into quantum mechanical

and classical electrostatic components[27]. The electro-

static component (Coulomb energy) for large systems

can  be  easily  solved  by  using  Poisson  solvers  due  to

its  long-range  interaction  nature,  while  the  quantum

mechanical part (the kinetic energy and exchange-cor-

relation energy) is computationally complex and very

time-consuming.  Fortunately,  this  problem  can  be

handled  by  calculating  energy  locally  due  to  the

short-range interaction property. LS3DF uses a smart

strategy  to  divide  the  system  into  several  fragments

to  calculate  their  local  quantum  mechanical  energies

independently and then sum them together.  As a re-

sult, the total quantum mechanical energy can be de-

O(N)termined more quickly with  computational scal-

ing while obtaining the same original full-system DFT

computed results.

m1 ×m2

(i, j)

1× 1 1× 2

2× 1 2× 2

Ei,j,S ρi,j,S S

E = Σi,j,SαSEi,j,S

ρtot(r) = Σi,j,SαSρi,j,S(r) αS

αS = 1

S = 1× 1 2× 2 αS = −1

S = 2× 1 1× 2

ρtot(r)

The critical issue in this method is how to divide

the  whole  system  into  fragments  and  put  the  frag-

ments  together  without  introducing  artificial  bound-

ary effects, which can be achieved by using the follow-

ing special division and patching scheme method illus-

trated in Fig.1.  For ease of  comprehension,  we use a

two-dimensional  system  as  an  illustration  here.  The

case  for  three-dimensional  systems  is  similar.  First,

the system is divided into  small pieces (frag-

ments).  For  all  fragments ,  we  calculate  the

quantum  energy  and  charge  density  of  them,  which

are the orange (size ), the blue (size ), the

green (size ) and the yellow (size ) squares,

respectively. Quantum energy and charge density are

calculated  as  and ,  respectively,  where 

represents  different  fragment  sizes.  Then  the  total

quantum  energy  of  the  system  can  be  calculated  as

,  and  the  total  charge  density  as

,  where  is  the  sign  of  dif-

ferent  fragments  with  if  the  fragment  size

 or  and  if  the fragment size

 or .  In  this  summation  process,  the

quantum  energy  and  total  charge  density  cover  pre-

cisely  the  entire  area  of  the  whole  system  (both  on

the  inside  and  at  the  edges),  and  the  boundary  ef-

fects  and corner  effects  can be canceled out.  A more

detailed  explanation  can  be  found  in  [12].  Next,  the

electron-electron Coulomb energy is calculated by us-

ing the total charge density . Finally, the quan-

 

 
 

 

(i, j)

(i, j)

Fig.1.   Division  of  space  and  fragment  pieces.  Fragment 
corresponds  to  the  result  of  the  calculation  of  square B.  The
figure shows the shapes and sizes of the regions involved in the
calculation  of  fragment ,  where  the  regions  of  squares A,
B, C and D are needed to be involved in the calculation.  The
orange  squares  represent  the  region  of  square C,  the  blue
squares  represent  the  regions  of  squares A and C,  the  green
squares represent the regions of squares C and D, and the yel-
low squares represent the regions of squares A, B, C and D.
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tum energy and Coulomb energy are summed togeth-

er to get the total energy. 

2.2    Fragment Conquest

By  using  the  above  division  method,  the  quan-

tum energy of  each fragment can be calculated inde-

pendently. The quantum energy can be determined by

the  self-consistent  field  (SCF)  iteration,  which  in-

volves  five  main  steps. Subsection 2.2.1 will  describe

each  step  in  more  detail.  One  of  the  most  time-con-

suming steps is solving the eigenvalue problem in the

Kohn-Sham equation, and we describe how to solve it

using the all-band conjugate gradient (AB_CG) algo-

rithm in Subsection 2.2.2. 

2.2.1    Self-Consistent Field Iteration (SCF)

The SCF iteration is illustrated in Fig.2. It is used

to solve the global Kohn-Sham equation:  (
− 1

2
∇2 + Vef(ρef(r))

)
Ψi(r) = EiΨi(r),

ρef(r) =
∑N

i=1
|Ψi(r)|2

V tot
in (r)

VF(r) =

V tot
in (r) + ∆VF(r)

((−∇2/2) + VF(r))Ψ
F
i (r) = EF

i Ψ
F
i (r)

with charge density  by a divide-

and-conquer strategy. There are five steps in each it-

eration.  At each SCF iteration,  starting from an ini-

tial  total  potential ,  the  GEN_VF part  gener-

ates  the  potentials  of  each  fragment 

 based on the above division method.

Next,  PEtot_F  solves  the  eigenvalue  problem

 on each fragment

ΨF
i (r)

ΨF
i (r)

ρF(r) = Σi|ΨF
i (r)|2

ρtot(r) = Σi,j,SαSρi,j,S(r)

ρtot(r) V tot
out (r)

ρef(r) Vef(ρef(r))

to  obtain  approximate  wave  functions .  The

AB_CG algorithm  is  used  to  accomplish  this,  which

will  be  described in Subsection 2.2.2.  After  obtaining

the  approximate  wave  functions  on  each  frag-

ment, the fragment charge density 

is  calculated.  According  to  the  subroutine  Gen_dens,

the approximate charge density of the total system is

.  In  the  fourth  step,  we  use

 to  determine  the  global  potential 

through the global Poisson solver GENPOT. In the fi-

nal  step,  the  potential  of  the  current  step  is  mixed

with the potential from the previous step, and the up-

dated potential will be used as the input potential for

the next iteration. As the iterations progress, the SCF

solutions  will  converge  to  the  true  charge  density

 and Kohn-Sham potential ,  and  then

the ground state energy can be obtained. 

2.2.2    All-Band Conjugate Gradient Algorithm

HΨi = εiΨi

90%
O(N 3)

O(N 1−2) O(N 2−3

Ne ×Ne

3Ne × 3Ne

Solving the eigenvalue problem  is the

most  computationally  intensive  part,  accounting  for

up  to  of  the  total  execution  time.  Many  meth-

ods,  such  as  direct  solver( ),  selected  inversi-

on( ),  and  iterative  solvers( )[4, 21, 28],

are  introduced  to  effectively  solve  this  problem  on

high-performance  platforms.  Among  them,  iterative

methods  based  on  conjugate  gradient  method  are

known to be both stable and effective, and especially,

high-performance  libraries  such  as  GEMM  and  FFT

can be easily adopted when plane wave discretization

is used in software packages such as LS3DF. The (sin-

gle-band)  conjugate  gradient  method[4] is  by  Payne

et al. Then several CG variants, for example, blocked

CG[29],  projected  preconditioned  CG[30],  and  locally

optimal  block  preconditioned  CG[31],  are  adopted  in

different software. Note that these CG methods differ

from  each  other  in  their  stability,  convergence,  and

scalability.  In  this  paper,  we  use  an  AB_CG  me-

thod[32]①,  which differs  from all  the above CG meth-

ods by simultaneously updating all wavefunctions us-

ing GEMM operations. Therefore, AB_CG can easily

utilize  the  enormous  computing  power  provided  by

the  many-core  architecture,  such  as  DCUs  used  in

this  paper.  AB_CG  also  has  a  relatively  small  sub-

space  ( )  instead  of  a  big  subspace  like

LOBPCG  ( )  to  reduce  the  MPI_Allreduce

communication across all MPI ranks. It is stable and
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Fig.2.  LS3DF self-consistent field flow chart.
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①https://github.com/qsnake/petot, July 2023.

https://github.com/qsnake/petot


converges fast for many physical problems. Overall it

is  a  good  trade-off  among  computation,  data  move-

ment,  stability,  and  convergency.  Therefore,  it  has

been implemented in  several  software  packages,  such

as PWmat, PEtot, and LS3DF[12, 25, 32]. 

3    Innovation Implementation
 

3.1    Summary of Contributions

The most important contribution of  this  paper is

the implementation of a high-performance and highly

scalable  LS3DF  code  on  a  heterogeneous  HPC  plat-

form. To this end, both algorithmic and system-level

optimization have been employed. Our optimized ver-

sion of LS3DF can scale perfectly up to 3 800 comput-

ing nodes, extending 10 million atoms, and reaching a

peak performance of 34.8 PFLOPS. 

3.2    Algorithmic Innovations

θ(k)i

k

For algorithmic optimization, we propose two ap-

proaches,  including  improving  the  convergence  of

AB_CG by choosing the optimal angle  at each it-

eration ,  and  using  mixed  precision  for  computa-

tions. In light of the following analysis, it can be seen

that  our  two  optimizations  can  maintain  the  same

computational correctness as the original implementa-

tion. This is also confirmed by the results of numeri-

cal experiments. 

3.2.1    Optimal Angle in the AB_CG Algorithm

The basic intuition of the AB_CG algorithm is to

minimize the objective functional 

E[Ψ ] = Trace⟨Ψ | H | Ψ⟩ =
N∑
i=1

⟨Ψi | H | Ψi⟩,

Ψ = (Ψ1, . . . ,ΨN)

(k)

⟨Ψi | H | Ψi⟩

Ψi

θi

with  orthonormal  wave  functions .

For  simplicity  of  notations,  in  the  following  discus-

sion we omit the superscript “ ” for every comput-

ed quantity. The all-band method uses the conjugate

gradient algorithm on each  to get all the

minimizers  simultaneously,  where  at  each  step  the

method updates  as line 15 uses a carefully chosen

angle , which should be the minimizer of 

φ(θ) = ⟨cos θΨi + sin θPi | H(cos θΨi + sin θPi)⟩
= λi cos2 θ + ⟨Pi | Θi⟩ sin2 θ + ⟨Pi | Φi⟩ sin(2θ),

Φi = HΨiwhere .

θi Pi Ψi

Ψi

φ(θ) φ
′
(θ) = 0

We now show how to compute the optimal angle

.  By  line  11,  is  orthogonal  to ,  and  thus  the

updated  in line 11 is of unit length. The minimiz-

er of  satisfies . Note that
 

φ
′
(θ) = −(λi − ⟨Pi | Θi⟩) sin(2θ) + 2⟨Pi | Φi⟩ cos(2θ),

which leads to 

tan(2θ) =
2⟨Pi | Φi⟩

λi − ⟨Pi | Θi⟩
=

2⟨Φi | Θi⟩
λi − ⟨Pi | Θi⟩

.

θ ∈ [0, π]

φ(θ) φ(θ)

θ π/2

By solving  the  above  equation  we  get  two ,

one  minimizes  and  the  other  maximizes ,

and the two values of  differ by . In order to ob-

tain the minimizer, we compute 

φ
′′
(θ) =−2[λi − ⟨Pi | Θi⟩] cos(2θ)− 4⟨Φi | Θi⟩ sin(2θ)

=−2[λi − ⟨Pi | Θi⟩] cos(2θ)[1 + tan2(2θ)].

[λi − ⟨Pi | Θi⟩]
cos(2θ) < 0 λi − ⟨Pi | Θi⟩

⟨Φi | Θi⟩ π

Therefore,  the  minimizer  satisfies 

.  By  analyzing  the  sign  of 

and  we get the minimizer (may be differ by ) 

θi =



1

2
arctan

2⟨Φi | Θi⟩
λi − ⟨Pi | Θi⟩

+
π

2
,

if λi − ⟨Pi | Θi⟩ > 0,

1

2
arctan

2⟨Φi | Θi⟩
λi − ⟨Pi | Θi⟩

,

if λi − ⟨Pi | Θi⟩ < 0.

(1)

θiIn  the  original  implementation  of  AB_CG,  is

obtained by simply choosing

θi =
1

2

∣∣∣∣ arctan 2⟨Ψi | Θi⟩
⟨Ψi | Φi⟩ − ⟨Pi | Θi⟩

∣∣∣∣ .

λi − ⟨Pi | Θi⟩

π/2
Ψi

Although it can save a few computations by neglect-

ing judging the sign of , this simply cho-

sen  angle  may  deviate  from  the  optimal  angle  with

the value at  most ,  which results  in a lower con-

vergence rate of each minimizer . On the contrary,

using the optimal angle instead of the original crude-

ly chosen one can really accelerate the convergence of

the SCF iteration, as to be shown in the numerical re-

sults section (Section 6). 

3.2.2    Mixed Precision Computations

In  order  to  further  optimize  the  performance  of

the  AB_CG  algorithm,  we  use  the  mixed  precision

strategy  for  computations.  Over  the  past  few  years,

numerous  studies  have  explored  the  application  of

mixed precision within this field. For instance, Das et
al.[10] employed single precision to diminish communi-
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cation,  while  Fattebert et  al.[33] utilized  single  preci-
sion directly for wave function representation.  In Al-
gorithm 1,  we eradicate  all  communication by imple-
menting coarse-grained parallelism in the latter part.
However,  when  using  single-precision  representation
for the wave function, our algorithm is unable to pre-
serve  the  accuracy  of  the  computational  outcomes.
Consequently, we have endeavored to develop a nov-
el mixed-precision approach to address this limitation.

Θi = HPi

HPi

H Pi

Θi = HPi

Θi

Notice  that  the  most  time-consuming  step  in Algo-
rithm 1 is  the  calculation  of  in  line  9.
Thus, we perform the matrix-vector multiplication of

 with single precision, while all of the other com-
putations  are  carried  out  with  double  precision,  that
is, the storage formats of  and  are first convert-
ed into single precision,  then  is  computed
with  single  precision  and  finally  is  stored  with
double precision.

Algorithm 1. AB_CG Algorithm

H Ψ (0) = (Ψ (0)
1 . . . ,Ψ (0)

n ) MInput: , initial vectors , Teter preconditioner 

εi Ψi i = 1, . . . , nOutput: approximate eigenvalues  and corresponding eigenvectors  for 

[ε(0)i ,Ψ (0)
i ] = diagonalize(⟨Ψ (0) | H | Ψ (0)⟩) ▷1:             Sub_diag

Φ(0) = HΨ (0) ▷2:             Hpsi

k = 0, . . . , N − 13:   for  do

λ(k)
i = ⟨Ψ(k)

i | Φ(k)
i ⟩ i = 1, . . . , n ▷ Ψ (k)

i i k4:     ,            is the -th approximate wave function at the -th iteration

R(k) = Φ(k) − Ψ (k)diag(λ(k)
1 , . . . , λ(k)

n )5:    

k = 06:     if  then

P (k)
i = −R(k)

i i = 1, . . . , n7:       , 

8:     else

P (k)
i = −M

(
R(k)

i − β1

β0

P (k−1)
i

)
β0 = ⟨P (k−1)

i | P (k−1)
i ⟩ β1 = ⟨R(k)

i | R(k)
i ⟩ i = 1, . . . , n9:       , , , 

10:    end if

P (k) = P (k) − Ψ (k)⟨Ψ (k) | P (k)⟩ ▷11:                Projection

Θ(k) = HP (k) ▷12:               Hpsi

i = 1, . . . , n ▷13:     for  do          Can be computed simultaneously

θ(k)i14:       Compute the optimal  by (1)

Ψ (k+1)
i = Ψ (k)

i cos θ(k)i + P (k)
i sin θ(k)i15:      

Φ(k+1)
i = Φ(k)

i cos θ(k)i +Θ(k)
i sin θ(k)i16:      

17:    end for

[R] = Cholesky(⟨Ψ (k+1) | Ψ (k+1)⟩)18:    

Ψ (k+1) = Ψ (k+1)R−1 ▷19:               Orthogonalization

Φ(k+1) = Φ(k+1)R−120:    
21:  end for

[εi,Ψi] = diagonalize⟨Φ(N) | Φ(N)⟩ ▷22:             Sub_diag

HPi

HPi

xi ∈ Cn n

In order to give a theoretical analysis of the mixed

precision  AB_CG  algorithm  with  the  end  to  show

that  the  single  precision  computing  of  will  not

sacrifice  the  accuracy  of  the  final  result,  we  need  to

assume that all  computations are performed in exact

arithmetic  except  for .  Using  plane  wave  basis,

with  an  appropriate  discretization  scheme,  a  single

electron  wave  function  can  be  represented  by  a  vec-

tor ,  where  is  the  spatial  degrees  of  free-

dom,  i.e.,  the  number  of  basis  functions  on  a  frag-

ment, and the Hamiltonian is represented by an Her-

A ∈ Cn×n

A

xi ∈ Rn

∥ · ∥2 ∥ · ∥F

2

mitian  matrix .  In  order  to  simplify  the

proof, we focus on the case that  is real symmetric

and .  The  following  proof  can  be  applied  to

the complex number case with little adjustment since

an Hermitian matrix  shares  almost  the  same proper-

ties as a real symmetric one. We use  and 

to  denote  the -norm  and  Frobenius  norm  of  a  ma-

trix or vector, respectively.

ρ̂ ε

ρ

Theorem 1. Suppose the practically needed charge
density  to  form  the  Hamiltonian  has  accuracy 
with respect to the exact , i.e., 

Yu-Jin Yan et al.: 10-Million Atoms Simulation of First-Principle Package LS3DF on Sugon Supercomputer 51



∥ρ̂− ρ∥2 ⩽ ε.

uThe roundoff unit in single precision is denoted by .

If 

u ≪ λN+1 − λN

∥A∥F

ε, (2)

λi i A

Axi

where  is the -th smallest eigenvalue of , then the
single  precision  computation  of  will  not  influ-
ence the solution accuracy of the SCF iteration.

H ρ

Proof. By the Kohn-Sham density functional theo-

ry,  is  a  functional  of  charge density ,  which can

be represented by 

ρ(X) = diag(XXT), (3)

X = (x1, . . . , xN) ∈ Rn×N XTX = IN

N

P (X) = XXT

A ρ(X) X

N

ρ(X) ρ̂

where  satisfying 

is  the  approximation  of  occupied  electron  wave

functions after the discretization, and 

is  the  density  matrix[29].  At  each  SCF  iteration,  the

matrix  is  dependent on  and thus ,  which

is  composed  of  the  orthonormal  basis  of  the

eigenspace corresponding to the  smallest eigenval-

ues of the discretized Hamiltonian in the previous it-

eration.  Therefore,  we  only  need  to  prove  that  the

computed version of  has the same accuracy as .

ŷ = fl(Ax) fl(·)Let ,  where  denotes the computed

quantity in finite precision arithmetic. Then we have

the backward error result: 

ŷ = (A+E)x, ∥E∥F = O(∥A∥Fu).

E

Ax

A+E X̂

N

A+E Θ(X̂ ,X )

X̂ X X̂
X

sin θ

 is  an  error  matrix  (referring  to  Subsection  3.5  of

[34])  that  can  be  treated  as  a  symmetric  one.  Since

the AB_CG is carried out in exact arithmetic except

for the computation of  at each iteration, the algo-

rithm  actually  approximates  eigenvalues  and  eigen-

vectors  of  the  symmetric .  We  denote  by 

the matrix composed by the orthonormal basis of the

eigenspace corresponding to the  smallest eigenval-

ues  of .  Let  be  the  maximum angle

between  and  that are subspaces spanned by 

and , respectively. Then by the Davis-Kahan's sec-

ond  theorem[35], we have 

∥ sinΘ(X̂ ,X )∥F ⩽ ∥E∥F

λN+1 − λN − ∥E∥2

.

(λN+1 − λN)/∥A∥F ≫ u

λN+1 − λN ≫ ∥E∥F ⩾ ∥E∥2

Note  that  (2)  implies  and

thus . Then using the rela-

tion 

∥ sinΘ(X̂ ,X )∥F =
1√
2
∥X̂X̂T −XXT∥F,

(see Subsection 4.3 of [35]) and (3), we obtain 

∥ρ(X̂)− ρ(X)∥2 ⩽ ∥ρ(X̂)− ρ(X)∥F

⩽ ∥X̂X̂T −XXT∥F

⩽
√
2∥E∥F

λN+1 − λN − ∥E∥2

= O
( ∥A∥Fu

λN+1 − λN

)
.

∥ρ(X̂)−ρ(X)∥2 ≪ ε

ρ(X̂) ρ̂

Therefore, condition (2) leads to ,

which implies that  has the same accuracy as . □
u

u

|fl(x)− x|/|x| ⩽ u

x

λN+1 − λN

u = 2−24 ≈
5.96× 10−8 ε

10−3

Note that the roundoff  unit  describes the limit

of  precision  for  storing  and computing  corresponding

to the specific floating-point format in a machine, be-

cause  measures  the  relative  error  of  rounding  that

means  for  any  nonzero  real  num-

ber  (see  more  details  in  [34]).  For  insulator  and

semiconductor systems, the band gap between the oc-

cupied orbitals and undesired ones is relatively large,

which implies a relative big value of . Since

the  roundoff  unit  of  single  precision  is 

 and  is  not  very  small  (seldom  smaller

than ),  the  condition  (2)  is  almost  always  satis-

fied. Numerical results will show that our mixed pre-

cision variant of the AB_CG algorithm does take less

time  to  converge  than  the  original  one  while  main-

taining the same accuracy.

ρ

Etol ρ

ρ Etol

ρ

Etol

Remark 1. By the first Hohenberg-Kohn theorem[36],

the  Hamiltonian (at  most  up  to  a  constant) is  deter-
mined uniquely by the ground state charge density ,
and thus the total energy  depends only on . Note
that the mapping relation from  to  is nonlinear
and very complex, not to mention that the exact ana-
lytical form of the exchange-correlation energy term is
unknown.  This  makes  it  almost  impossible  to  give  a
rigorous  analysis  of  the  accuracy  of  computed  total
energy. However, a large amount of practical compu-
tation experiences  in this  field  confirm that  an accu-
rately computed  can lead to an accurately comput-
ed . 

3.3    System Innovations

We  have  also  made  the  following  four  optimiza-

tions for the heterogeneous DCU system. 

3.3.1    Coarse-Grained Parallelism

A two-layer parallel architecture (as illustrated in

Fig.3)  is  proposed  in  the  original  LS3DF  algorithm,

where  task  parallelism  is  in  the  first  layer  and  data

parallelism is  in  the  second  layer.  The  first  layer  di-

vides  the  entire  system  into  multiple  fragments,
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whose computational task is independent of each oth-

er. In the second layer of parallelism, each fragment is

further  divided  into  small  pieces  based  on  the  num-

ber of processes assigned to it. Only local information

within  each  piece  is  distributed  to  its  process.  The

task  parallelism  and  the  data  parallelism  compose  a

fine-grained parallel strategy.

Fine-grained  parallelism  increases  data  transfer

overhead  while  speeding  up  computations.  The  divi-

sion strategy requires multiple processes to handle one

fragment  simultaneously  and,  as  a  result,  a  large

amount of data must be communicated between these

processes.  These  communications  are  conducted

through  the  message  passing  interface  (MPI).  Fur-

thermore,  memory copy operations  between accelera-

tor  DCUs  and  CPUs  on  a  heterogeneous  platform

bring  about  additional  transfer  overhead.  The  MPI

communications and the memory copy operations oc-

cur  frequently  during  the  computations.  The  data-

hungry caused by MPI communications and memory

copy  operations  will  stall  the  DCU  pipeline.  The

transfer  overhead  becomes  a  bottleneck  given  the

rapid increase in the computation performance of ac-

celerators,  which will  be wasted if  fine-grained paral-

lelism is still used.

Coarse-grained  parallelism  is  proposed  to  reduce

the data transfer overhead caused by fine-grained par-

allelism. Essentially, it removes the second layer of a

two-layer  parallel  architecture.  Specifically,  frag-

ments in the second layer parallelism will no longer be

divided among multiple processes, but instead will be

calculated  by  a  single  process.  Before  coarse-grained

optimization, the wave function is scheduled to be in

many  processes,  and  each  process  owns  part  of  the

wave  function.  Therefore,  after  each  step  of  the

AB_CG  calculation,  MPI_allreduce  or  MPI_alltoallv

operations  are  needed  for  the  wave  function.  By  our

count, 21 MPI_allreduce operations and four MPI_all-

toallv  operations  are  needed  in  the  whole  AB_CG

computation. Moreover, most of the computations are

performed on the DCUs, and the DCUs cannot com-

municate  with  each other  directly,  and thus  all  data

needs to be copied to the CPU first before communi-

cation. According to the statistics, 43 data copies are

needed for the whole computation. By using this ap-

proach,  the  large  amount  of  data  transfer  necessary

for the original fragment computation is not required.

The  whole  25  times  MPI  communications  are  no

longer required during the computation. And the da-

ta transfer  only needs three  times,  copying the wave

function  and  Hamiltonian  matrix  from  the  CPU  to

the  DCU  before  the  calculation  starts,  and  copying

the calculation result from the DCU back to the CPU

after  the  calculation  is  finished.  In  this  way,  a  large

number  of  bubbles  that  occur  in  the  DCU  pipeline

due  to  waiting  for  data  transfer  disappear;  thus  the
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Fig.3.  Two-layer parallelism of LS3DF. It illustrates the partitioning method of the entire system based on different granularities.
The upper row represents the original fine-grained parallel, and the under row represents the optimized coarse-grained parallel. The
green blocks represent tasks that require calculations following the division of the system. The pink squares represent the MPI pro-
cesses. The red arrows indicate the mapping between tasks and processes.
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computation efficiency is enhanced. 

3.3.2    Multi-Stream 3D FFT

Ψ

H H

−1/2∇2 V (r)∑
l
|ϕl >< ϕl|

The computational  complexity  of  the  AB_CG al-

gorithm  decreases  significantly  with  the  coarse-

grained optimization, but it still occupies 61.3% of the

overall SCF iteration time. The Hpsi functions in line

2 and line  12 of  Algorithm 1 are  the most  time-con-

suming  among  the  full  AB_CG algorithm,  taking  up

to 83.9% of the computation time. The Hpsi function

multiplies  a  group  of  band  wave  functions  by

Hamiltonian operator . While the full matrix  re-

quires  prohibitively  large  amounts  of  memory,  it  is

commonly decomposed into a kinetic energy operator

, a local potential , and a non-local pseu-

do-potential projector . Hence, 

HΨi =

[
−1

2
∇2 + V (r) +

N∑
l=1

|ϕl >< ϕl|

]
Ψi. (4)

H

As  the  most  time-consuming  component  of  the

Hamiltonian  operator ,  the  local  pseudo-potential

projector  consumes  74% execution  time  of  the  whole

Hpsi function.

Ψ
The  multiplication  of  local  pseudo-potential  pro-

jector and wave functions  breaks into five steps as

shown in Fig.4: 1) padding the sphere wave functions

into cubes in the frequency space; 2) transforming the

padded  cubes  into  the  real  space  by  inverse  Fourier

transform;  3)  multiplying  the  wave  functions  with

corresponding  residual  potential  terms  in  the  real

space; 4) transforming the cubes back to the frequen-

cy  space  by  forwarding  Fourier  transform;  5)  map-

ping  the  cubes  back  to  spheres.  These  five  steps  are

all memory-intensive operations and are unable to use

all compute units in DCU cards. The aforementioned

operations are repeated several times with each wave

function, which increases the computational overhead

furthermore.

We propose a multi-stream 3D Fourier transform

approach to address the above issues. A DCU stream

is a sequence of tasks that execute in issue order, and

DCU tasks from different streams can be interleaved.

Therefore,  three  new  streams  are  created  on  each

DCU  card.  The  multiplication  tasks  are  assigned  to

streams in a cyclic order and computed in parallel ac-

cording to the characteristics of DCUs. When the ker-

nel  functions  of  multiplication  tasks  on  one  stream

cannot occupy all compute units, the kernel functions

on  other  streams  will  be  launched  on  the  remaining

compute units to increase DCU utilization and speed

up  the  multiplications. Fig.4 shows  that  after  multi-

stream 3D FFT optimization, the kernel functions in

each stream can be computed on the DCU simultane-

ously. 

3.3.3    Accelerating Other Calculations with DCUs

We  accelerate  the  following  three  calculations

with DCUs.

● The first is the non-local pseudopotential projec-

tor in the Hpsi function. The original implementation

requires  an  All-Reduce  MPI  communication  due  to

fine-grained  parallelism  and  causes  extra  data  trans-

fer  between  CPUs  and  DCUs.  With  our  coarse-

grained parallelism, the remaining calculations of  the

non-local  projector  are  implemented  on  DCUs  to

avoid unnecessary data transfers.

● The second is the Rho_cal algorithm of SCF it-

eration,  which  is  the  main  contributor  to  computa-

tion time after the AB_CG algorithm optimization.

● The  third  is  the  force  analysis  for  each  atom.

LS3DF is commonly adopted for molecular dynamics
 

Stream 1

Stream 2

Stream 3

Zero &
Padding

Inverse
FFT

Multiply
PE

Forward
FFT

Mapping
Back

Zero & Padding Inverse FFT Multiply PE Forward FFT Mapping Back

(a)

(b)

Fig.4.  Multi-stream 3D FFT approach. (a) Five-step process of the local pseudo-potential projector multiplied by the wave function
in the actual calculation. (b) Pipeline for each stream on DCUs following the adoption of the multi-stream 3D FFT method. The dif-
ferent colored bars represent the corresponding calculation in the upper steps.
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simulation  and  the  force  analysis  is  computation-in-

tensive in a large system. 

3.3.4    Kernel Fusion and Redundancy Elimination

Most  complex  computations  are  migrated  to

DCUs with the above optimization strategies. Some of

their kernels suffer from efficiency issues. We provide

two tricks for efficiency improvements.

Kernel fusion combines multiple simple kernels in-

to  one  complex  kernel.  The  original  implementation

includes a large number of  simple kernels  like matri-

ces multiplied with a scalar, which leads to extra ker-

nel  launch  expenses  and  decreases  DCU  utilization.

We fuse these sequential simple kernels into one ker-

nel and reduce computation overhead.

Redundancy  elimination  omits  redundant  compu-

tation  according  to  matrix  characteristics.  The

Cholesky  decomposition  is  required  for  the  AB_CG

algorithm,  which  involves  two  kernel  functions,  one

multiplying a matrix with a scalar, and the other sub-

tracting  the  upper  triangle  for  the  following  calcula-

tions. The scalar multiplication for the lower triangle

in the first kernel is redundant, and thus we provide a

new  kernel  to  subtract  the  upper  triangle  first  and

then multiply it by the scalar. 

4    Physical Systems

1.0× 10−5

2 4203

4.86× 104

663

5.18× 1018

All  numerical  tests  are  performed  on  a  bulk  sili-

con  system  ranging  from 8 000 to  10  million  atoms.

The plane wave energy cutoff is set to 20 Ryd (Ryd-

berg),  and  norm-conserving  pseudo-potential  is  used.

Four nonlocal projectors are evaluated in the G-space,

which can be more accurate compared with the real-

space implementation.  On average,  it  takes about 13

SCF  steps  to  converge  to  for  the  relative

error  of  charge  density.  In  the 10 648 000 atom  sys-

tem, the total number of electrons is 42 592 000. The

total number of real-space grids for charge density is

.  For  a  typical  fragment  of  219  atoms,  the  G-

space  grid  is ,  and  the  corresponding  real

space grid is . Note that AB_CG is the most com-

putationally  intensive  part  of  the  SCF  calculation.

The  total  number  of  floating  point  operations

(FLOPs)  for  the  AB_CG  per  SCF  is ,

which  is  collected  via  counting  the  effective  FLOPs.

Note  that  silicon  is  the  most  important  material  in

the semiconductor industry, and the 10 million atoms

system can be used in modeling next-generation semi-
conductor devices. 

5    Machine Configuration

×

The DCU cluster at Xi'an National Supercomput-

ing Center, which is capable of 164.16 PFLOPS peak

performance,  is  used  as  the  test  platform.  This  sys-

tem consists of 3 800 computing nodes, each of which

is equipped with a 32-core CPU and four DCU cards.

The  CPU  is  a  Hygon  32-core  processor  running  at

2 GHz, with 8 16 DDR4 system memory. The DCUs

refer  to  deep  computing  units,  a  class  of  co-proces-

sors designed by Hygon based on the general-purpose

graphics processing unit (GPGPU) architecture, suit-

able for computationally intensive and computing ac-

celeration fields. The DCU cards with 16 GB of glob-

al memory are installed in the computing node. With

each  card,  21.6  TFLOPS can  be  provided  for  single-

precision operation and 10.8 TFLOPS for double-pre-

cision operation.  And all  mixed-precision calculations

are  performed  in  IEEE  754  compliant  FP32  (vs

FP64).  Four  DCU  cards  are  connected  to  32  CPU

cores by PCI-Express bus lanes. A 200 Gb Infiniband

connection is provided by Mellanox to the computing

nodes.  The  development  of  the  entire  software  was

carried out  on the ORISE supercomputer,  which has

a  similar  architectural  system  to  the  Xi'an  National

Supercomputing Center.

An  MPI[37]+OpenMP+ROCm② programming

model  is  incorporated  into  the  optimized  LS3DF.  A

computing  node  is  launched  with  four  MPI  tasks,

with each MPI task corresponding to eight CPU cores

and  one  DCU  card.  Various  compilers  are  used,  in-

cluding the Fortran compiler gfortran, the C++ com-

piler  g++,  and  the  MPI  wrapper  compilers  mpif90

and mpicxx. In addition, the implementation requires

the  FFT③,  BLAS[38],  LAPACK[39],  ScaLAPACK[40]

(only for CPU version), and MAGMA[41] libraries. 

6    Numerical Results

As part of this section, we first illustrate the con-

vergence  of  LS3DF  after  the  algorithmic  improve-

ments.  Then  we  illustrate  the  speedup  ratios  of

LS3DF obtained from each optimization strategy on a

small-scale  system.  In  addition,  the  tests  are  sequen-

tially  extended  to  large-scale  systems  to  illustrate

their scalability. 
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②https://github.com/ROCm/ROCm, July 2023.
 

③https://github.com/ROCm/hipFFT, July 2023.

https://github.com/ROCm/ROCm
https://github.com/ROCm/hipFFT


6.1    Convergence and Accuracy
 

6.1.1    Improved AB_CG Algorithm

Regarding  the  improved  AB_CG  algorithm,  we

test the convergence performance on a system of 8 000

silicon atoms. The total SCF iteration is set to 13 in

this test, and the charge density is calculated for the

whole system at each iteration.

∑N

i=1
∥H(k)Ψ(k)

i −
ε(k)i Ψ(k)

i ∥2
2

For the original  and improved AB_CG, Fig.5 de-

picts  the  residual  norms  for  the  1st,  5th,  9th,  and

13th  SCF  iteration  with  the  form 

, respectively. We can find that the residual

norms  of  the  improved  AB_CG  are  always  smaller

than that of the original one, and thus the improved

algorithm can converge more quickly, which is due to

the choice of optimal angle. Besides, we can find that

the  improved  AB_CG  can  save  at  least  one  step  at

each SCF iteration while can obtain final results with

the same accuracy in practical computations. 

6.1.2    Mixed Precision Computations

For  comparisons  between  double  precision  and

mixed  precision  implementations  of  AB_CG,  we  run

Θi = HPi

16-step  SCF  iterations  for  the  same  system  as  the

above. The computation of  is performed us-

ing double precision and single precision, respectively,

while  the  other  parts  of  the  algorithm  are  all  per-

formed by using double precision.

Fig.6 depicts  the  relative  error  of  charge  density

between the two successive SCF iterations for the two

implementations.  It  can  be  obviously  observed  that

the  two  errors  are  the  same  for  all  iterations,  which

confirms  that  single  precision  computation  does  not

affect  the  convergence  and  accuracy  of  the  SCF  re-

sults.

10−14

We  also  compare  the  accuracy  of  the  converged

total  energy obtained by double  precision and mixed

precision  computations.  For  the  system  of 8 000 sili-

con atoms, after the SCF iterations of 16 rounds, the

difference of total energy obtained by the two compu-

tations is less than  Ryd. 

6.2    Small System

Through small-scale nodes, we test the benefits of

algorithmic and system innovations. The 8 000 silicon

atoms system is utilized, using three computing nodes

per test. The number of SCF iterations is set to 14 in
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each test, and the number of AB_CG iterations is set

to 4 in each SCF iteration to ensure the same amount

of  computing  rounds  is  performed  throughout  all

tests.  The  speedup  of  the  time-to-solution  for  the

LS3DF  program  on  a  step-by-step  optimization  is

shown in Fig.7. 

6.2.1    Coarse-Grained Parallelism

After  adopting coarse-grained parallel  innovation,

massive MPI communication as well  as data copying

between  CPUs  and  DCUs  for  the  AB_CG algorithm

is avoided. Based on the analysis of all AB_CG com-

putation time, we find that the time of this part is re-

duced by 44.9% as a result of the optimization. Addi-

tionally,  LS3DF  spends  most  of  its  time  in  AB_CG

computations;  thus  it  is  1.5  times  faster  than  the

baseline after this optimization. 

6.2.2    Multi-Stream 3D FFT

The  AB_CG  algorithm  remains  to  be  the  most

time-consuming part  after  coarse-grained parallel  op-

timization;  therefore  all  computations  in  this  subsec-

tion are analyzed. Our analysis of the calculation time

for  each  part  of  AB_CG has  revealed  that  the  FFT

calculation  is  the  most  time-consuming,  accounting

for 36.9% of the overall LS3DF time. For this reason,

we  propose  an  optimization  method  based  on  multi-

stream  3D  FFT  to  mend  this  memory-bond  calcula-

tion.  Using  this  method,  we  have  tried  to  generate

two,  three,  and  four  streams,  respectively,  and  we

find that the time required for AB_CG is reduced by

9.2%, 17.4%, and 17.2%. It can be seen that the three

streams  case  gives  the  best  result.  Because  three

streams  can  utilize  all  computing  resources  to  their

full  potential,  increasing  the  number  of  streams does

not  necessarily  result  in  greater  benefits.  Instead,

there  is  some  overhead  associated  with  stream  cre-

ation and destruction. Based on a three-stream selec-

tion, multi-stream 3D FFT results in a speedup of 1.8

times over the baseline. 

6.2.3    Accelerating Other Calculations with DCUs

Recent years have seen an increase in the gap be-

tween the computing capabilities of CPUs and DCUs.

Eight  cores  have  computing  capabilities  of  32

GFLOPS, corresponding to a DCU card that has 10.8

TFLOPS. There is a 337.5-fold difference between the

two.  In  this  regard,  we  have  also  transferred  the  re-

maining calculation to DCUs in the AB_CG method.

As a  result,  the  time proportion of  the  AB_CG part
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has  been further  reduced from 60.0% to  54.2%.  Fur-

thermore, as the calculation time of the AB_CG part

continues  to  decrease,  we  transfer  the  time-consum-

ing density and force calculations to DCUs. In partic-

ular, the total time taken to calculate density is accel-

erated  by  an  amount  of  8.2,  and  the  calculation  of

force is accelerated by an amount of 14.8. In compari-

son to the baseline, the optimizations up to this point

have increased the speed by 2.5x. 

6.2.4    Kernel Fusion and Redundancy Elimination

Prior  optimizations  essentially  shifted  all  calcula-

tions from CPUs to DCUs. The analysis of the kernel

functions  implemented  on  each  DCU  reveals  that,

among  the  43  kernel  functions  that  we  implemented

and the kernel functions that are called by the BLAS

library, many are capable of performing fusion opera-

tions. The fused kernel function is reduced to 32. Af-

ter  fusion,  some  redundant  operations  can  be  elimi-

nated.  The  total  speedup  is  2.6  compared  with  the

baseline. 

6.2.5    Mixed Precision

After  the  rest  of  the  calculations  have  also  been

performed  on  the  DCUs,  the  time  proportion  of

AB_CG  increases  to  92.3%.  At  this  point,  we  use

mixed  precision  to  reduce  the  time  of  AB_CG  even

further.  Because  this  is  an  iterative  algorithm,  we

have  changed  the Hpsi function,  which  accounts  for

86.85%  of  the  time,  from  double  precision  to  single

precision. Overall, the speedup factor reaches 3.1. 

6.3    Scaling Towards Large-Scale Systems
 

6.3.1    Strong Scaling

On  a  1-million  silicon  atoms  system,  we  perform

strong  scalability  tests  for  the  optimized  LS3DF

method. The scaling behavior ranges from 375 to 3 000

computing nodes. Throughout all tests, the number of

SCF iterations is  set to 5 and the time-to-solution is

recorded.

Since our method is  linear scaling,  it  is  originally

designed with large-scale systems. As shown in Fig.8,

the  optimized  LS3DF  can  guarantee  a  good  strong

scaling  for  large-scale  systems.  For  computing  the  1

million silicon atoms system, the majority of the time-

consuming part is fragment computations. In this sys-

50× 50× 50tem,  there  are  fragments  and  each  pro-

cess must deal with multiple fragments. As the num-

ber of nodes increases, the fragments allocated to each

process decrease proportionally, thus reducing the to-

tal  calculation  time.  Furthermore,  it  is  evident  in

Fig.8 that  when  the  number  of  nodes  reaches 3 000,

there is a gap with the perfect linear scaling. The gap

is caused by the global communication of integrating

computational results of all fragments. 

6.3.2    Weak Scaling

The  weak  scaling  of  the  optimized  AB_CG

method  is  measured  in  terms  of  the  system size  and

FLOPS for  silicon systems (Fig.9).  Here,  we increase

the  number  of  atoms  from 8 000 to  10  million  while

increasing  the  number  of  nodes  from 3  to 3 800 pro-

portionally.  The  result  illustrates  that  the  AB_CG

method  reaches  perfect  weak  scaling  as  the  system

size  increases.  As  a  result,  it  can  achieve  34.8

PFLOPS  at  the  scale  of  10  million  atoms  (21.2%  of

the  theoretical  peak).  Here,  the “theoretical  perfor-

mance” means  the  theoretical  peak  of 3 800 comput-

ing  nodes.  Compared  with  the  DGDFT method,  the

system  size  we  can  calculate  extends  by  10.  Due  to

the  perfect  linear  scaling,  we  foresee  that  our  opti-

mized  LS3DF  method  can  compute  larger  physical

systems on future supercomputers. 

7    Conclusions

In  this  paper,  we  demonstrated  that  our  opti-

mized  LS3DF can  be  used  to  simulate  electronic  de-

vices of more than 10-million atoms from first-princi-

ple  calculations.  Test  results  showed  that  our  opti-

mized  LS3DF  is  3.1  times  more  efficient  than  the

original heterogeneous version, and the corresponding
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parallel efficiency reaches 81% when scaling from 400

to 3 200 computing  nodes.  The  weak  scaling  shows

that  our  code  can  reach  nearly  perfect  scaling  and

21.2% of  peak  (34.8  PFLOPS) for  a  10  million-atom

system. Such system scaling makes it possible to mod-

el electronic devices such as FETs on domestic super-

computers.  Although  our  optimizations  are  imple-

mented  on  the  Sugon  platform,  the  optimization

strategy  shown  in  this  paper  can  also  be  applied  to

other heterogeneous architectures such as Sunway and

NIVIDA GPU.

In  our  optimized  LS3DF  code,  fragment  calcula-

tion  such  as  the  evaluation  of  AB_CG  still  takes

92.4% of the total time. Thus we plan in the future to

adopt more lower-precision computations in the SCF

iteration to achieve better performance. Furthermore,

the most time consuming parts of all calculations are

matrix  multiplication  and  Fast  Fourier  transform.

Therefore, to further improve the efficiency, these two

kernel functions need to be optimized. Moreover,  the

current  implementation  of  LS3DF is  limited  to  solv-

ing  general  problems.  In  our  future  plans,  the  load-

balance  problem  can  be  one  direction  for  optimiza-

tion,  and we will  choose dynamical  scheduling meth-

ods for more complex problems. 

Conflict of Interest    The authors declare that

they have no conflict of interest.

References 

 Naveh Y, Likharev K K. Shrinking limits of silicon MOS-

FETs: Numerical study of 10 nm scale devices. Superlat-

tices and Microstructures, 2000, 27(2/3): 111–123. DOI: 10.

1006/spmi.1999.0807.

[1]

 Ravaioli  U.  Quantum  phenomena  in  semiconductor

nanostructures.  In Encyclopedia  of  Complexity  and  Sys-

tems  Science,  Meyers  R  A  (ed.),  Springer,  2009,

pp.7400–7422. DOI: 10.1007/978-0-387-30440-3_439.

[2]

 Kohn  W,  Sham  L  J. Self-consistent  equations  including

exchange  and  correlation  effects. Physical  Review, 1965,

140(4A): A1133–A1138. DOI: 10.1103/PhysRev.140.A1133.

[3]

 Payne  M  C,  Teter  M  P,  Allan  D  C,  Arias  T  A,

Joannopoulos  J  D. Iterative  minimization  techniques  for

ab  initio total-energy  calculations:  Molecular  dynamics

and  conjugate  gradients. Reviews  of  Modern  Physics,

1992, 64(4): 1045–1097. DOI: 10.1103/RevMod-Phys.64.

1045.

[4]

 Kresse  G,  Furthmüller  J. Efficient  iterative  schemes  for

ab initio total-energy calculations using a plane-wave ba-

sis  set. Physical  Review  B, 1996, 54(16): 11169–11186.

DOI: 10.1103/PhysRevB.54.11169.

[5]

 Tsuchida  E,  Tsukada  M. Electronic-structure  calcula-

tions  based  on  the  finite-element  method. Physical  Re-

view B, 1995, 52(8): 5573–5578. DOI: 10.1103/PhysRevB.

52.5573.

[6]

 Suryanarayana P, Gavini V, Blesgen T, Bhattacharya K,

Ortiz  M. Non-periodic  finite-element  formulation  of

Kohn–Sham density functional theory. Journal of the Me-

chanics and Physics of Solids, 2010, 58(2): 256–280. DOI:

[7]

 

99.65%
99.44%

99.44%

99.17%

99.11%

98.91%

98.98%

99.39%

98.72%

0

5

10

15

20

25

30

35

T
F
L
O

P
S

Number of Atoms

TFLOPS Ideal Scaling

0 2 4 6 8 10

106

103

Fig.9.  Weak scaling of the AB_CG method with respect to the number of atoms.

Yu-Jin Yan et al.: 10-Million Atoms Simulation of First-Principle Package LS3DF on Sugon Supercomputer 59

https://doi.org/10.1006/spmi.1999.0807
https://doi.org/10.1006/spmi.1999.0807
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1007/978-0-387-30440-3_439
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/RevMod-Phys.64.1045
https://doi.org/10.1103/RevMod-Phys.64.1045
https://doi.org/10.1103/RevMod-Phys.64.1045
https://doi.org/10.1103/RevMod-Phys.64.1045
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.52.5573
https://doi.org/10.1103/PhysRevB.52.5573


10.1016/j.jmps.2009.10.002.

 Bao  G,  Hu  G  H,  Liu  D. An h-adaptive  finite  element

solver  for  the  calculations  of  the  electronic  structures.

Journal  of  Computational  Physics, 2012, 231(14): 4967–

4979. DOI: 10.1016/j.jcp.2012.04.002.

[8]

 Chen  H  J,  Dai  X  Y,  Gong  X  G,  He  L  H,  Zhou  A  H.

Adaptive  finite  element  approximations  for  Kohn–Sham

models. Multiscale  Modeling & Simulation,  2014,  12(4):

1828–1869. DOI: 10.1137/130916096.

[9]

 Das  S,  Motamarri  P,  Gavini  V,  Turcksin  B,  Li  Y  W,

Leback  B.  Fast,  scalable  and  accurate  finite-element

based ab initio calculations using mixed precision comput-

ing: 46 PFLOPS simulation of a metallic dislocation sys-

tem. In Proc. the 2019 International Conference for High

Performance Computing, Networking, Storage and Analy-

sis, Nov. 2019, Article No. 2. DOI: 10.1145/3295500.3357

157.

[10]

 Gygi F, Draeger E W, Schulz M, de Supinski B R, Gun-

nels J A, Austel V, Sexton J C, Franchetti F, Kral S, Ue-

berhuber C W, Lorenz J. Large-scale electronic structure

calculations  of  high-Z  metals  on  the  BlueGene/L  plat-

form. In Proc. the 2006 ACM/IEEE Conference on Super-

computing, Nov. 2006, Article No. 45. DOI: 10.1145/1188455.

1188502.

[11]

 Wang  L  W,  Lee  B,  Shan  H  Z,  Zhao  Z  J,  Meza  J,

Strohmaier  E,  Bailey  D H.  Linearly  scaling 3D fragment

method for large-scale electronic structure calculations. In

Proc.  the  2008 ACM/IEEE Conference  on Supercomput-

ing, Nov. 2008. DOI: 10.1109/SC.2008.5218327.

[12]

 Hasegawa Y,  Iwata  J,  Tsuji  M,  Takahashi  D,  Oshiyama

A, Minami K, Boku T, Shoji F, Uno A, Kurokawa M, In-

oue  H,  Miyoshi  I,  Yokokawa  M.  First-principles  calcula-

tions of electron states of a silicon nanowire with 100 000

atoms on the K computer. In Proc. the 2011 Internation-

al Conference for High Performance Computing, Network-

ing, Storage and Analysis, Nov. 2008, Article No. 1. DOI:

10.1145/2063384.2063386.

[13]

 Nakata A, Baker J S, Mujahed S Y, Poulton J T L, Ara-

pan S, Lin J B, Raza Z, Yadav S, Truflandier L, Miyaza-

ki  T,  Bowler  D  R. Large  scale  and  linear  scaling  DFT

with  the  CONQUEST  code. The  Journal  of  Chemical

Physics, 2020, 152(16): 164112. DOI: 10.1063/5.0005074.

[14]

 Kühne  T D,  Iannuzzi  M,  Del  Ben M,  Rybkin  V V,  See-

wald  P,  Stein  F,  Laino  T,  Khaliullin  R  Z,  Schütt  O,

Schiffmann  F,  Golze  D,  Wilhelm  J,  Chulkov  S,  Bani-

Hashemian  M H,  Weber  V,  Borštnik  U,  Taillefumier  M,

Jakobovits A S, Lazzaro A, Pabst H, Müller T, Schade R,

Guidon  M,  Andermatt  S,  Holmberg  N,  Schenter  G  K,

Hehn  A,  Bussy  A,  Belleflamme  F,  Tabacchi  G,  Glöß A,

Lass  M,  Bethune  I,  Mundy  C  J,  Plessl  C,  Watkins  M,

Vandevondele J, Krack M, Hutter J. CP2K: An electron-

ic  structure  and  molecular  dynamics  software  package-

quickstep: Efficient and accurate electronic structure cal-

culations. The  Journal  of  Chemical  Physics, 2020,

152(19): 194103. DOI: 10.1063/5.0007045.

[15]

 Shang H H, Li F, Zhang Y Q, Zhang L B, Fu Y, Gao Y

X, Wu Y J, Duan X H, Lin R F, Liu X, Liu Y, Chen D

X. Extreme-scale ab initio quantum Raman spectra simu-

lations on the leadership HPC system in China. In Proc.

the  2021  International  Conference  for  High  Performance

Computing, Networking, Storage and Analysis, Nov. 2021,

Article No. 6. DOI: 10.1145/3458817.3487402.

[16]

 Hu W, Qin X M, Jiang Q C, Chen J S, An H, Jia W L,

Li F, Liu X, Chen D X, Liu F F, Zhao Y W, Yang J L.

High performance computing of DGDFT for tens of thou-

sands of atoms using millions of cores on Sunway Taihu-

Light. Science  Bulletin, 2021, 66(2): 111–119. DOI: 10.

1016/j.scib.2020.06.025.

[17]

 Schade  R,  Kenter  T,  Elgabarty  H,  Lass  M,  Schütt  O,

Lazzaro A, Pabst H, Mohr S, Hutter J, Kühne T D, Plessl

C. Towards electronic structure-based ab-initio molecular

dynamics simulations with hundreds of millions of atoms.

Parallel  Computing, 2022, 111: 102920. DOI: 10.1016/j.

parco.2022.102920.

[18]

 Hu W, An H, Guo Z Q, Jiang Q C, Qin X M, Chen J S,

Jia W L, Yang C, Luo Z L, Li J L, Wu W T, Tan G M,

Jia  D N,  Lu  Q L,  Liu  F  F,  Tian  M,  Li  F,  Huang  Y Q,

Wang  L  Y,  Liu  S,  Yang  J  L.  2.5  million-atom ab  initio

electronic-structure  simulation  of  complex  metallic  het-

erostructures  with  DGDFT.  In Proc.  the  2022  Interna-

tional  Conference on High Performance Computing,  Net-

working, Storage and Analysis,  Nov. 2022, Article No. 5.

DOI: 10.1109/SC41404.2022.00010.

[19]

 Goedecker S. Linear scaling electronic structure methods.

Reviews of Modern Physics, 1999, 71(4): 1085–1123. DOI:

10.1103/RevModPhys.71.1085.

[20]

 Lin L, Lu J F, Car R, E W N. Multipole representation of

the  Fermi  operator  with  application  to  the  electronic

structure analysis of metallic systems. Physical Review B,

2009, 79(11): 115133. DOI: 10.1103/PhysRevB.79.115133.

[21]

 Bowler  D  R,  Miyazaki  T. O(N)  methods  in  electronic

structure  calculations. Reports  on  Progress  in  Physics,

2012, 75(3): 036503. DOI: 10.1088/0034-4885/75/3/036503.

[22]

 Wang  L  W,  Zhao  Z  J,  Meza  J. Linear-scaling  three-di-

mensional  fragment  method  for  large-scale  electronic

structure  calculations. Physical  Review  B, 2008, 77(16):

165113. DOI: 10.1103/PhysRevB.77.165113.

[23]

 Ye M, Jiang X W, Li S S, Wang L W. Large-scale ab ini-

tio quantum transport simulation of nanosized copper in-

terconnects:  The effects  of  defects  and quantum interfer-

ences. In Proc. the 2019 IEEE International Electron De-

vices  Meeting  (IEDM),  Dec.  2019,  Article  No.  24.  DOI:

10.1109/IEDM19573.2019.8993549.

[24]

 Wang L W, Jia W L, Cao Z Y, Wang L, Chi X B, Gao

W  G.  GPU  speedup  of  the  plane  wave  pseudopotential

density  functional  theory  calculations.  In APS  March

Meeting  Abstracts,  Feb.  27–March  2,  2012,  Abstract  ID

T7.008.

[25]

 Tomo S, Langou J, Dongarra J, Canning A, Wang L W.

Conjugate-gradient  eigenvalue  solvers  in  computing  elec-

[26]

60 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://doi.org/10.1016/j.jmps.2009.10.002
https://doi.org/10.1016/j.jcp.2012.04.002
https://doi.org/10.1137/130916096
https://doi.org/10.1145/3295500.3357157
https://doi.org/10.1145/3295500.3357157
https://doi.org/10.1145/1188455.1188502
https://doi.org/10.1145/1188455.1188502
https://doi.org/10.1109/SC.2008.5218327
https://doi.org/10.1145/2063384.2063386
https://doi.org/10.1063/5.0005074
https://doi.org/10.1063/5.0007045
https://doi.org/10.1145/3458817.3487402
https://doi.org/10.1016/j.scib.2020.06.025
https://doi.org/10.1016/j.scib.2020.06.025
https://doi.org/10.1016/j.parco.2022.102920
https://doi.org/10.1016/j.parco.2022.102920
https://doi.org/10.1109/SC41404.2022.00010
https://doi.org/10.1103/RevModPhys.71.1085
https://doi.org/10.1103/PhysRevB.79.115133
https://doi.org/10.1088/0034-4885/75/3/036503
https://doi.org/10.1088/0034-4885/75/3/036503
https://doi.org/10.1088/0034-4885/75/3/036503
https://doi.org/10.1103/PhysRevB.77.165113
https://doi.org/10.1109/IEDM19573.2019.8993549


tronic  properties  of  nanostructure  architectures. Interna-

tional Journal of Computational Science and Engineering,

2006, 2(3/4): 205–212. DOI: 10.1504/IJCSE.2006.012774.

 Kohn  W. Density  functional  and  density  matrix  method

scaling  linearly  with  the  number  of  atoms. Physical  Re-

view  Letters, 1996, 76(17): 3168–3171. DOI: 10.1103/

PhysRevLett.76.3168.

[27]

 Auckenthaler  T,  Blum  V,  Bungartz  H  J,  Huckle  T,  Jo-

hanni  R,  Krämer  L,  Lang  B,  Lederer  H,  Willems  P  R.

Parallel  solution  of  partial  symmetric  eigenvalue  prob-

lems from electronic structure calculations. Parallel Com-

puting, 2011, 37(12): 783–794. DOI: 10.1016/j.parco.2011.

05.002.

[28]

 Yang C, Meza J C, Wang L W. A trust region direct con-

strained  minimization  algorithm  for  the  Kohn–Sham

equation. SIAM  Journal  on  Scientific  Computing, 2007,

29(5): 1854–1875. DOI: 10.1137/060661442.

[29]

 Vecharynski E, Yang C, Pask J E. A projected precondi-

tioned conjugate  gradient  algorithm for  computing many

extreme  eigenpairs  of  a  Hermitian  matrix. Journal  of

Computational Physics, 2015, 290: 73–89. DOI: 10.1016/j.

jcp.2015.02.030.

[30]

 Knyazev A V. Toward the optimal preconditioned eigen-

solver:  Locally  optimal  block  preconditioned  conjugate

gradient method. SIAM Journal on Scientific Computing,

2001, 23(2): 517–541. DOI: 10.1137/S1064827500366124.

[31]

 Jia W L, Cao Z Y, Wang L, Fu J Y, Chi X B, Gao W G,

Wang  L  W. The  analysis  of  a  plane  wave  pseudopoten-

tial  density  functional  theory  code  on  a  GPU  machine.

Computer  Physics  Communications, 2013, 184(1): 9–18.

DOI: 10.1016/j.cpc.2012.08.002.

[32]

 Fattebert  J  L,  Osei-Kuffuor  D,  Draeger  E W, Ogitsu  T,

Krauss W D. Modeling dilute solutions using first-princi-

ples molecular dynamics: Computing more than a million

atoms with over a million cores. In Proc. the 2016 Inter-

national  Conference  for  High  Performance  Computing,

Networking,  Storage  and  Analysis,  Nov.  2016,  pp.12–22.

DOI: 10.1109/SC.2016.88.

[33]

 Higham N J.  Accuracy  and Stability  of  Numerical  Algo-

rithms. SIAM, 2002.

[34]

 Sun J G. Matrix Perturbation Analysis (2nd edition). Sci-

ence Press, 2001. (in Chinese)

[35]

 Hohenberg  P,  Kohn  W. Inhomogeneous  electron  gas.

Physical Review, 1964, 136(3B): B864–B871. DOI: 10.1103/

PhysRev.136.B864.

[36]

 Gabriel  E,  Fagg  G,  Bosilca  G et  al. Open  MPI:  Goals,

concept, design of a next generation MPI implementation.

In Proc.  the  11th  European  PVM/MPI  Users'  Group

Meeting,  Sept.  2004,  pp.97–104. DOI: 10.1109/CLUSTR.

2006.311904.

[37]

 Van Zee F G, van de Geijn R A. BLIS: A framework for

rapidly  instantiating  BLAS  functionality. ACM  Trans.

Mathematical Software, 2015, 41(3): Article No. 14. DOI:

10.1145/2764454.

[38]

 Anderson E, Bai Z, Bischof C, Blackford L S, Demmel J,[39]

Dongarra  J,  Du  Croz  J,  Greenbaum  A,  Hammarling  S,

McKenney  A,  Sorensen  D.  LAPACK  Users’ Guide  (3rd

edition). Society for Industrial and Applied Mathematics,

1999.

 Blackford L S,  Choi  J,  Cleary A, D’Azevedo E,  Demmel

J,  Dhillon  I,  Dongarra  J,  Hammarling  S,  Henry  G,  Pe-

titet A, Stanley K, Walker D, Whaley R C. ScaLAPACK

Users’ Guide.  Society  for  Industrial  and  Applied  Mathe-

matics, 1997.

[40]

 Bosma  W,  Cannon  J,  Playoust  C. The  Magma  algebra

system I: The user language. Journal of Symbolic Compu-

tation, 1997, 24(3/4): 235–265. DOI: 10.1006/jsco.1996.0125.

[41]

Yu-Jin  Yan is  currently  a  Ph.D.

candidate  in  the  State  Key  Laborato-

ry of Processors, Institute of Comput-

ing  Technology,  Chinese  Academy  of

Sciences,  and  University  of  Chinese

Academy of  Sciences,  Beijing.  She  re-

ceived her B.S. degree in mathematics

and  applied  mathematics  from  Sichuan  University,

Chengdu,  in  2017.  Her  current  research  interests  in-

clude  high-performance  computing,  massively  parallel

computing, and first-principles calculation.

Hai-Bo  Li received  his  Ph.D.  de-

gree  in  computational  mathematics

from  Tsinghua  University,  Beijing,  in

2021.  He  is  currently  a  joint  postdoc-

toral researcher at the Computing Sys-

tem  Optimization  Laboratory  of

Huawei Technologies,  Beijing,  and In-

stitute  of  Computing  Technology,  Chinese  Academy  of

Sciences,  Beijing.  His research interests include numeri-

cal  linear  algebra,  computational  inverse  problems,  and

machine learning.

Tong  Zhao received  his  Ph.D.  de-

gree in operation research and control

theory from Fudan University, Shang-

hai, in 2021. He is currently a postdoc-

toral researcher at the State Key Lab-

oratory  of  Processors,  the  Institute  of

Computing  Technology,  Chinese

Achademy of Science, Beijing. His research interests in-

clude fundamental theory of artificial intelligence, high-

performance computing, and game theory.

Yu-Jin Yan et al.: 10-Million Atoms Simulation of First-Principle Package LS3DF on Sugon Supercomputer 61

https://doi.org/10.1504/IJCSE.2006.012774
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1016/j.parco.2011.05.002
https://doi.org/10.1016/j.parco.2011.05.002
https://doi.org/10.1137/060661442
https://doi.org/10.1016/j.jcp.2015.02.030
https://doi.org/10.1016/j.jcp.2015.02.030
https://doi.org/10.1137/S1064827500366124
https://doi.org/10.1016/j.cpc.2012.08.002
https://doi.org/10.1109/SC.2016.88
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1109/CLUSTR.2006.311904
https://doi.org/10.1109/CLUSTR.2006.311904
https://doi.org/10.1145/2764454
https://doi.org/10.1145/2764454
https://doi.org/10.1145/2764454
https://doi.org/10.1006/jsco.1996.0125


Lin-Wang Wang received his Ph.D.

degree  at  Cornell  University,  Ithaca,

in 1991. He worked in Cornell Univer-

sity (1991–1992) and the National Re-

newable Energy Lab (1992–1995) as a

postdoctor and then in Biosym/Molec-

ular  Simulations Inc.  (1995–1996) and

the National Renewable Energy Laboratory (1996–1999)

as  a  staff  scientist.  From  1999,  he  has  worked  in

Lawrence Berkeley National  Laboratory and is  a  senior

staff scientist. He is currently a chief scientist at the In-

stitute of Semiconductors, Chinese Academy of Sciences,

Beijing. His research interests mainly focus on the devel-

opment of ab initio electronic structure calculation meth-

ods  and  the  applications  of  these  methods  in  materials

design and discovery.

Lin Shi received his B.E. degree in

physics  from  Southeast  University,

Nanjing,  in  2002,  and  his  Ph.D.  de-

gree in condensed matter physics from

Tsinghua University,  Beijing,  in  2007.

He is currently teaching at the School

of  Materials  Science  and  Engineering,

Yancheng  Institute  of  Technology,  Yancheng.  His  re-

search  interests  include  first-principles  calculation  and

III-V semiconductors.

Tao Liu received his B.E. degree in

computer  science  from  Harbin  Engi-

neering  University,  Harbin,  in  2002.

He  is  currently  a  senior  engineer  at

the  Institute  of  Computing  Technolo-

gy, Chinese Academy of Sciences, Bei-

jing.  His  research  interests  include

HPC, machine learning, and AI for science applications.

Guang-Ming  Tan received  his

Ph.D.  degree  from  the  Institute  of

Computing  Technology,  Chinese

Academy  of  Sciences,  Beijing,  in

March  2008.  He  is  currently  a  re-

searcher  at  the  Institute  of  Comput-

ing,  Chinese  Academy  of  Sciences,

Beijing. His research interests include parallel algorithm

design and analysis, parallel programming and optimiza-

tion, computer architecture, bioinformatics, and big data.

Wei-Le Jia received his joint Ph.D.

degree  in  the  Computer  Network  In-

formation Center, Chinese Academy of

Sciences, Beijing, and Lawrence Berke-

ley  National  Laboratory,  Berkeley,  in

2016.  He  is  currently  an  associate  re-

search fellow at the Institute of Com-

puting  Technology,  Chinese  Academy  of  Sciences,  Bei-

jing.  His  research  interests  include  high-performance

computing,  artificial  intelligence,  and massively  parallel

computing.

Ning-Hui  Sun received  his  Ph.D.

degree  from  the  Institute  of  Comput-

ing  Technology,  Chinese  Academy  of

Sciences,  Beijing,  in  July  1999.  He  is

currently the Academic Director of the

Institute  of  Computing,  Chinese

Academy  of  Sciences,  Beijing.  His  re-

search  interests  include  parallel  processing  architecture,

distributed  operating  systems,  performance  evaluation,

and file systems.

62 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1


	1 Introduction
	2 LS3DF Method
	2.1 System Division
	2.2 Fragment Conquest
	2.2.1 Self-Consistent Field Iteration (SCF)
	2.2.2 All-Band Conjugate Gradient Algorithm


	3 Innovation Implementation
	3.1 Summary of Contributions
	3.2 Algorithmic Innovations
	3.2.1 Optimal Angle in the AB_CG Algorithm
	3.2.2 Mixed Precision Computations

	3.3 System Innovations
	3.3.1 Coarse-Grained Parallelism
	3.3.2 Multi-Stream 3D FFT
	3.3.3 Accelerating Other Calculations with DCUs
	3.3.4 Kernel Fusion and Redundancy Elimination


	4 Physical Systems
	5 Machine Configuration
	6 Numerical Results
	6.1 Convergence and Accuracy
	6.1.1 Improved AB_CG Algorithm
	6.1.2 Mixed Precision Computations

	6.2 Small System
	6.2.1 Coarse-Grained Parallelism
	6.2.2 Multi-Stream 3D FFT
	6.2.3 Accelerating Other Calculations with DCUs
	6.2.4 Kernel Fusion and Redundancy Elimination
	6.2.5 Mixed Precision

	6.3 Scaling Towards Large-Scale Systems
	6.3.1 Strong Scaling
	6.3.2 Weak Scaling


	7 Conclusions
	Conflict of Interest
	References

