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Abstract

We present iDARR, a scalable iterative Data-Adaptive RKHS Regularization method, for solving
ill-posed linear inverse problems. The method searches for solutions in subspaces where the true
solution can be identified, with the data-adaptive RKHS penalizing the spaces of small singular
values. At the core of the method is a new generalized Golub-Kahan bidiagonalization procedure
that recursively constructs orthonormal bases for a sequence of RKHS-restricted Krylov subspaces.
The method is scalable with a complexity of Opkmnq for m-by-n matrices with k denoting the
iteration numbers. Numerical tests on the Fredholm integral equation and 2D image deblurring show
that it outperforms the widely used L2 and l2 norms, producing stable accurate solutions consistently
converging when the noise level decays.

Keywords: iterative regularization; ill-posed inverse problem; reproducing kernel Hilbert space; Golub-
Kahan bidiagonalization; deconvolution.
AMS subject classifications(MSC2020): 47A52, 65F22, 65J20

1 Introduction

This study considers large-scale ill-posed linear inverse problems with little prior information on the
regularization norm. The goal is to reliably solve high-dimensional vectors x P Rn from the equation

Ax` w “ b, A P Rmˆn, (1.1)

where A and b are data-dependent forward mapping and output, and w denotes noise or measurement
error. The problem is ill-posed in the sense that the least squares solution with minimal Euclidean
norm, often solved by xLS “ A:b or xLS “ pAJAq:AJb with : denoting pseudo-inverse, is sensitive to
perturbations in b. Such an ill-posedness happens when the singular values of A decay to zero faster
than the perturbation in b projected in the corresponding singular vectors.

Regularization is crucial to producing stable solutions for the ill-posed inverse problem. Broadly, it
encompasses two integral components: a penalty term that defines the search domain and a hyperpa-
rameter that controls the strength of regularization. There are two primary approaches to implementing
regularization: direct methods, which rely on matrix decomposition, e.g., the Tikhonov regulariza-
tion [35], the truncated singular value decomposition (SVD) [11, 15]; and iterative methods, which use
matrix-vector computations to scale for high-dimensional problems, see e.g., [7, 12, 41] for recent devel-
opments.

In our setting, we encounter two primary challenges: selecting an adaptive regularization norm and
devising an iterative method to ensure scalability. The need for an adaptive norm arises from the vari-
ability of the forward map A across different applications and the often limited prior information about
the regularity of x. Many existing regularization norms, such as the Euclidean norms used in Tikhonov
methods in [15,35] and the total variation norm in [33], lack this adaptability; for more examples, see the
related work section below. Although a data-adaptive regularization norm has been proposed in [25,26]
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for nonparametric regression, it is implicitly defined and requires a spectral decomposition of the normal
operator.

We introduce iDARR, an iterative Data-Adaptive Reproducing kernel Hilbert space Regularization
method. This method resolves both challenges by iteratively solving the subspace-projected problem

xk “ argmin
xPXk

}x}Crkhs
, Xk “ tx : min

xPSk

}Ax´ b}2u,

where } ¨ }Crkhs
is the implicitly defined semi-norm of a data-adaptive RKHS (DA-RKHS), and Sk are

subspaces of the DA-RKHS constructed by a generalized Golub-Kahan bidiagonalization (gGKB). By
stopping the iteration early using the L-curve criterion, it produces a stable accurate solution without
using any matrix decomposition.

The DA-RKHS is a space defined by the data and model, embodying the intrinsic nature of the inverse
problem. Its closure is the data-dependent space in which the true solution can be recovered, particularly
when A is deficient-ranked. Thus, when used for regularization, it confines the solution search in the right
space and penalizes the small singular values, leading to stable solutions. We construct this DA-RKHS
by reformulating eq. (1.1) as a weighted Fredholm integral equation of the first kind and examining the
identifiability of the input signal, as detailed in Section 2.

Our key innovation is the gGKB. It constructs solution subspaces in the DA-RKHS without explicitly
computing it. It is scalable with a cost of only Opkmnq, where k is the number of iterations. This cost
is orders of magnitude much smaller than the cost of direct methods based on spectral decomposition
of AJA, typically Opn3 `mn2q operations.

The iDARR and gGKB have solid mathematical foundations. We prove that each subspace Sk is
restricted in the DA-RKHS, thereby named the RKHS-restricted Krylov subspaces. It is spanned by the
orthonormal vectors produced by gGKB. Importantly, if not stopped early, the gGKB terminates when
the RKHS-restricted Krylov subspace is fully explored, and the solution in each iteration is unique.

Systematic numerical tests employing the Fredholm integral equations demonstrate that iDARR
surpasses traditional iterative methods employing l2 and L2 norms in the state-of-the-art IR TOOLS
package [12]. Notably, iDARR delivers accurate estimators that consistently decay with the noise level.
This superior performance is evident irrespective of whether the spectral decay is exponential or polyno-
mial, or whether the true solution resides inside or outside the DA-RKHS. Furthermore, our application
to image deblurring underscores both its scalability and accuracy.
Main contributions. Our main contribution lies in developing iDARR, a scalable iterative regular-
ization method tailored for large-scale ill-posed inverse problems with little prior knowledge about the
solution. The cornerstone of iDARR is the introduction of a new data-adaptive RKHS determined by
the underlying model and the data. A key technical innovation is the gGKB, which efficiently constructs
solution subspaces of the implicitly defined DA-RKHS.

1.1 Related work

Numerous regularization methods have been developed, and the literature on this topic is too vast to
be surveyed here; we refer to [11, 12, 15] and references therein for an overview. In the following, we
compare iDARR with the most closely related works.

Regularization norms Various regularization norms exist, such as Euclidean norms of Tikhonov
in [15, 35], the total variation norm }x1}L1 of the Rudin–Osher–Fatemi method in [33], the L1 norm
}x}L1 of LASSO in [34], and the RKHS norm }x}2R of an RKHS with a user-specified reproducing kernel
R [3, 9, 37]. These norms, however, are often based on presumed properties of the solution and do not
consider the specifics of each inverse problem. Our RKHS norm differs by adapting to the model and
data: our RKHS has a reproducing kernel determined by the inverse problem, and its closure is the

2



space in which the solution can be identified, making it an apt choice for regularization in the absence
of additional solution information.

Iterative regularization (IR) methods IR methods are scalable by accessing the matrix only via
matrix-vector multiplications, producing a sequence of estimators until an early stopping, where the
iteration number plays the role of the regularization parameter. IR has a rich and extensive history and
continues to be a vibrant area of interest in contemporary studies [1,12,24,30]. Different regularization
terms lead to various methods. The LSQR algorithm [5, 30] with early stopping is standard for }x}22-
regularization. It solves projected problems in Krylov subspaces before transforming back to the original
domain. For }Lx}22 with L P Rpˆn, the widely-used methods include joint bidiagonalization method
[18,19], generalized Krylov subspace method [21,31], random SVD or generalized SVD method [38–40],
modified truncated SVD method [2,17], etc. For the general regularization norm in the form xTMx with
a symmetric matrix M , the MLSQR in [1] treats positive definite M and the preconditioned GKB [24]
handles positive semi-definite M ’s. Our iDARR studies the case that M is unavailable but M : is ready
to be used.

Golub-Kahan bidiagonalization (GKB) The GKB was first used to solve inverse problems in [29],
which generates orthonormal bases for Krylov subspaces in pRn, x¨, ¨y2q and pRm, x¨, ¨y2q. This method
extends to bounded linear compact operators between Hilbert spaces, with properties and convergence
results detailed in [6]. Our gGKB extends the method to construct RKHS-restricted Krylov subspace
in pRn, x¨, ¨yCrkhs

q and pRm, x¨, ¨y2q, where Crkhs is positive semidefinite, and in particular, only C:

rkhs is
available.

The remainder of this paper is organized as follows: Section 2 introduces the adaptive RKHS with
a characterization of its norm. Section 3 presents in detail the iDARR. Section 4 proves the desired
properties of gGKB. In Section 5, we systematically examine the algorithm and demonstrate the robust
convergence of the estimator when the noise becomes small. Finally, Section 6 concludes with a discussion
on future developments.

2 A Data Adaptive RKHS for Regularization

This section introduces a data-adaptive RKHS (DA-RKHS) that adapts to the model and data in the
inverse problem. The closure of this DA-RKHS is the function (or vector) space in which the true
solution can be recovered, or equivalently, the inverse problem is well-defined in the sense that the loss
function has a unique minimizer. Hence, when its norm is used for regularization, this DA-RKHS ensures
that the minimization searches in the space where we can identify the solution.

To describe the DA-RKHS, we first present a unified notation that applies to both discrete and
continuous time models using a weighted Fredholm integral equation of the first kind. Based on this
notation, we write the normal operator as an integral operator emerging in a variational formulation of
the inverse problem. The integral kernel is the reproducing kernel for the DA-RKHS. In other words, the
normal operator defines the DA-RKHS. At last, we briefly review a DA-RKHS Tikhonov regularization
algorithm, the DARTR algorithm.

2.1 Unified notation for discrete and continuous models

The linear equation eq. (1.1) can arise from discrete or continuous inverse problems. In either case, we can
present the inverse problem using the prototype of the Fredholm integral equation of the first kind. We
consider only the 1D case for simplicity, and the extension to high-dimensional cases is straightforward.
Specifically, let S, T Ă R be two compact sets. We aim to recover the function ϕ : S Ñ R in the
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Fredholm equation

yptq “

ż

S
Kpt, sqϕpsqνpdsq ` σ 9W ptq “: LKϕptq ` σ 9W ptq, @t P T (2.1)

from discrete noisy data
b “ pypt1q, . . . , yptmqqJ P Rm,

where we assume the observation index T “ ttju
m
j“1 to be 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tm for simplicity. Here

the measurement noise σ 9W ptq is the white noise scaled by σ; that is, the noise at tj has a Gaussian
distribution N p0, σ2ptj`1 ´ tjqq for each j. Such noise is integrable when the observation mesh refines,
i.e., maxjptj`1 ´ tjq vanishes.

Here the finite measure ν can be either the Lebesgue measure with S being an interval or an atom
measure with S having finitely many elements. Correspondingly, the Fredholm integral equation eq. (2.1)
is either a continuous or a discrete model.

In either case, the goal is to solve for the function ϕ : S Ñ R in eq. (2.1). When seeking a solution
in the form of ϕ “

řn
i“1 xiϕi, where tϕiu

n
i“1 is a pre-selected set of basis functions, we obtain the linear

equation eq. (1.1) with x “ px1, . . . , xnqJ P Rn and the matrix A with entries

Apj, iq “

ż

S
Kptj , sqϕipsqνpdsq “ LKϕiptjq, 1 ď j ď m, 1 ď i ď n. (2.2)

In particular, when tϕiu are piece-wise constants, we obtain A as follows.

• Discrete model. Let ν be an atom measure on S “ tsiu
n
i“1, a set with n elements. Suppose that

the basis functions are ϕipsq “ 1tsiupsq. Then, ϕ “ x and the matrix A has entries Apj, iq “

Kptj , siqνpsiq.

• Continuous model. Let ν be the Lebesgue measure on S “ r0, 1s, and ϕipsq “ 1rsi´1,sispsq be
piecewise constant functions on a partition of S with 0 “ s0 ă s1 ă . . . ă sn “ 1. Then,
ϕ “

řn
i“1 xiϕi and the matrix A has entries Apj, iq “ Kptj , siqpsi ´ si´1q.

The default function spaces for ϕ and y above are L2
νpSq and L2

µpT q. The loss function Epxq “

}Ax´ b}22 over L2
νpSq becomes

Epϕq :“ }LKϕ´ y}
2
L2
µpT q “ xLKϕ,LKϕyL2

µpT q ´ 2xLKϕ, yyL2
µpT q ` }y}

2
L2
µpT q , (2.3)

Eq.eq. (2.1) is a prototype of ill-posed inverse problems, dating back from Hadamard [14], and it
remains a testbed for new regularization methods [15,23,28,36].

The L2
νpSq norm is often a default choice for regularization. However, it has a major drawback: it

does not take into account the operator LK , particularly when LK has zero eigenvalues, and it leads to
unstable solutions that may blow up in the small noise limit [22]. To avoid such instability, particularly
for iterative methods, we introduce a weighted function space and an RKHS that are adaptive to both
the data and the model in the next sections.

2.2 The function space of identifiability

We first introduce a weighted function space L2
ρpSq, where the measure ρ is defined as

dρ

dν
psq :“

1

Z

ż

T
|Kpt, sq|µpdtq, @s P S, (2.4)

where Z “
ş

S
ş

T |Kpt, sq|µpdtqνpdsq is a normalizing constant. This measure quantifies the exploration
of data to the unknown function through the integral kernel K at the output set T , i.e., tKptj , ¨qutjPT ,
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hence it is referred to as an exploration measure. In particular, when (1.1) is a discrete model, the
exploration measure is the normalized column sum of the absolute values of the matrix A.

The major advantage of the space L2
ρpSq over the original space L2

νpSq is that it is adaptive to the
specific setting of the inverse problem. In particular, this weighted space takes into account the structure
of the integral kernel and the data points in T . Thus, while the following introduction of RKHS can be
carried out in both L2

ρpSq and L2
νpSq, we will focus only on L2

ρpSq.
Next, we consider the variational inverse problem over L2

ρ, and the goal is to find a minimizer of the
loss function eq. (2.3) in L2

ρ. Since the loss function is quadratic, its Hessian is a symmetric positive linear
operator, and it has a unique minimizer in the linear subspace where the Hessian is strictly positive. We
assign a name to this subspace in the next definition.

Definition 2.1 (Function space of identifiability) In a variational inverse problem of minimizing
a quadratic loss function E in L2

ρ, we call LG “ 1
2∇

2E the normal operator, where ∇2E is the Hessian
of E, and we call H “ NullpLGqK the function space of identifiability (FSOI).

The next lemma specifies the FSOI for the loss function in eq. (2.3) (see [26] for its proof).

Lemma 2.2 Assume K P CpT ˆ Sq. For ρ in eq. (2.4), define G : S ˆ S Ñ R as

Gps, s1q :“
Gps, s1q

dρ
dν psq dρdν ps1q

, Gps, s1q :“

ż

T
Kpt, sqKpt, s1qµpdtq. (2.5)

(a) The normal operator for E in eq. (2.3) over L2
ρ is LG : L2

ρ Ñ L2
ρ defined by

LGϕpsq :“

ż

S
ϕps1qGps, s1qρpds1q, (2.6)

and the loss function can be written as

Epϕq “ xLGϕ, ϕyL2
ρ

´ 2xϕD, ϕyL2
ρ

` const., (2.7)

where ϕD comes from Riesz representation s.t. xϕD, ϕyL2
ρ

“ xLKϕ, yyL2
µpT q for any ϕ P L2

ρ.

(b) LG is compact, self-adjoint, and positive. Hence, its eigenvalues tλiuiě1 converge to zero and its
orthonormal eigenfunctions tψiui form a complete basis of L2

ρpSq.

(c) The FSOI is H :“ spantψiui:λią0 Ă L2
ρpSq, and the unique minimizer of E in H is pϕ “ LG

´1ϕD,
where LG

´1 is the inversion of LG : H Ñ L2
ρ.

Theorem 2.2 reveals the cause of the ill-posedness, and provides insights on regularization:

• The variational inverse problem is well-defined only in the FSOI H, which can be a proper subset
of L2

ρ. Its ill-posedness in H depends on the smallest eigenvalue of the operator LG and the error
in ϕD.

• When the data is noiseless, the loss function can only identify the H-projection of the true input
function. When data is noisy, its minimizer LG

´1ϕD is ill-defined in L2
ρ when ϕD R LGpHq.

As a result, when regularizing the ill-posed problem, an important task is to ensure the search takes
place in the FSOI and to remove the noise-contaminated components making ϕD R LGpHq.
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2.3 A Data-adaptive RKHS

Our data-adaptive RKHS is the RKHS with G in eq. (2.5) as a reproducing kernel. Hence, it is adaptive
to the integral kernel K and the data in the model. When its norm is used for regularization, it
ensures that the search takes place in the FSOI because its L2

ρ closure is the FSOI; also, it penalizes the
components in ϕD corresponding to the small singular values.

The next lemma characterizes this RKHS, and we refer to [26] for its proof.

Lemma 2.3 (Characterization of the adaptive RKHS) Assume K P CpT ˆ Sq. The RKHS HG

with G as its reproducing kernel satisfies the following properties.

(a) HG :“ LG

1
2 pL2

ρpSqq has inner product xϕ, ϕyHG
“ xLG

´ 1
2ϕ,LG

´ 1
2ϕyL2

ρpSq.

(b) t
?
λiψiuλią0 is an orthonormal basis of HG, where tpλi, ψiqui are eigen-pairs of LG.

(c) For any ϕ “
ř8

i“1 ciyi P HG, we have

xLKϕ,LKϕyL2
µpT q “

8
ÿ

i“1

λic
2
i , }ϕ}2L2

ρ
“

8
ÿ

i“1

c2i , }ϕ}2HG
“

8
ÿ

i“1

λ´1
i c2i .

(d) H “ HG with inclosure in L2
ρpSq, where H “ spantyiui:λią0 is the FSOI.

The next theorem shows the computation of the RKHS norm for the problem eq. (1.1) when it is
written in the form eq. (2.1)-eq. (2.2). A key component is solving the eigenvalues of LG through a
generalized eigenvalue problem.

Theorem 2.4 (Computation of RKHS norm) Suppose that eq. (1.1) is equivalent to eq. (2.1) under
basis functions tϕiu

n
i“1 with n ď 8 and eq. (2.2). Let B with entries Bpi, jq “ xϕi, ϕjyL2

ρ
be the non-

singular basis matrix, where ρ is the measure defined in eq. (2.4). Then, the operator LG in eq. (2.6) has
eigenvalues pλ1, . . . , λnq solved by the generalize eigenvalue problem:

AJAV “ BV Λ, s.t., V JBV “ In, Λ “ diagpλ1, . . . , λnq, (2.8)

and the eigenfunctions are tψk “
řn

j“1 Vjkϕjuk. The RKHS norm of ϕ “
řn

i“1 xiϕi satisfies

}ϕ}2HG
“ }x}2Crkhs

“ xJCrkhsx,

Crkhs “ pV ΛV Jq: “ BpAJAq:B, C:

rkhs “ B´1pAJAqB´1.
(2.9)

In particular, if B “ In, we have Crkhs “ pAJAq:.

Proof. Denote Φ “ pϕ1, . . . , ϕnqJ and Ψ “ pψ1, . . . , ψnqJ. We first prove that the eigenvalues of LG are
solved by eq. (2.8). We suppose tpλi, ψiquni“1 are the eigenvalues and eigen-functions of LG over L2

ρ with
tψiu being an orthonormal basis of L2

ρpSq. Since H “ spantϕiu
n
i“1 Ě LGpL2

ρq, there exists V P Rnˆn

such that Ψ “ V JΦ, i.e., ψk “
řn

j“1 Vjkϕjuk for each 1 ď k ď n. Then, the task is to verify that V and
Λ “ Diagpλ1, . . . , λnq satisfy AJAV “ BV Λ and V JBV “ In.

The orthonormality of tψiu implies that

In “
`

xψk, ψlyL2
ρ

˘

1ďk,lďn
“

`

x

n
ÿ

i“1

Vikϕi,
n

ÿ

j“1

VjlϕjyL2
ρ

˘

1ďk,lďn
“ V JBV.

Note that rAJAspj, iq “ xLKϕi, LKϕjyL2
µpT q “ xϕj ,LGϕiyL2

ρ
for 1 ď i, j ď n. Then,

xϕj ,LGψkyL2
ρ

“

n
ÿ

i“1

rAJAspj, iqVik.
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Meanwhile, the eigen-equation LGψk “ λkψk implies that for each ϕj ,

xϕj ,LGψkyL2
ρ

“ λkxϕj , ψkyL2
ρ

“ λkxϕj ,
n

ÿ

i“1

VikϕiyL2
ρ

“ λk

n
ÿ

i“1

BjiVik,

i.e.,
`

xϕj ,LGψkyL2
ρ

˘

“ BV Λ. Hence, these two equations imply that AJAV “ BV Λ.
Next, to compute the norm of ϕ “

řn
i“1 xiϕi P HG, we write it as ϕ “ xJΦ “ xJV ´1Ψ. Then, its

norm is

}ϕ}2HG
“

n
ÿ

k“1

λ´1
k

`

xJV ´1
˘2

k
“ xJV ´1Λ:V ´Jx “ xJpV ΛV Jq:x.

Thus, Crkhs “ pV ΛV Jq: “ BpAJAq:B and C:

rkhs “ V ΛV J “ B´1pAJAqB´1.
In particular, when eq. (1.1) is either a discrete model or a discretization of eq. (2.1) based on

Riemann sum approximation of the integral, the exploration measure ρ is the normalized column sum
of the absolute values of the matrix A, and B “ diagpρq. See Section 5.1 for details.

2.4 DARTR: data-adaptive RKHS Tikhonov regularization

We review DARTR, a data-adaptive RKHS Tikhonov regularization algorithm introduced in [26].
Specifically, it solves the problem eq. (1.1) with regularization:

ppxλ˚
, λ˚q “ argmin

xPRn,λPR`

Eλpxq, where Eλpxq :“ }Ax´ b}2 ` λ}x}2Crksh
,

where the norm }¨}Crksh
is the DA-RKHS norm introduced in Theorem 2.4. A direct solution minimizing

Eλpxq is to solve pAJA`λCrkhsqxλ “ AJb. However, the computation of Crkhs requires a pseudo-inverse
that may cause numerical instability.

DARTR introduces a transformation matrix C˚ :“ V Λ1{2 to avoid using the pseudo-inverse. Note

that CJ
˚ CrkhsC˚ “

ˆ

Ir 0
0 0

˙

:“ Ir, where Ir is the identity matrix with rank r, the number of positive

eigenvalues in Λ. Then, the linear equation pAJA` λCrkhsqxλ “ AJb is equivalent to

pC˚A
JAC˚ ` λIrqrxλ “ C˚A

Jb (2.10)

with rxλ “ C´1
˚ xλ. Thus, DARTR computes rxλ in the above equation by least squares with minimal

norm, and returns xλ “ C˚rxλ.
DARTR is a direct method based on matrix decomposition, and it takes Opmn2 ` n3q flops. Hence,

it is computationally infeasible when n is large. The iterative method in the next section implements
the RKHS regularization in a scalable fashion.

3 Iterative Regularization by DA-RKHS

This section introduces a subspace project method tailored to utilize the DA-RKHS for iterative reg-
ularization. As an iterative method, it achieves scalability by accessing the coefficient matrix only via
matrix-vector multiplications, producing a sequence of estimators until reaching a desired solution. This
section follows the notation conventions in Table 1.

3.1 Overview

Our regularization method is based on subspace projection in the DA-RKHS. It iteratively constructs
a sequence of linear subspaces Sk of the DA-RKHS pRn, x¨, ¨yCrkhs

q, and recursively solves projected
problems

xk “ argmin
xPXk

}x}Crkhs
, Xk “ tx : min

xPSk

}Ax´ b}2u. (3.1)

7



Table 1: Table of notations.

A,B,C matrix or array by capital letters
b, c, x, y, z, u, v vector by regular letters

α, β, γ scalar by Greek letters
RpAq and N pAq the range and null spaces of matrix A

This process yields a sequence of solutions txku, each emerging from its corresponding subspace. We
ensure the uniqueness of the solution within each iteration, as detailed in Theorem 4.7. The iteration
proceeds until it meets an early stopping criterion, designed to exclude excessive noisy components and
thereby achieve effective regularization. The spaces Sk are called the solution subspaces, and the iteration
number k plays the role of the regularization parameter.

Algorithm 1 outlines this procedure, which is a recursion of the following three parts.

P1 Construct the solution subspaces. We introduce a new generalized Golub-Kahan bidiagonaliza-
tion (gGKB) to construct the solution subspaces in the DA-RKHS iteratively. The procedure is
presented in Algorithm 2.

P2 Recursively update the solution to the projected problem. We solve the least squares problem in the
solution subspaces in eq. (3.1) efficiently by a new LSQR-type algorithm, Algorithm 3, updating
}xk}Crkhs

and the residual norm }Ax´ b}2 without even computing the residual.

P3 Regularize by early stopping. We select the optimal k by either the discrepancy principle (DP)
when we have an accurate estimate of }w}2 or the L-curve criterion otherwise.

Require: A P Rmˆn, b P Rm, B “ diagpρq, x0 “ 0, x̄0 “ 0, where ρ is the exploration measure in
eq. (2.4).
1: for k “ 1, 2, . . . , do
2: P1. Compute uk, zk, z̄k, αk, βk by gGKB in Algorithm 2.
3: P2. Update xk, γ̄k`1, }xk}Crkhs

, etc. by Algorithm 3.
4: P3: Stop at iteration k˚ if Early stopping criterion is satisfied. Ź L-curve or DP

Ensure: Final solution xk˚

Algorithm 1: iDARR: Iterative Data-Adaptive RKHS Regularization

In the next subsection, we present details for these key parts. Then, we analyze the computational
complexity of the algorithm.

3.2 Algorithm details and derivations

This subsection presents detailed derivations for the three parts P1-P3 in Algorithm 1.
P1. Construct the solution subspaces. We construct the solution subspaces by elaborately in-
corporating the regularization term } ¨ }2Crkhs

in the Golub-Kahan bidiagonalization (GKB) process. A
key point is to use C:

rkhs “ B´1AJAB´1 to avoid explicitly computing Crkhs, which involves the costly
spectral decomposition of the normal operator, see eq. (2.9) in Theorem 2.4.

Consider first the case where Crkhs is positive definite. In this scenario, A has full column rank, and
the Crkhs-inner product Hilbert space pRn, x¨, ¨yCrkhs

q is a discrete representation of the RKHS HG with
the given basis functions. Note that the true solution is mapped to the noisy b by A : pRn, x¨, ¨yCrkhs

q Ñ

pRm, x¨, ¨y2q. Let A˚ : pRm, x¨, ¨y2q Ñ pRn, x¨, ¨yCrkhs
q be the adjoint of A, i.e. xAx, by2 “ xx,A˚byCrkhs

8



for any x P Rn and b P Rm. By definition, the matrix-form expression of A˚ is

A˚ “ C´1
rkhsA

J, (3.2)

since xAx, by2 “ xJAJb and xx,A˚byCrkhs
“ xJCrkhsA

˚b for any x and b.
The Golub-Kahan bidiagonalization (GKB) process recursively constructs orthonormal bases for

these two Hilbert spaces starting with the vector b as follows:

β1u1 “ b, α1z1 “ A˚u1, (3.3a)
βi`1ui`1 “ Azi ´ αiui, (3.3b)
αi`1zi`1 “ A˚ui`1 ´ βi`1zi, (3.3c)

where ui P pRm, x¨, ¨y2q, zi P pRn, x¨, ¨yCrkhs
q with z0 “ 0, and αi, βi are normalizing factor such that

}ui}2 “ }zi}Crkhs
“ 1. The iteration starts with u1 “ b{β1 with β1 “ }b}2. Using A˚ in eq. (3.2), we

write eq. (3.3c) as

αi`1zi`1 “ C´1
rkhsA

Jui`1 ´ βi`1zi (3.4)

with αi`1 “ }C´1
rkhsA

Jui`1 ´ βi`1zi}Crkhs
. To compute αi`1 without explicitly computing Crkhs, define

z̄i “ Crkhszi. Then we have

αi`1z̄i`1 “ AJui`1 ´ βi`1z̄i, (3.5)

where z̄0 :“ 0. Let p “ AJui`1 ´ βi`1z̄i. Then we obtain αi`1 “ }C´1
rkhsp}Crkhs

“ ppJC´1
rkhspq1{2, which

uses C´1
rkhs “ B´1AJAB´1 without computing Crkhs.

Next, consider that Crkhs is positive semidefinite. The iterative process remains the same with C´1
rkhs

replaced by the pseudo-inverse C:

rkhs, because C:

rkhs “ B´1AJAB´1 has the same form as C´1
rkhs for the

non-singular case. Specifically, the recursive relation eq. (3.4) becomes

αi`1zi`1 “ C:

rkhsA
Jui`1 ´ βi`1zi. (3.6)

To compute αi`1, we use the property that zi P RpCrkhsq, which will be proved in Theorem 4.3. Note
that C:

rkhsCrkhs “ PN pCrkhsqK “ PRpCrkhsq since Crkhs is symmetric, where PX is the projection operator
onto subspace X . It follows that C:

rkhsCrkhszi “ zi. Therefore, eq. (3.6) becomes

αi`1zi`1 “ C:

rkhspAJui`1 ´ βi`1Crkhsziq.

Letting z̄i “ Crkhszi and p “ AJui`1 ´ βi`1z̄i again, we get αi`1 “ }C:

rkhsp}Crkhs
“ ppJC:

rkhspq1{2.
Thus, the two cases of Crkhs lead to the same iterative process. We summarize the iterative process

in Algorithm 2, and call it generalized Golub-Kahan bidiagonalization (gGKB).
Suppose the gGKB process terminates at step kt :“ maxkě1tαkβk ą 0u. We show in Theo-

rem 4.4–Theorem 4.5 that the output vectors tuiu
kt
i“1 and tziu

kt
i“1 are orthonormal in pRm, x¨, ¨y2q and

pRn, x¨, ¨yCrkhs
q, respectively. In particular, they span two Krylov subspaces generated by tAC:

rkhsA
J, bu

and tC:

rkhsA
JA,C:

rkhsA
Jbu, respectively.

In matrix form, the k-step gGKB process with k ă kt, starting with vector b, produces a 2-
orthonormal matrix Uk`1 “ pu1, . . . , uk`1q P Rmˆpk`1q (i.e., UJ

k`1Uk`1 “ Ik`1), a Crkhs-orthonormal
matrix Zk`1 “ pz1, . . . , zk`1q P Rnˆpk`1q, and a bidiagonal matrix

Bk “

¨

˚

˚

˚

˚

˚

˚

˝

α1

β2 α2

β3
. . .
. . . αk

βk`1

˛

‹

‹

‹

‹

‹

‹

‚

P Rpk`1qˆk (3.7)
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Require: A P Rmˆn, b P Rm, B “ diagpρq

1: Initialize: let β1 “ }b}2, u1 “ b{β1, and compute p “ AJu1, s “ B´1AJAB´1p.
2: Let α1 “ psJpq1{2, z1 “ s{α1, z̄1 “ p{α1.
3: for i “ 1, 2, . . . , k, do
4: r “ Azi ´ αiui, βi`1 “ }r}2, ui`1 “ r{βi`1;
5: p “ AJui`1 ´ βi`1z̄i, s “ B´1AJAB´1p; Ź C:

rkhs “ B´1AJAB´1

6: αi`1 “ psJpq1{2, zi`1 “ s{αi`1, z̄i`1 “ p{αi`1. Ź z̄i “ Crkhszi

Ensure: tαi, βiu
k`1
i“1 , tui, zi, z̄iu

k`1
i“1

Algorithm 2: Generalized Golub-Kahan bidiagonalization (gGKB)

such that the recursion in eq. (3.3a),eq. (3.3b) and eq. (3.6) can be written as

β1Uk`1e1 “ b, (3.8a)
AZk “ Uk`1Bk, (3.8b)

C:

rkhsA
JUk`1 “ ZkB

T
k ` αk`1zk`1e

J
k`1, (3.8c)

where e1 and ek`1 are the first and pk ` 1q-th columns of Ik`1. We emphasize that Bk is a bidiagonal
matrix of full column rank, since αi, βi ą 0 for all i ď k ` 1.
P2. Recursively update the solution to the projected problem. For each k ď kt, i.e., before
the gGKB terminates, we solve eq. (3.1) in the subspace

Sk :“ spantz1, . . . , zku (3.9)

and compute the RKHS norm of the solution.
We show first the uniqueness of the solution to eq. (3.1). From eq. (3.8b) we have Bk “ UJ

k`1AZk,
which implies that Bk is a projection of A onto the two subspaces spantUk`1u and spantZku. Since any
vector x in Sk can be written as x “ Zky with a y P Rk, we obtain from eq. (3.8a) and eq. (3.8b) that
for any x “ Zky,

min
x“Zky

}Ax´ b}2 “ min
yPRk

}AZky ´ Uk`1β1e1}2

“ min
yPRk

}Uk`1Bky ´ Uk`1β1e1}2 “ min
yPRk

}Bky ´ β1e1}2.
(3.10)

Since k ď kt, Bk has full column rank, this k-dimensional least squares problem has a unique solution.
Therefore, the unique solution to eq. (3.1) is

xk “ Zkyk, yk “ argmin
yPRk

}Bky ´ β1e1}2. (3.11)

We note that the above uniqueness is independent of the specific construction of the basis vectors tzku.
In general, as long as Sk Ď RpCrkhsq, the solution to eq. (3.1) is unique; see Theorem 4.7.

Importantly, we recursively compute xk without explicitly solving yk in eq. (3.11), avoiding the
Opk3q computational cost. To this end, we adopt a procedure similar to the LSQR algorithm in [30] to
iteratively update xk from x0 “ 0. It starts from the following Givens QR factorization:

Qk

`

Bk β1e1
˘

“

ˆ

Rk fk
γ̄k`1

˙

:“

¨

˚

˚

˚

˚

˚

˚

˚

˝

ρ1 θ2 γ1
ρ2 θ3 γ2

. . . . . .
...

ρk´1 θk γk´1

ρk γk
γ̄k`1

˛

‹

‹

‹

‹

‹

‹

‹

‚

,
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where the orthogonal matrix Qk is the product of a series of Givens rotation matrices, and Rk is a
bidiagonal upper triangular matrix; see [13, §5.2.5]. We implement the Givens QR factorization using
the procedure in [30], which recursively zeros out the subdiagonal elements βi for each 2 ď i ď k ` 1.
Specifically, at the i-th step, a Givens rotation zeros out βi`1 by

ˆ

ci si
si ´ci

˙ ˆ

ρ̄i 0 γ̄i
βi`1 αi`1 0

˙

“

ˆ

ρi θi`1 γi
0 ρ̄i`1 γ̄i`1

˙

,

where the entries ci and si of the Givens rotations satisfy c2i ` s2i “ 1, and the elements ρi, θi`1, ρ̄i`1,
γi, γ̄i`1 are recursively updated accordingly; see [30] for more details.

As a result of the QR factorization, we can write

}Bky ´ β1e1}22 “

›

›

›
Qk

`

Bk β1e1
˘

ˆ

y
´1

˙

›

›

›

2

2
“ }Rky ´ fk}22 ` |γ̄k`1|2. (3.12)

Hence, the solution to minyPRk }Bky ´ β1e1} is yk “ R´1
k fk. Factorizing Rk as

Rk “ DkR̄k, Dk :“

¨

˚

˚

˚

˝

ρ1
ρ2

. . .
ρk

˛

‹

‹

‹

‚

, R̄k :“

¨

˚

˚

˚

˝

1 θ2{ρ1
1 θ3{ρ2

. . . θk{ρk´1

1

˛

‹

‹

‹

‚

and denoting Wk “ ZkR̄
´1
k “ pw1, . . . , wkq, we get

xk “ Zkyk “ ZkR
´1
k fk “ pZkR̄

´1
k qpD´1

k fkq “ WkpD´1
k fkq “

k
ÿ

i“1

pγi{ρiqwi.

Updating xk recursively, and solving WkR̄k “ Zk by back substitution, we obtain:

xi “ xi´1 ` pγi{ρiqwi, wi`1 “ zi`1 ´ pθi`1{ρiqwi, @1 ď i ď k. (3.13)

Lastly, we compute }xi}Crkhs
without an explicit Crkhs. We have from eq. (3.13):

Crkhsxi “ Crkhsxi´1 ` pγi{ρiqCrkhswi, Crkhswi`1 “ Crkhszi`1 ´ pθi`1{ρiqCrkhswi.

Letting x̄i “ Crkhsxi and w̄i “ Crkhswi, and recalling that z̄i “ Crkhszi, we have

}xi}
2
Crkhs

“ xJ
i x̄i, x̄i “ x̄i´1 ` pγi{ρiqw̄i, w̄i`1 “ z̄i`1 ´ pθi`1{ρiqw̄i. (3.14)

1: Let x0 “ 0, x̄0 “ 0, w1 “ z1, w̄1 “ z̄1, γ̄1 “ β1, ρ̄1 “ α1

2: for i “ 1, 2, . . . , k, do
3: ρi “ pρ̄2i ` β2i`1q1{2, ci “ ρ̄i{ρi, si “ βi`1{ρi
4: θi`1 “ siαi`1, ρ̄i`1 “ ´ciαi`1, γi “ ciγ̄i, γ̄i`1 “ siγ̄i
5: xi “ xi´1 ` pγi{ρiqwi, wi`1 “ zi`1 ´ pθi`1{ρiqwi

6: x̄i “ x̄i´1 ` pγi{ρiqw̄i, w̄i`1 “ z̄i`1 ´ pθi`1{ρiqw̄i

7: }xi}Crkhs
“ pxJ

i x̄iq
1{2

Algorithm 3: Updating procedure

The whole updating procedure is described in Algorithm 3. This algorithm yields the residual norm
}Axk ´ b}2 without explicitly computing the residual. In fact, by eq. (3.10) and eq. (3.12) we have

γ̄k`1 “ }Bkyk ´ β1e1}2 “ }Axk ´ b}2. (3.15)
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Note that γ̄k`1 decreases monotonically since xk minimizes }Ax´b}2 in the gradually expanding subspace
spantZku.

Importantly, Algorithm 3 efficiently computes the solution xk and }xk}Crkhs
. At each step of updating

xi or wi`1, the computation takesOp2nq flops. Similarly, for updating x̄i or w̄i`1, as well as for computing
}xi}Crkhs

, the number of flops are also Op2nq. Therefore, the dominant computational cost is Op10nq.
In contrast, if yk is solved explicitly at each step, it takes Op

řk
i“1 i

3q „ Opk4q flops; together with the
step of forming xk “ Zkyk that takes Opknq flops, they lead to a total cost of Opkn ` k4q flops. Thus,
the LSQR-type iteration in Algorithm 3 significantly reduces the number of flops from Opkn ` k4q to
Op10nq.
P3. Regularize by early stopping. An early stopping strategy is imperative to prevent the solu-
tion subspace from becoming excessively large, which could otherwise compromise the regularization.
This necessity is rooted in the phenomenon of semi-convergence: the iteration vector xk initially ap-
proaches an optimal regularized solution but subsequently moves towards the unstable naive solution to
minxPRpCrkhsq }Ax´ b}2, as detailed in Theorem 4.6.

For early stopping, we adopt the L-curve criterion, as outlined in [12]. This method identifies the
ideal early stopping iteration k˚ at the corner of the curve represented by

plog }Axk ´ b}2, }xk}Crkhs
q “ plog γ̄k`1, log }xk}Crkhs

q . (3.16)

Here γ̄k`1 and }xk}Crkhs
are computed with negligible cost in Algorithm 3. To construct the L-curve

effectively, we set the gGKB to execute at least 10 iterations. Additionally, to enhance numerical stability,
we stop the gGKB when either αi or βi is near the machine precision, as inspired by Theorem 4.6.

It is noteworthy that the discrepancy principle (DP) presents a viable alternative when the mea-
surement error }w}2 in eq. (1.1) is available with a high degree of accuracy. The DP halts iterations at
the earliest instance of k that satisfies γ̄k`1 “ }Axk ´ b}2 ď τ}w}2, where τ is chosen to be marginally
greater than 1.

3.3 Computational Complexity

Suppose the algorithm takes k iterations and the basis matrix B is diagonal. Recall that A P Rmˆn,
B P Rnˆn, ui P Rm and zi P Rn. The total computational cost of Algorithm 1 is about Op3mnkq when
m ď n{3 or k ă n{3; and about Oppm ` kqn2q when otherwise. The cost is dominated by the gGKB
process since the cost of the update procedure in Algorithm 3 is only Opnq at each step.

The gGKB can be computed in two approaches. The first approach uses only matrix-vector multipli-
cation. The main computations in each iteration of gGKB occur at the matrix-vector products p “ AJui
and s “ B´1AJAB´1p “ B´1pAJpApB´1pqqq, which take Opmnq and Op2mnq flops respectively. Thus,
the total computational cost of gGKB is Op3mnkq flops. Another approach is using A “ AJA instead
of AJ and A to compute s. In this approach, the computation of A from A takes Opmn2q flops, and
the matrix-vector multiplication Av in each iteration takes about Opn2q flops. Hence, the total cost of
k iterations is Opmn2 ` kn2q. The second approach is faster when mn2 ` n2k ă 3mnk, or equivalently,
p3m´ nqk ą mn. That is, roughly speaking, m ą n{3 and k ą mn{p3m´ nq ą n{3.

In practice, the matrix-vector computation is preferred since the iteration number k is often small.
The resulting iDARR algorithm takes about Op3mnkq flops.

4 Properties of gGKB

This section studies the properties of the gGKB in Algorithm 2, including the structure of the solution
subspace, the orthogonality of the resulted vectors tuiu

k`1
i“1 and tziu

k`1
i“1 and the number of iterations at

termination, defined as:

gGKB terminate step: kt :“ max
kě1

tαkβk ą 0u. (4.1)
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Additionally, we show that the solution to eq. (3.1) is unique in each iteration.
Throughout this section, let r denote the rank of Λ and let Vr denote the first r columns of V , where

Λ and V are matrices constituted by the generalized eigenvalues and eigenvectors of tA,Bu in eq. (2.9)
in Theorem 2.4. We have rankpAq “ r. Recall that Crkhs “ pV ΛV Jq: “ BpAJAq:B. Note that the
DA-RKHS is pRpCrkhsq, x¨, ¨yCrkhs

q.

4.1 Properties of gGKB

We show first that the gGKB-produced vectors tuiu
k`1
i“1 and tziu

k`1
i“1 are orthogonal in Rn and in the

DA-RKHS, and the solution subspaces of the gGKB are RKHS-restricted Krylov subspaces.

Definition 4.1 (RKHS-restricted Krylov subspace) Let A P Rmˆn and b P Rn, and let B P Rnˆn

be a symmetric positive definite matrix. Let Crkhs “ BpAJAq:B, which defines an RKHS pRn, x¨, ¨yCrkhs
q.

The RKHS-restricted Krylov subspaces are

Kk`1pC:

rkhsA
JA,C:

rkhsA
Jbq “ spantpC:

rkhsA
JAqiC:

rkhsA
Jbuki“0, k ě 0. (4.2)

The main result is the following.

Theorem 4.2 (Properties of gGKB) Recall kt in eq. (4.1), and the gGKB generates vectors tuiu
k
i“1,

tziu
k
i“1 and Sk “ spantziu

k
i“1. They satisfy the following properties:

(i) tuiu
k
i“1 and tziu

k
i“1 are orthonormal in Rn and in pRpCrkhsq, x¨, ¨yCrkhs

q, respectively;

(ii) Sk “ KkpC:

rkhsA
JA,C:

rkhsA
Jbq for each k ď kt, and the termination iteration number is kt “

dimpK8pC:

rkhsA
JA,C:

rkhsA
Jbqq.

Proof. Part (i) follows from Theorem 4.3, where we show that zk P RpCrkhsq, and Theorem 4.4, where
we show the orthogonality of these vectors.

For Part (ii), Sk “ KkpC:

rkhsA
JA,C:

rkhsA
Jbq follows from that tziu

k
i“1 form an orthonormal basis of

the RKHS-restricted Krylov subspace. We prove kt “ dimpK8pC:

rkhsA
JA,C:

rkhsA
Jbqq in Theorem 4.5.

Proposition 4.3 For each zi generatad by gGKB in eq. (3.3), it holds that zi P RpCrkhsq. Additionally,
if q :“ C:

rkhsA
Jui`1 ´ βi`1zi ‰ 0, then αi`1 “ }q}Crkhs

‰ 0.

Proof. We prove it by mathematical induction. For i “ 1, we obtain from eq. (3.6) and Theorem 2.4 that
α1z1 “ C:

rkhsA
Ju1 “ V ΛV JAJu1 P RpVrq “ RpCrkhsq, where r is the rank of Λ. Suppose zi P RpCrkhsq

for i ě 1. Using again eq. (3.6) and Theorem 2.4 we get

αi`1zi`1 “ C:

rkhsA
Jui`1 ´ βi`1zi “ V ΛV JAJui`1 ´ βi`1zi P RpCrkhsq.

Therefore, zi`1 P RpCrkhsq, and q P RpCrkhsq.
If αi`1 “ 0, then q P N pCrkhsq “ RpCrkhsqK. Therefore, q “ 0.
Thus, even if Crkhs is singular (positive semidefinite), the gGKB in Algorithm 2 does not terminate

as long as the right-hand sides of eq. (3.3b) and eq. (3.6) are nonzero, since the iterative computation
of tβi`1, ui`1u and tαi`1, zi`1u can continue. Next, we show that these vectors are orthogonal.

Proposition 4.4 (Orthogonality) Suppose the k-step gGKB does not terminate, i.e. k ă kt, then
tuiu

k`1
i“1 is a 2-orthonormal basis of the Krylov subspace

Kk`1pAC:

rkhsA
J, bq “ spantpAC:

rkhsA
Jqibuki“0, (4.3)

and tziu
k`1
i“1 is a Crkhs-orthonormal basis for the RKHS-restricted Krylov subspace in eq. (4.2).
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Proof. Note from Theorem 2.4 that C:

rkhs “ V ΛV J. Let Wr “ VrΛ
1{2
r . Then WJ

r CrkhsWr “ Ir,
C:

rkhs “ WrW
J
r , and RpWrq “ RpCrkhsq. For any zi, Theorem 4.3 implies that there exists vi P Rr such

that zi “ Wrvi. We get from eq. (3.3b) and eq. (3.6) that

βi`1ui`1 “ AWrvi ´ αiui,

αi`1vi`1 “ WJ
r A

Jui`1 ´ βi`1vi,

where the second equation comes from αi`1Wrvi`1 “ WrW
J
r A

Jui`1 ´ βi`1Wrvi. Combining the above
two relations with eq. (3.3a), we conclude that the iterative process for generating ui and vi is the
standard GKB process of AWr with starting vector b between the two finite dimensional Hilbert spaces
pRr, x¨, ¨y2q and pRm, x¨, ¨y2q. Therefore, tuiu

k`1
i“1 and tviu

k`1
i“1 are two 2-orthonormal bases of the Krylov

subspaces

Kk`1pAWrpAWrqJ, bq “ spantpAWrW
J
r A

Jqibuki“0,

Kk`1ppAWrqJAWr, pAWrqJbq “ spantpWJ
r A

JAWrqiWJ
r A

Jbuki“0,

respectively; see e.g. [13, §10.4]. Then, WrW
J
r “ C:

rkhs implies eq. (4.3). Also, tziu
k`1
i“1 “ tWrviu

k`1
i“1 is

a Crkhs-orthonormal basis of WrKk`1ppAWrqJAWr, pAWrqJbq since Wr is Crkhs-orthonormal.
Finally, tziu

k`1
i“1 are Crkhs orthogonal by construction, and by using the relation

WrpWJ
r A

JAWrqiWJ
r A

Jb “ pWrW
J
r A

JAqiWrW
J
r A

Jb “ pC:

rkhsA
JAqiC:

rkhsA
Jb,

we get that tziu
k`1
i“1 in the RKHS-restricted Krylov subspace in eq. (4.2).

Proposition 4.5 (gGKB termination number) Suppose the gGKB in Algorithm 2 terminates at
step kt “ maxkě1tαkβk ą 0u. Let the distinct nonzero eigenvalues of AC:

rkhsA
J be µ1 ą ¨ ¨ ¨µs ą 0 with

multiplicities m1, . . . ,ms, and the corresponding eigenspaces are G1, ¨ ¨ ¨ ,Gs. Then, kt “ q, where q is
the number of nonzero elements in tPG1b, . . . , PGsbu, and

q “ dimpK8pAC:

rkhsA
J, bqq “ dimpK8pC:

rkhsA
JA,C:

rkhsA
Jbqq, (4.4)

where K8pM,vq “ spantM ivu8
i“0 denotes the Krylov subspace of tM,vu. Moreover,

řs
i“1mi “ r with

r being the rank of A and kt “ q ď r.

Proof. First, we prove eq. (4.4) with q being the number of nonzero elements in tPG1b, . . . , PGsbu. Let
gj “ PGjb{}PGjb}2 for 1 ď j ď s, and let g1, . . . , gq ‰ 0 without loss of generality. Note that tgju

q
j“1 are

orthonormal. Let Gj be a matrix with orthonormal columns that span Gj . Note that PGj “ GjG
J
j . By

the eigenvalue decomposition AC:

rkhsA
J “

řs
j“1 µjGjG

J
j , we have

wi :“ pAC:

rkhsA
Jqi´1b “

s
ÿ

j“1

µi´1
j GjG

J
j b “

q
ÿ

j“1

µi´1
j }PGjb}2gj . (4.5)

Hence, ranktwiu
8
i“1 ď q. On the other hand, for 1 ď k ď q, setting w̄i “ }PGjb}2gj , we have

pw1 . . . , wkq “ pw̄1, . . . , w̄qqTk with

Tk “

¨

˚

˚

˚

˝

1 µ1 ¨ ¨ ¨ µk´1
1

1 µ2 ¨ ¨ ¨ µk´1
2

...
... ¨ ¨ ¨

...
1 µq ¨ ¨ ¨ µk´1

q

˛

‹

‹

‹

‚

“

ˆ

Tk1
Tk2

˙

,
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where Tk1 P Rkˆk consists of the first k rows of Tk, and Tk2 P Rk,q´k consists of the rest rows. Note
that Tk1 is a Vandermonde matrix and it is nonsingular since µi ‰ µj for 1 ď i ‰ j ď k. Then, Tk has
full column rank, thereby the rank of twiu

k
i“1 is k for 1 ď k ď q, and ranktwiu

8
i“1 ě ranktwiu

q
i“1 “ q.

Therefore, we have dimpK8pAC:

rkhsA
J, bqq “ ranktwiu

8
i“1 “ q.

Also, we have dimpK8pC:

rkhsA
JA,C:

rkhsA
Jbqq “ ranktC:

rkhsA
Jwiu

8
i“1 “ q, where the first equality

follows from
pC:

rkhsA
JAqi´1C:

rkhsA
Jb “ C:

rkhsA
JpAC:

rkhsA
Jqi´1b “ C:

rkhsA
Jwi, (4.6)

and the second equality follows from ranktC:

rkhsA
Jwiu

8
i“1 “ ranktwiu

8
i“1 “ q since C:

rkhsA
J is non-

singular on spantwiu
8
i“1, which is a subset of spantGlu

s
l“1 by eq. (4.5). In fact, C:

rkhsA
J is non-singular

on spantGlu
s
l“1 because tGlu are eigenspaces of AC:

rkhsA
J corresponding to the positive eiengvalues.

Furthermore, eq. (4.6) and the non-degeneracy of C:

rkhsA
J on spantwiu

8
i“1 imply that

dimpKqpC:

rkhsA
JA,C:

rkhsA
Jbqq “rankptC:

rkhsA
JAqi´1C:

rkhsA
Jbuq´1

i“0

“rankptC:

rkhsA
Jwiu

q
i“1 “ ranktwiu

q
i“1 “ q.

(4.7)

That is, the vectors tC:

rkhsA
JAqi´1C:

rkhsA
Jbuq´1

i“0 are linearly independent.
Next, we prove that kt “ q. Clearly, kt ď q since by Theorem 4.4 tziu

kt
i“1 are orthogonal and they are

in KktpC
:

rkhsA
JA,C:

rkhsA
Jbq Ă K8pC:

rkhsA
JA,C:

rkhsA
Jbq, whose dimension is q. On the other hand,

we show next that if kt ă q, there will be a contradiction; hence, we must have kt “ q. In fact, eq. (3.3b)
and eq. (3.6) imply that, for each 1 ď i ď kt,

C:

rkhsA
JAzi “ αiC

:

rkhsA
Jui ` βi`1C

:

rkhsA
Jui`1

“ αipαizi ` βizi`1q ` βi`1pαi`1zi`1 ` βi`1ziq,

which leads to
αi`1βi`1zi`1 “ C:

rkhsA
JAzi ´ pα2

i ` β2i`1qzi ´ αiβizi´1.

Note that α1β1z1 “ C:

rkhsA
Jβ1u1 “ C:

rkhsA
Jb. Combining the above two relations and using αkβk ą 0

for all k ď kt, it follows that zk P spantpC:

rkhsA
JAqiC:

rkhsA
Jbuki“0 for all k ď kt. Hence, recursively

applying zi “ 1
αiβi

C:

rkhsA
JAzi´1 ´ 1

αiβi
pα2

i´1 ` β2i qzi´1 ´
αi´1βi´1

αiβi
zi´2 for all 2 ď i ď kt, we can write

αkt`1βkt`1zkt`1 “

kt
ÿ

i“0

ξipC
:

rkhsA
JAqiC:

rkhsA
Jb,

with ξi P R and in particular, ξkt “ 1{Πkt
i“1αiβi ‰ 0. Now αkt`1βkt`1 “ 0 implies that tpC:

rkhsA
JAqiC:

rkhsA
Jbukti“0

are linearly dependent, contradicting with the fact that they are linearly independent as suggested by
eq. (4.7). Therefore, we have q “ kt.

Lastly, to prove that
řs

i“1mi “ r, it suffices to show that rankpAC:

rkhsA
Jq “ r since the eigenvalues

of AC:

rkhsA
J are nonnegative. To see that its rank is r, following the proof of Theorem 4.4, we write

AC:

rkhsA
J “ AWrW

J
r A

J. Since AWr “ AVrΛ
1{2
r , we only need to prove that AVr has full column rank.

Suppose AVry “ 0 with y P Rr. By Theorem 2.4 it follows AJAVry “ 0 ô BVrΛry “ 0 ô y “ 0.
Thus, rankpAC:

rkhsA
Jq “ rankpAWrq “ r.

4.2 Uniqueness of solutions in the iterations

Proposition 4.6 If gGKB terminates at step kt in eq. (4.1), the iterative solution xkt is the unique least
squares solution to minxPRpCrkhsq }Ax´ b}2.
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Proof. Following the proof of Theorem 4.4, the solution to minxPRpCrkhsq }Ax ´ b}2 is x‹ “ Wry‹ with
y‹ “ argminy }AWry ´ b}2. Since AWr has full column rank, it follows that y‹ is the unique solution to
WJ

r A
JpAWry´bq “ 0. Note that RpWrq “ RpCrkhsq. Thus, x‹ is the solution to minxPRpCrkhsq }Ax´b}2

if and only if PRpCrkhsqA
JpAx‹ ´ bq “ 0.

Now we only need to prove PRpCrkhsqA
JpAxq ´ bq “ 0 since kt “ q by Theorem 4.5. Using the

property PRpCrkhsq “ CrkhsC
:

rkhs, we get from eq. (3.8c)

PRpCrkhsqA
JUk`1 “ CrkhspZkB

T
k ` αk`1zk`1e

J
k`1q.

Combining the above relation with eq. (3.10), we have

PRpCrkhsqA
JpAxq ´ bq “ CrkhspZqB

T
q ` αq`1zq`1e

J
q`1qpBqyq ´ β1e1q

“ CrkhsrZqpBJ
q Bqyq ´BJ

q β1e1q ` αq`1βq`1zq`1e
J
q yqs

“ αq`1βq`1Crkhszq`1e
J
q yq “ 0,

since αq`1βq`1 “ 0 when gGKB terminates.
This result shows the necessity for early stopping the iteration to avoid getting a naive solution. The

next theorem shows the uniqueness of the solution in each iteration of the algorithm.

Theorem 4.7 (Uniquess of solution in each iteration) For each iteration with k ă kt, there exists
a unique solution to eq. (3.1). Furthermore, there exists a unique solution to minxPSk

}Ax´ b}2.

Proof. Let Wk P Rnˆk that has orthonormal columns and spans Sk. For any x P Sk, there is a unique
y P Rk such that x “ Wky. Then the solution to eq. (3.1) should be xk “ Wkyk, where yk is the solution
to

min
yPYk

}Wky}Crkhs
, Yk “ ty : min

yPRk
}AWky ´ b}2u.

By [10, Theorem 2.1], it has a unique solution yk iff N pC
1{2
rkhsWkq

Ş

N pAWkq “ t0u.
Now we prove N pC

1{2
rkhsWkq “ t0u. To this end, suppose y P N pC

1{2
rkhsWkq and x “ Wky. Then x P

Sk
Ş

N pC
1{2
rkhsq. Since N pC

1{2
rkhsq “ N pCrkhsq “ RpCrkhsqK, we get x P Sk

Ş

RpCrkhsqK Ď RpCrkhsq
Ş

RpCrkhsqK “

t0u. Therefore, x “ Wky “ 0, which leads to y “ 0.
To prove the uniqueness of a solution to minxPSk

}Ax ´ b}2, suppose that there are two minimizers,
x1 ‰ x2 P Sk, and we prove that they must be the same. Let x˚ “ x1 ´x2 and we have AJAx˚ “ 0 since
the minimizer of Epxq “ }Ax´ b}2 must satisfy 0 “ 1

2∇Epxq “ AJAx´AJb. That is, x˚ P N pAJAq.
On the other hand, since x˚ P Sk Ă RpCrkhsq by Theorem 4.3, and note that Crkhs “ BpAJAq:B “

BVrΛ
´1
r V J

r B, we have B´1x˚ P RppAJAq:Bq Ă N pAJAqK.
Combining the above two, we have xx˚, B

´1x˚y “ 0. But B is a symmetric positive definite matrix,
so we must have x˚ “ 0.

5 Numerical Examples

5.1 The Fredholm equation of the first kind

We first examine the iDARR in solving the discrete Fredholm integral equation of the first kind. The
tests cover two distinct types of spectral decay: exponential and polynomial. The latter is well-known to
be challenging, often occurring in applications such as image deblurring. Additionally, we investigate two
scenarios concerning whether the true solution is inside or outside the function space of identifiability
(FSOI).
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Table 2: Three regularization norms in iterative and direct methods.

Norms }x}2˚ Iterative Direct

l2 xJInx IR-l2 l2
L2 xJBx IR-L2 L2

DA-RKHS xJCrkhsx iDARR DARTR

Three norms in iterative and direct methods. We compare the l2, L2, and DA-RKHS norms in
iterative and direct methods. The direct methods are based on matrix decomposition. These regularizers
are listed in Table 2.

The iterative methods differ primarily in their regularization norms. For the with l2 norm, we use the
LSQR method in the IR TOOLS package [12], and we stop the iteration when αi or βi becomes negligible
to maintain stability. For the L2 norm, we use gGKB to construct solution subspaces by replacing Crkhs

by the basis matrix B; note that this method is equivalent to the LSQR method using L “
?
B as a

preconditioner in the IR TOOLS package.
The direct methods are Tikhonov regularizers using the L-curve method [16].

Numerical settings. We consider the problem of recovering the input signal ϕ in a discretization
of Fredholm integral equation in eq. (2.1) with s P ra, bs and t P rc, ds. The data are discrete noisy
observations b “ pypt1q, . . . , yptmqq P Rm, where tj “ c ` jpd ´ cq{m for 0 ď j ď m. The task is
to estimate the coefficient vector x “ pϕps1q, . . . , ϕpsnqq P Rn in a piecewise-constant function ϕpsq “
řn

i“1 ϕpsiq1rsi´1,sispsq, where S :“ tsiu
n
i“1 Ă ra, bs with si “ a` iδ, δ “ pb´ aq{n. We obtain the linear

system eq. (1.1) with Apj, iq “ Kptj , siqδ by a Riemann sum approximation of the integral. We set
pa, b, c, dq “ p1, 5, 0, 5q, m “ 500, and take n “ 100 except when testing the computational time with a
sequence of large values for n.

The Rm-valued noise w is Gaussian Np0, σ2∆tImq. We set the standard deviation of the noise
to be σ “ }Ax} ˆ nsr, where nsr is the noise-to-signal ratio, and we test our methods with nsr “

t0.0625, 0.125, 0.25, 0.5, 1u.
We consider two integral kernels

(a) Kpt, sq :“ s´2e´st; (b) Kpt, sq :“ s´1| sinpst` 1q|. (5.1)

which lead to exponential and polynomial decaying spectra, respectively, as shown in Figure 1. The
first kernel arises from magnetic resonance relaxometry [4] with ϕ being the distribution of transverse
nuclear relaxation times.
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(a) Exponential decaying spectrum

0 20 40 60 80 100
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100

i

(b) Polynomial decaying spectrum

Figure 1: Singular values of A and generalized eigenvalues of pAJA,Bq for kernels in eq. (5.1).

The DA-RKHS. By its definition in eq. (2.4), the exploration measure is ρpsiq “ 1
γ

řm
j“1 |Kptj , siq|δ

for i “ 1, . . . , n with γ being the normalizing constant. In other words, it is the normalized column sum
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of the absolute values of the matrix A. The discrete function space L2
ρpSq is equivalent to Rn with weight

ρ “ pρps1q, . . . , ρpsnqq, and its norm is xx, xyL2
ρ
:“ xJdiagpρpsiqqx for all x P Rn. The basis matrix for

the Cartesian basis of Rn is B “ diagpρpsiqq, which is also the basis matrix for step functions in the
Riemann sum discretization. The DA-RKHS in this discrete setting is pN pAJAqqK, x¨, ¨yCrkhs

q.
Settings for comparisons. The comparison consists of two scenarios regarding whether the true
solution is inside or outside of the FSOI: (i) the true solution is the second eigenvector of LG; thus it is
inside the FSOI; and (ii) the true solution is ϕpxq “ x2, which has significant components outside the
FSOI.

For each scenario, we conduct 100 independent simulations, with each simulation comprising five
datasets at varying noise levels. The results are presented by a box plot, which illustrates the median,
the lower and upper quartiles, any outliers, and the range of values excluding outliers. The key indicator
of a regularizer’s effectiveness is its ability to produce accurate estimators whose errors decay consistently
as the noise level decreases. Since exploring the decay rate in the small noise limit is not the focus of
this study, we direct readers to [22,27] for initial insights into how this rate is influenced by factors such
as spectral decay, the smoothness of the true solution, and the choice of regularization strength.
Results. We report the results separately according to the spectral decay.

(i) Exponential decaying spectrum. Figure 2’s top row shows typical estimators of IR-l2, IR-
L2, and iDARR and their de-noising of the output signal when nsr “ 0.5. When the true solution
is inside the FSOI, the iDARR significantly outperforms the other two in producing a more accurate
estimator. However, both IR-L2 and IR-l2 can denoise the data accurately, even though their estimators
are largely biased. When the true solution is outside the FSOI, all the regularizers can not capture the
true function accurately, but iDARR and IR-L2 clearly outperform the l2 regularizer. Yet again, all
these largely biased estimators can de-noise the data accurately. Thus, this inverse problem is severely
ill-defined, and one must restrict the inverse to be in the FSOI.

The 2nd top row of Figure 2 shows the decay of the residual }Axk ´ y}2 as the iteration number
increases, as well as the stopping iteration numbers of these regularizers in 100 simulations. The fast
decaying residual suggests the need for early stopping, and all three regularizers indeed stop in a few steps.
Notably, iDARR consistently stops early at the second iteration for different noise levels, outperforming
the other two regularizers in stably detecting the stopping iteration.

The effectiveness of the DA-RKHS regularization becomes particularly evident in the lower two
rows of Figure 2, which depict the decaying errors and loss values as the noise-to-signal ratio (nsr)
decreases in the 100 independent simulations. In both iterative and direct methods, the DA-RKHS
norm demonstrates superior performance compared to the l2 and L2 norms, consistently delivering
more accurate estimators that show a steady decrease in error alongside the noise level. Notably, the
values of the corresponding loss functions are similar, underscoring the inherent ill-posedness of the
inverse problem. Furthermore, iDARR marginally surpasses the direct method DARTR in producing
more precise estimators, particularly when the true solution resides within the FSOI. The performance
of iDARR suggests that its early stopping mechanism can reliably determine an optimal regularization
level, achieving results that are slightly more refined than those obtained with DARTR using the L-curve
method.

(ii) Polynomial decaying spectrum. Figure 3 illustrates again the superior performance of
iDARR over IR-L2 and IR-l2 in the case of polynomial spectral decay. The 2nd top row shows that the
slow spectral decay poses a notable challenge to the iterative methods, as the noise level affects their
stopping iteration numbers. Also, they all stop early within approximately twelve steps, even though
the true solution may lay in a subspace with a higher dimension.

The lower two rows show that iDARR remains effective. It continues to outperform the other two
iterative regularizers when the true solution is in the FSOI, and it is marginally surpassed by IR-L2
and IR-l2 when the true solution is outside the FSOI. In both scenarios, the direct method DARTR
outperforms all other methods, including iDARR, indicating DARTR is more effective in extracting
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Figure 2: Results in the case of exponentially decaying spectrum. Top-row: typical estimators of IR-l2,
IR-L2, and iDARR when nsr “ 0.5 and their denoising of the output signal. The 2nd-top row: the
residual }Axk ´ b}2 as iteration number k increases in one realization when nsr “ 0.5, as well as the
boxplots of the stopping iteration numbers in the 100 simulations. The lower two rows: boxplots of the
estimators’ L2

ρ errors and loss function values in the 100 simulations.

information from the spectrum with slow decay.
Computational Complexity. The iterative method iDARR is orders of magnitude faster than the
direct method DARTR, especially when n is large. Figure 4 shows their computation time as n increases
in 10 independent simulations, and the results align with the complexity order illustrated in Section 3.3.

In summary, iDARR outperforms IR-L2 and IR-l2 in yielding accurate estimators that consistently
decay with the noise level. Its major advantage comes from the DA-RKHS norm that adaptively exploits
the information in data and the model.

5.2 Image Deblurring

We further test iDARR in 2D image deblurring problems, where the task is to reconstruct images from
blurred and noisy observations. The mathematical model of this problem can be expressed in the form of
the first-kind Fredholm integral equation in eq. (2.1) with s, t P R2. The kernel Kpt, sq is a function that
specifies how the points in the image are distorted, called the point spread function (PSF). We chose
PRblurspeckle from [12] as the blurring operator, which simulates spatially invariant blurring caused by
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Figure 3: Results in the case of polynomial decaying spectrum. Top-row: typical estimators of IR-l2,
IR-L2, and iDARR when nsr “ 0.0625 and their denoising of the output signal. The 2nd-top row: the
residual }Axk ´ b}2 as iteration number k increases in one realization when nsr “ 0.0625, as well as the
box plots of the stopping iteration numbers the 100 simulations. The lower two rows: box plots of the
estimators’ L2

ρ errors and loss function values in the 100 simulations.

Figure 4: Computational time in 10 simulations with m “ 500.

atmospheric turbulence, and we use zero boundary conditions to construct the matrix A. For a true
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image with N ˆN pixels, the matrix A P RN2ˆN2 is a psfMatrix object. We consider two images with
256 ˆ 256 and 320 ˆ 320 pixels, respectively, and set the noise level to be nsr “ 0.01 for both images.
The true images, their blurred noisy observations, and corresponding PSFs that define matrices A are
presented in Figure 5.
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Figure 5: The true images, noisy images blurred by PRblurspeckle, and the corresponding PSFs.
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Figure 6: The reconstructed images computed by iDARR, LSQR and hybrid-l2 methods.

Figure 6 shows the reconstructed images computed by iDARR, LSQR, and the hybrid-l2 methods.
Here the hybrid-l2 applies an l2-norm Tikhonov regularization to the projected problem obtained by
LSQR, and it uses the stopping strategy in [12]. The best estimations of for iDARR or LSQR are
solutions with k˚ minimizing }xk ´ xtrue}2. Their reconstructed solutions are obtained by using the
L-curve method for early stopping.

Figure 7 (a)–(f) show the relative errors as the iteration number increases and the selection of the
early stopping iterations by the L-curve method in the right two columns.

Notably, Figure 7 reveals that iDARR achieves more accurate reconstructed images than LSQR
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Figure 7: Relative errors in iteration numbers, where the circles mark the early stopping iterations
chosen by the L-curve method presented in the right two columns.

for both tests, despite appearing to the contrary in Figure fig:deblur. The LSQR appears prone to
stopping late, resulting in lower-quality reconstructions than iDARR. In contrast, iDARR tends to stop
earlier than ideal, before achieving the best quality. However, the hybrid-l2 method consistently produces
accurate estimators with stable convergence, suggesting potential benefits in developing a hybrid iDARR
approach to enhance stability.

The effectiveness of iDARR depends on the alignment of regularities between the convolution kernel
and the image, as the DA-RKHS’s regularity is tied to the smoothness of the convolution kernel. With
the PRblurspeckle featuring a smooth PSF, iDARR obtains a higher accuracy for the smoother Image-2
compared to Image-1, producing reconstructions with smooth edges. An avenue for future exploration
involves adjusting the DA-RKHS’s smoothness to better align with the smoothness of the data.

6 Conclusion and Future Work

We have introduced iDARR, a scalable iterative data-adaptive RKHS regularization method, for solving
ill-posed linear inverse problems. It searches for solutions in the subspaces where the true signal can be
identified and achieves reliable early stopping via the DA-RKHS norm. A core innovation is a generalized
Golub-Kahan bidiagonalization procedure that recursively computes orthonormal bases for a sequence
of RKHS-restricted Krylov subspaces. Systematic numerical tests on the Fredholm integral equation
show that iDARR outperforms the widely used iterative regularizations using the L2 and l2 norms, in
the sense that it produces stable accurate solutions consistently converging when the noise level decays.
Applications to 2D image de-blurring further show the iDARR outperforms the benchmark of LSQR
with the l2 norm.

Future Work: Hybrid Methods The accuracy and stability of the regularized solution hinges on
the choice of iteration number for early stopping. While the L-curve criterion is a commonly used tool for
determining this number, it can sometimes lead to suboptimal results due to its reliance on identifying
a corner in the discrete curve. Hybrid methods are well-recognized alternatives that help stabilize
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this semi-convergence issue, as referenced in [8, 20, 32]. One promising approach is to apply Tikhonov
regularization to each iteration of the projected problem. The hyperparameter for this process can be
determined using the weighted generalized cross-validation method (WGCV) as described in [8]. This
approach is a focus of our upcoming research project.
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