
Journal of Scientific Computing (2024) 98:55
https://doi.org/10.1007/s10915-023-02447-4

Double Precision is not Necessary for LSQR for Solving
Discrete Linear Ill-Posed Problems

Haibo Li1

Received: 15 April 2023 / Revised: 1 November 2023 / Accepted: 21 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The growing availability and usage of low precision floating point formats attracts many
interests of developing lower or mixed precision algorithms for scientific computing prob-
lems. In this paper we investigate the possibility of exploiting mixed precision computing
in LSQR for solving discrete linear ill-posed problems. Based on the commonly used reg-
ularization model for linear inverse problems, we analyze the choice of proper computing
precision in the two main parts of LSQR, including the construction of Krylov subspace and
updating procedure of iterative solutions. We show that, under some mild conditions, the
Lanczos vectors can be computed using single precision without loss of any accuracy of the
final regularized solution as long as the noise level is not extremely small. We also show
that the most time consuming part for updating iterative solutions can be performed using
single precision without sacrificing any accuracy. The results indicate that several highly time
consuming parts of the algorithm can be implemented using lower precisions, and provide
a theoretical guideline for implementing a robust and efficient mixed precision variant of
LSQR for solving discrete linear ill-posed problems. Numerical experiments are made to test
two mixed precision variants of LSQR and confirming our results.

Keywords Mixed precision · Linear ill-posed problem · Regularization · LSQR · Roundoff
unit · Semi-convergence

Mathematics Subject Classification 65F22 · 65F10 · 65G50

1 Introduction

Although for most traditional scientific computing problems, computations are carried out
with double precision (64-bit) rather than lower precisions such as single (32-bit) or half

This work was supported in part by the National Natural Science Foundation of China under Grant No.
3192270206.

B Haibo Li
haibolee1729@gmail.com

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02447-4&domain=pdf
http://orcid.org/0000-0003-0437-7617

 55 Page 2 of 30 Journal of Scientific Computing (2024) 98:55

(16-bit) precision, on modern computing architectures, the performance of 32-bit operations
is often at least twice as fast as that of 64-bit operations [1], which stimulates the trial of using
lower precision floating point formats in an algorithm. To exploit this computation power
without sacrificing accuracy of the final result, numerical algorithms have to be designed
that use lower or mixed precision formats. By using a combination of 64-bit and 32-bit (even
16-bit) floating point arithmetic, the performance of many numerical algorithms can be
significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. New
mixed precision variants of many numerical linear algebra algorithms have been recently
proposed, such as matrix multiplications [2, 6], LU and QR matrix factorizations [32, 44],
Krylov solvers [8, 11, 17, 18] and many others [3, 25].

In this paper, we investigate how to exploit mixed precision computing for solving discrete
linear ill-posed problems. This type of problems typically arise from the numerical solution
of inverse problems that appear in various applications of science and engineering, such as
image deblurring, geophysics, computerized tomography and many others; see e.g., [23, 28,
35, 40]. A basic linear inverse problem leads to a discrete linear system of the form

Ax = b, b = Axex + e, (1.1)

where the matrix A ∈ R
m×n withm ≥ n without loss of generality, and the right-hand side b

is a perturbed version of the unknown exact observation bex = Axex . In this paperwe suppose
e is a Gaussian white noise. The problem is ill-posed in the sense that A is extremely ill-
conditioned with its singular values decaying gradually towards zero without any noticeable
gap, which leads to that the naive solution xnai = A†b of 1.1 is a poor approximation to
the exact solution xex = A†bex , where “†′′ denotes the Moore-Penrose inverse of a matrix.
Therefore, some forms of regularization must be used to deal with the noise e in order to
extract a good approximation to xex .

One of the popular regularization techniques is the Tikhonov regularization [41], in which
a quadratic penalty is added to the objective function:

xλ = arg min
x∈Rn

{‖Ax − b‖2+λ‖Lx‖2},

where λ > 0 is the regularization parameter and L ∈ R
p×n is the regularization matrix.

Throughout the rest of the paper ‖ · ‖ always denotes either the vector or matrix 2-norm. The
proper choice of L depends on the particular application, which should be chosen to yield a
regularized solution with some known desired features of xex . A suitable value of λ should
have a good balance between the data fidelity term ‖Ax − b‖ and the regularization term
‖Lx‖, only in which case we can get a regularized solution that is a good approximation
to xex . Although many types of regularization parameter choice rules have been proposed,
such as discrepancy principle (DP) [34], unbiased predictive risk estimator [42], generalized
cross validation [16] and L-curve criterion [19], it is often computationally very expensive to
choose a suitable λ for large scale problems, since many different values of λ must be tried
to get xλ.

For large scale ill-posed problems, iterative regularization method is the soundest choice.
For standard-form regularizationwith L = In , Krylov subspace basedmethods such asLSQR
[4, 14, 37] are the most commonly used. The methods project (1.1) onto a sequence of lower-
dimensional Krylov subspaces, and then solves the projected small scale problems, where the
iteration number plays the role of regularization parameter [20, 22]. This approach usually
exhibits semi-convergence: as the iteration proceeds, the iterative solution first approximates
xex while afterwards the noise e starts to deteriorate the solution so that it gradually diverge
from xex and instead converges to xnai . Therefore, the iterationmust be stopped early properly

123

Journal of Scientific Computing (2024) 98:55 Page 3 of 30 55

by using a regularization parameter choice rule [7, 38]. The semi-convergence behavior can
be mitigated by using a hybrid method, which applies a standard regularization technique,
such as Tikhonov regularization or truncated SVD, to the projected problem at each iteration
[10, 29, 39].

In this paper, we focus on the LSQR algorithm for iteratively solving large scale discrete
linear ill-posed problems that is based on the Lanczos bidiagonalization [37]. The motivation
for this work is to answer whether lower precisions can be used in some parts of the algorithm
while maintaining the 64-bit accuracy of the regularized solutions. The LSQR for linear ill-
posed problems mainly includes two parts, that is the construction of Krylov subspace by
Lanczos bidiagonalization and updating procedure of iterative solutions. In addition, a proper
iteration number should be estimated to stop the iteration near the semi-convergence point.
Since b is contaminated by the noise e, we can never get a regularized solution with error as
small as ‖e‖ [12, 20], and this error is usually much bigger than the roundoff unit of double
precisionwith the value 2−53. This fact inspires us that double precisionmay be not necessary
for LSQR to compute a regularized solution with the same accuracy as the best regularized
one. To the best of our knowledge, however, there is still no theoretical analysis about how
to choose proper lower computing precision in LSQR for linear ill-posed problems. This
issue is crucial for deciding which lower precision format should be used in each part of the
algorithm to get a more efficient mixed precision implementation.

We study the lower precision computing for the two main parts of LSQR, including the
construction of Krylov subspace and updating iterative solutions. In finite precision arith-
metic, we implement the Lanczos bidiagonalization in LSQR with full reorthogonalization
of Lanczos vector, which is a frequently used strategy to avoid slowing down and irregular
convergence of iterative solutions [26, 30]. First, under an ideal model describing the lin-
ear ill-posed problem (1.1), our result estimates an upper bound on the proper value of u
corresponding to the used computing precision for constructing Lanczos vectors with full
reorthogonalization, and it indicates that for not extremely small noise levels we can exploit
single precision for this part without loss of accuracy of the final regularized solution. Sec-
ond, for the updating procedure part, we theoretically show that, under a condition which
can be almost always satisfied, the updated regularized solutions can be computed using
single precision without sacrificing any accuracy. We also investigate the L-curve and dis-
crepancy principlemethods for estimating the optimal early stopping iteration combinedwith
the mixed precision implementation of LSQR. Overall, the results theoretically show that
several highly time consuming parts of LSQR for solving discrete linear ill-posed problems
can be implemented using lower precisions, which has a great potential of defeating the
double precision implementation in computation efficiency. The results can guide us towards
a mixed precision implementation that is both robust and efficient, and should be considered
by application developers for practical problems.

The paper is organized as follows. We start in Sect. 2 with a brief review of regulariza-
tion theory and algorithm of linear ill-posed inverse problems, and the IEEE 754 floating
point standard. Next, in Sect. 3, we analyze the proper choice of u corresponding to the used
computing precision for constructing Lanczos vectors with full reorthogonalization and give
an upper bound. In Sect. 4, we analyze the possibility of using lower precision for updating
iterative solutions and give a mixed precision variant of LSQR. We also discuss the esti-
mation of optimal early stopping iteration for the mixed precision LSQR. Some numerical
experimental results are presented in Sect. 5 and we conclude the paper in Sect. 6.

123

 55 Page 4 of 30 Journal of Scientific Computing (2024) 98:55

2 Preliminaries

In this section, we review some basic knowledge of regularization theory of linear ill-posed
inverse problems and the LSQR regularization algorithm, we also review finite precision
computing based on the IEEE 754 Standard floating point number system.

2.1 Regularization of Linear Ill-Posed Problems and LSQR

Suppose the singular value decomposition (SVD) of A is

A = U

(
�

0

)
V T , (2.1)

where U = (u1, . . . , um) ∈ R
m×m and V = (v1, . . . , vn) ∈ R

n×n are orthogonal, � =
diag(σ1, . . . , σn) ∈ R

n×n with singular values σ1 ≥ σ2 ≥ · · · ≥ σn > 0. The naive solution
to (1.1) is

xnai =
n∑

i=1

uTi b

σi
vi =

n∑
i=1

uTi bex
σi

vi +
n∑

i=1

uTi e

σi
vi = xex +

n∑
i=1

uTi e

σi
vi .

Note that the second term in xnai is extremely large since σi decay to zero, making xnai a
meaningless solution. A direct regularized method is the truncated SVD (TSVD) method,
which forms xtsvdk by truncating the first k components of xnai corresponding to large singular

values: xtsvdk = ∑k
i=1

uTi b
σi

vi . Regularization theory of linear inverse problems can be used to
investigate the accuracy of the regularized solution to (1.1), among which the discrete Picard
condition(DPC) plays a central role. We give a brief review in the following.

The DPC for the exact right-hand side bex can be written in the following popular simpli-
fying model [20, 22]:

|uTi bex | = ρ0σ
1+β
i , β > 0, i = 1, 2, . . . , n, (2.2)

where β is a model parameter that controls the decay rates of |uTi bex |,1. The DPC implies
that the noisy coefficients uTi b gradually decay in average and are larger than |uTi e| for
i = 1, 2 . . . until the noise dominates. Suppose that the noise in |uTi b| starts to dominate at
k = k∗ + 1, i.e., k∗ is the transition point such that [22, §3.5.1]

|uTk∗b| ≈ |uTk∗bex | > |uTk∗e|, |uTk∗+1bex | ≈ |uTk∗+1e|. (2.3)

Under the assumption that e ∈ R
m is a Gaussian white noise, it is shown that |uTi e| ≈

m−1/2‖e‖ [22, §3.5.1]. Thus the DPC for noisy b can be written in the following form:

|uTi b| = |uTi bex + uTi e| ≈
{

ρ0σ
1+β
i , 1 ≤ i ≤ k∗;

m−1/2‖e‖, i ≥ k∗ + 1.
(2.4)

The accuracy of the best regularized solution to (1.1) is closely connected with the DPC
(2.4), which can be reflected by the effective resolution limit denoted by ηres . The effective
resolution limit of (1.1) denotes the smallest coefficient |vTi xex | that can be recovered from

the given A and noisy b [20, §4.1], and it is shown in [20, §4.5] that ηres ≈ (m−1/2‖e‖) β
1+β .

1 In [22, §4.6] the corresponding model is |uTi bex | = σ
1+β
i , which does not include the constant ρ0. In fact,

Hansen [22, p.68] points out that “while this is, indeed, a crude model, it reflects the overall behavior often
found in real problems”.

123

Journal of Scientific Computing (2024) 98:55 Page 5 of 30 55

The accuracy of the best regularized solution xopt is dependent on ηres , that is, one can only
hope that xopt reaches an accuracy corresponding to the effective resolution limit, which
means

‖xopt − xex‖
‖xex‖ ≥ C1ε

β
1+β (2.5)

with a moderate constant C1, where ε = ‖e‖/‖bex‖ < 1 is the noise level; see e.g., [12, 20]
for more details. Note that ‖e‖ < ‖bex‖; otherwise all information from bex is lost in b. In
particular, it is known from [12, 20] that xtsvdk∗ is a 2-norm filtering best possible regularized
solution of (1.1) when only deterministic 2-norm filtering regularization methods are taken
into account.

For large scale ill-posed problems, the LSQR algorithm with early stopping is the most
common used iterative regularization method, which is based on Lanczos bidiagonalization
of A with starting vector b, as described in Algorithm 1.

Algorithm 1 k-step Lanczos bidiagonalization
1: Let β1 = ‖b‖, p1 = b/β1
2: α1 = ‖AT p1‖, q1 = AT p1/α1
3: for j = 1, 2, . . . , k do
4: s j = Aq j − α j p j
5: β j+1 = ‖s j‖, p j+1 = s j /β j+1

6: r j = AT p j+1 − β j+1q j
7: α j+1 = ‖r j‖, q j+1 = r j /α j+1
8: end for

In exact arithmetic, the k-step Lanczos bidiagonalization produces a lower bidiagonal
matrix

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1

β2 α2

β3
. . .

. . . αk

βk+1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
(k+1)×k,

and two groups of Lanczos vectors {p1, . . . , pk+1} and {q1, . . . , qk+1} that are orthonormal
bases of Krylov subspaces Kk+1(AAT , b) and Kk+1(AT A, AT b), respectively. The k-step
Lanczos bidiagonalization can be written in the matrix form

Pk+1(β1e
(k+1)
1) = b, (2.6)

AQk = Pk+1Bk, (2.7)

AT Pk+1 = Qk B
T
k + αk+1qk+1(e

(k+1)
k+1)T , (2.8)

where e(l)
i denotes the i-th canonical basis vector of Rl , and Pk+1 = (p1, . . . , pk+1) and

Qk = (q1, . . . , qk+1) are two orthonormal matrices. The LSQR for (1.1) is mathemati-
cally equivalent to the conjugate gradient (CG) method applied to the normal equation of
minx∈Rn ‖Ax − b‖, i.e. AT Ax = AT b, which seeks approximations to xex from the k
dimensional Krylov subspace Kk(AT A, AT b) = R(Vk) starting with k = 1 onwards, and

123

 55 Page 6 of 30 Journal of Scientific Computing (2024) 98:55

the iteration should be terminated at a proper step near the semi-convergence point to get a
good regularized solution [4]. At the k-th step, by (2.6) and (2.7) we have

min
x=Qk y

‖Ax − b‖= min
y∈Rk

‖Bk y − β1e
(k+1)
1 ‖,

and thus the k-step LSQR solution is

xk = Qk yk, yk = arg min
y∈Rk

‖Bk y − β1e
(k+1)
1 ‖= B†

k (β1e
(k+1)
1). (2.9)

We note that if αk+1 or βk+1 is zero, then the iteration terminates and xk = xnai [37]. This
case rarely happens in real computations and we assume that the iteration does not terminate.

From the above description, the computation of xk can be divided into two parts. The first
part is the Lanczos bidiagonalization that generates two orthonormal bases of Krylov sub-
spaces Kk+1(AAT , b) and Kk+1(AT A, AT b), respectively, while the second part is solving
the projected problem (2.9) to obtain xk . In the practical implementation, there is a recursive
formula to update xk+1 from xk without solving the projected least squares problems at each
iteration. This updating procedure will be investigated in Sect. 4.

2.2 Finite Precision Computing

In practical computational tasks, the accuracy of a computed result and the time needed to
complete the algorithm both heavily depend on the floating point format used for storage and
arithmetic operations. Here we review the IEEE 754 Standard floating point number format,
which is composed of a sign bit, an exponent η, and a significand t :

x = ±μ × 2η−t ,

whereμ is any integer in [0, 2t −1] and η is an integer in [ηmin, ηmax]. Roughly speaking, the
length of the exponent determines the value range of a floating point format, and the length of
the significand determines the relative accuracy of the format in that range. A short analysis
of floating point operations [24, Theorem 2.2] shows that the relative error is controlled by
the roundoff unit u := 1

2 ·21−t . Table 1 shows main parameters of the three different floating
point number formats.

In finite precision arithmetic, the Lanczos vectors ui and vi computed by the Lanczos
bidiagonalization gradually lose their orthogonality, and it may slow down the convergence
of iterative solutions and make the propagation of noise during the iterations rather irregular
[26, 33]. A frequently used strategy is implementing the Lanczos bidiagonalization with
full reorthogonalization (LBFRO)2 to maintain stability of convergence. In the rest of the
paper, we investigate the LSQR implemented with full reorthogonalization of Lanczos vectors
in finite precision. From now on, notations such as Pk , Bk , αk , etc. denote the computed
quantities in finite precision computing.

Define the orthogonality level of Lanczos vectors {p1, . . . , pk} and {q1, . . . , qk} as
μk = ‖SUT(Ik − PT

k Pk)‖, νk = ‖SUT(Ik − QT
k Qk)‖,

where SUT(·) denotes the strictly upper triangular part of a matrix. The following result
has been established for the k-step Lanczos bidiagonalization with reorthogonalization (not
necessarily full reorthogonalization) [31].

2 In full reorthogonalization, uk and vk are reorthogonalized against all previous vectors {u1, . . . , uk−1} and
{v1, . . . , vk−1} as soon as they have been computed. This adds an arithmetic cost of about 4(m + n)k2 flops,
which is affordable if k 	 min{m, n}.

123

Journal of Scientific Computing (2024) 98:55 Page 7 of 30 55

Table 1 Parameters for various floating-point formats. “Range” denotes the order of magnitude of the smallest
positive (subnormal) xsmin and smallest and largest positive normalized floating-point numbers

Type Size Range Roundoff unit
(bits) xsmin xmin xmax u

Half precision 16 5.96 × 10−8 6.10 × 10−5 6.55 × 104 4.88 × 10−4

Single precision 32 1.40 × 10−45 1.18 × 10−38 3.40 × 1038 5.96 × 10−8

Double precision 64 4.94 × 10−324 2.22 × 10−308 1.80 × 10308 1.11 × 10−16

Theorem 2.1 For the k-step Lanczos bidiagonalization with reorthogonalization, if νk+1 <

1/2 and μk+1 < 1/2, then there exist two orthornormal matrices P̄k+1 = (p̄1, . . . , p̄k+1) ∈
R
m×(k+1) and Q̄k+1 = (q̄1, . . . , q̄k+1) ∈ R

n×(k+1) such that

P̄k+1(β1e
(k+1)
1) = b + δb, (2.10)

(A + E)Q̄k = P̄k+1Bk, (2.11)

(A + E)T P̄k+1 = Q̄k B
T
k + αk+1q̄k+1(e

(k+1)
k+1)T , (2.12)

where E and δb are perturbation matrix and vector, respectively. We have error bounds

‖P̄k+1 − Pk+1‖≤ 2μk+1 + O(μ2
k+1), ‖Q̄k+1 − Qk+1‖≤ νk+1 + O(ν2k+1),

and

‖E‖= O(c(n, k)‖A‖(u + νk+1 + μk+1)), ‖δb‖= O(‖b‖u).

where c(n, k) is a moderately growing constant depends on n and k.

For the LBFRO, the orthogonality levels of ui and vi are kept around O(u), thus by
Theorem 2.1 we have

‖P̄k+1 − Pk+1‖ = O(u), ‖Q̄k+1 − Qk+1‖= O(u), (2.13)

‖E‖= O(c(n, k)‖A‖u), ‖δb‖= O(‖b‖u). (2.14)

This result will be used in the next section to estimate upper bound on the proper value of
roundoff unit u corresponding to the used computing precision.

3 Choice of Computing Precision for the Construction of Krylov
Subspace

In this section, we investigate which lower precision format should be used for computing
Lanczos vectors with full reorthogonalization. To this end, by assuming the LBFRO is imple-
mented in finite precision computing with roundoff unit u, we will give an upper bound on u
such that the best computed regularized solution can achieve the same accuracy as the best
regularized LSQR solution to (1.1) obtained in exact arithmetic. In this section, the updating
procedure or (2.9) is assumed to be implemented in exact arithmetic.

Theorem 3.1 Suppose that the LBFRO in LSQR is implemented in finite precisionwith round-
off unit u. If (2.9) is solved exactly, then the computed xk satisfies

‖xk − x̄k‖
‖x̄k‖ = O(u), (3.1)

123

 55 Page 8 of 30 Journal of Scientific Computing (2024) 98:55

where x̄k is the exact k-th LSQR solution to the perturbed problem

min
x∈Rn

‖(A + E)x − (b + δb)‖. (3.2)

Proof Since (2.9) is solved exactly, by Theorem 2.1 we have

yk = arg min
y∈Rk

‖Bk y − β1e
(k+1)
1 ‖= arg min

y∈Rk
‖P̄k+1Bk y − P̄k+1β1e

(k+1)
1 ‖

= arg min
y∈Rk

‖(A + E)Q̄k y − (b + δb)‖.

FromTheorem 2.1we know that Q̄k is the right orthonormalmatrix generated by the Lanczos
biagonalization of A + E with starting vector b + δb in exact arithmetic, which means
R(V̄k) = Kk((A + E)T (A + E), (A + E)T (b + δb)). Let x̄k = Q̄k yk . Then x̄k is the k-th
LSQR solution to (3.2). Since xk = Qk yk , by (2.13) we have

‖x̄k − xk‖≤ ‖Qk − Q̄k‖‖yk‖ = O(‖yk‖u)).

Using ‖yk‖ = ‖x̄k‖, we obtain (3.1).
�
This result indicates that xk ≈ x̄k within O(u). If we rewrite (3.2) as

(A + E)x = (bex + Exex) + (e − Exex + δb), (3.3)

then xex is the exact solution to (A + E)xex = bex + Exex and e − Exex + δb is the noise
term. Notice that ‖E‖/‖A‖ = O(c(n, k)u) and thus for a not big k the singular values of
A + E decrease monotonically without noticeable gap until they tend to settle at a level of
O(‖A‖u). Therefore, the linear system (3.3) inherits the ill-posedness of (1.1). Moreover,
if ‖ − Exex + δb‖ 	 ‖e‖, then e − Exex + δb can be treated as a Gaussian noise. For a
sufficiently small u, we can hope that the best LSQR regularized solution to (3.3) has the
same accuracy as that to (1.1).

Suppose that the best LSQR regularized solution to (3.3) is x̄k0 . Let the i-th largest sin-
gular values of A + E be σ̄i and the corresponding left singular vector be ūi . Applying the
regularizaton theory and DPC to (1.1) and (3.3), the accuracy of x̄k0 will be the same as that
of xopt if:

• the DPC of (3.3) inherits properties of the DPC of (1.1), i.e., the DPC of (3.3) before the
noise dominates should satisfies

|ūTi b| ≈ ρ0σ̄
1+β
i , 1 ≤ i ≤ k∗; (3.4)

• the effective resolution limit of (3.3) has the same accuracy as that of (1.1),3.

Note that Theorem 3.1 implies that ‖xk0 − x̄k0/‖x̄k0‖ = O(u). Therefore, for the above x̄k0 ,
the corresponding xk0 will have the same accuracy as xopt if

u 	 C1ε
β

1+β , (3.5)

which implies that the best computed regularized solution among xk can achieve the same
accuracy as xopt .

In the following we make some analysis about the above assertions.

3 The assertion implicitly uses the order optimal property of the LSQR or its mathematical equivalent CG
algorithm for linear inverse problems [12, §7.3] which means that the best LSQR regularized solution can
achieve the same accuracy as that of xopt . Although plenty of numerical results confirm it without any
exception, this property has not been rigorously proved for discrete linear ill-posed problems; see [20, §6.3]and
[9] for more discussions.

123

Journal of Scientific Computing (2024) 98:55 Page 9 of 30 55

Lemma 3.1 For the ill-posed problem (3.2) or its equivalence (3.3), if (3.4) holds and the
following two conditions are satisfied: (1). ‖− Exex + δb‖ 	 ‖e‖; (2). ‖E‖	 σk∗ , then the
effective resolution limit of (3.3) has the same accuracy as that of (1.1).

Proof Since the noise in problem (3.3) is e − Exex + δb, by Condition (1), the noise e
dominates, thus we can regard this noise as Gaussian. Condition (2) implies that σ̄i ≈ σi
until the noise in |uTi b| starts to dominates, and thus the errors in A + E starts to dominates
at a point k̄∗ > k∗. Therefore, it follows from [20, §4.5], if (3.4) holds, that

η̄res ≈ (m−1/2‖e − Exex + δb‖)
β

1+β ≈ (m−1/2‖e‖) β
1+β ,

where η̄res is the effective resolution limit of (3.3).
�
Lemma 3.2 For the iteration number k not very big, if u satisfies

u 	 min{ε, (m−1/2ε)
1

1+β }, (3.6)

then the relation (3.5) and Conditions (1) and (2) hold.

Proof Condition (1) holds if ‖Exex‖ 	 ‖e‖ and ‖δb‖ 	 ‖e‖. By (2.14), these two equalities
can be satisfied if u 	 ‖e‖/‖b‖ and ‖E‖ 	 ‖e‖/‖xex‖. Since

‖e‖
‖b‖ ≥ ‖e‖

‖bex‖ + ‖e‖ = ε

1 + ε
>

ε

2
,

we have u 	 ‖e‖/‖b‖ if u 	 ε. Note that

‖e‖
‖xex‖ ≤ ‖A‖‖e‖

‖bex‖ = ε‖A‖,

and the value of ‖e‖/‖xex‖ should not deviate too far from ε‖A‖ since ‖xex‖ is usually a
moderate quantity. Using ‖E‖= O(c(n, k)‖A‖u), we have ‖E‖ 	 ‖e‖/‖xex‖ if u 	 ε

since c(n, k) is a moderate quantity.
By (2.2) and (2.3), we have ρ0σ

1+β
k∗+1 ≈ |uTk∗+1e| ≈ m−1/2‖e‖, which implies that Condi-

tion (2) will hold if

‖E‖ 	 σk∗+1 ≈ (m−1/2ρ−1
0 ‖e‖) 1

1+β . (3.7)

By (2.2), we have ρ0 = |uT1 bex |/σ 1+β
1 , and thus

(ρ−1
0 ‖e‖) 1

1+β = σ1

(‖e‖
|uT1 bex |

) 1
1+β ≥ ‖A‖

(‖e‖
‖bex‖

) 1
1+β = ε

1
1+β ‖A‖. (3.8)

Therefore Condition (2) will hold if ‖E‖ 	 (m−1/2ε)
1

1+β ‖A‖, which can be satisfied if

u 	 (m−1/2ε)
1

1+β . By the above derivations, one can check that (3.5) and Conditions (1)
and (2) hold if u satisfies (3.6).
�

In order to analyze (3.4), we adopt the following popular model describing the decay rates
of σi for different types of ill-posedness [20]:

σi =
⎧⎨
⎩

ζρ−i , ρ > 1 severely ill-posed;
ζ i−α, α > 1 moderately ill-posed;
ζ i−α, 1/2 < α ≤ 1 mildly ill-posed.

(3.9)

123

 55 Page 10 of 30 Journal of Scientific Computing (2024) 98:55

Remark 3.1 Notice that the model (3.9) means that all the singular values of A are simple. For
the case that A has multiple singular values, the model should be rewritten by the following
modification; see [27] for using this modifiedmodel to analyze regularization effect of LSQR
for the multiple singular values case. First rewrite the SVD of A as

A = Û

(
�

0

)
V̂ T ,

where Û = (Û1, . . . , Ûr , Û⊥) with Ûi ∈ R
m×li and V̂ = (V̂1, . . . , V̂r) with V̂i ∈ R

n×li

are column orthonormal, � = diag(σ̂1 Il1 , . . . , σ̂r Ilr) with the r distinct singular values
σ̂1 > σ̂2 > · · · > σ̂r > 0, each σ̂i is li multiple and l1 + l2 + · · · + lr = n. Then the decay
rate of σ̂i can be written in the same form as (3.9). In this case, the DPC of (1.1) becomes

‖Û T
i bex‖ = ρ0σ̂

1+β
i , i = 1, 2, . . . , r , (3.10)

which states that, on average the (generalized) Fourier coefficients ‖Û T
i bex‖ decay faster

than σ̂i .

Using the above model, we can give a sufficient condition under which the relation (3.4)
holds. For notational simplicity, we also write σ̂i as σi without causing confusions.

Lemma 3.3 Suppose that the iteration number k is not very big and σi − σi+1 ‖E‖ for
1 ≤ i ≤ k∗. If (3.6) holds and

u 	 (m−1/2ε)
2+β
1+β

(
σk∗

σk∗+1
− 1

)
, (3.11)

then the relation (3.4) holds.

Proof There two cases needed to be proved.
Case 1. A has single singular values. Write the i-th left singular vector of A + E as

ūi = ui + δui where δui is an error vector. Since (3.6) holds, we have σ̄i ≈ σi for 1 ≤ i ≤ k∗.
Note (3.4) implies |(ui + δui)

T b| ≈ ρ0σ̄
1+β
i ≈ ρ0σ

1+β
i for 1 ≤ i ≤ k∗, which can be

satisfied if

|δTui b| 	 ρ0σ
1+β
i , 1 ≤ i ≤ k∗. (3.12)

By the perturbation theorem of singular vectors [5, Theorem 1.2.8], we have the perturbation
bound

| sin θ(ui , ūi)| ≤ ‖E‖
σi − σi+1 − ‖E‖ ≈ ‖E‖

σi − σi+1
, 1 ≤ i ≤ k∗

under the assumption that σi − σi+1 ‖E‖ for 1 ≤ i ≤ k∗, where θ(ui , ūi) is the angle
between ui and ūi . Thus we have

‖δui ‖= 2| sin(θ(ui , ūi)/2)| ≈ | sin θ(ui , ūi)| � ‖E‖
σi − σi+1

.

Therefore, (3.12) can be satisfied if

‖E‖‖b‖
σi − σi+1

	 ρ0σ
1+β
i , 1 ≤ i ≤ k∗,

which is equivalent to

‖E‖	 ρ0σ
2+β
i

(
1 − σi+1

σi

)
‖b‖ , 1 ≤ i ≤ k∗. (3.13)

123

Journal of Scientific Computing (2024) 98:55 Page 11 of 30 55

Using the expression of σk∗+1 in (3.7) and the model (3.9), the minimum of the right-hand
term of the above inequality is achieved at i = k∗, which is

ρ0σ
2+β
k∗

(
1 − σk∗+1

σk∗
)

‖b‖ =
ρ0σ

2+β
k∗+1

(σk∗
σk∗+1

)2+β(
1 − σk∗+1

σk∗
)

‖b‖

≈
ρ0(m−1/2ρ−1

0 ‖e‖) 2+β
1+β

(σk∗
σk∗+1

)1+β(σk∗
σk∗+1

− 1
)

‖bex‖

≥
(m−1/2‖e‖) 2+β

1+β
(σk∗

σk∗+1
− 1

)

‖bex‖ρ
1

1+β

0

.

By (3.8), we have

(m−1/2‖e‖) 2+β
1+β

‖bex‖ρ
1

1+β

0

= (m−1/2)
2+β
1+β (ρ−1

0 ‖e‖) 1
1+β

‖e‖
‖bex‖

≥ (m−1/2)
2+β
1+β ε

1
1+β ‖A‖ε = (m−1/2ε)

2+β
1+β ‖A‖.

Therefore, by (3.12) and (3.13) and using ‖E‖= O(c(n, k)‖A‖u), we finally obtain the
result.

Case 2. A has multiple singular values. Write the SVD of A+ E in a similar form as that
of A, such that the left singular vectors can be written as Ū = (Ū1, . . . , Ūr , Ū⊥). By the
perturbation theorem of invariant singular subspaces [43], we have

‖ sin�(Ûi , Ūi)‖ ≤ ‖E‖
σ̂i − σ̂i+1 − ‖E‖ ≈ ‖E‖

σ̂i − σ̂i+1

where ‖ sin�(Ûi , Ūi)‖ = ‖Ûi Û T
i −Ūi Ū T

i ‖ is the anglemeasure between subspaces spanned
by Ûi and Ūi [15, §2.5]. Notice that

|‖Ū T
i b‖−‖Û T

i b‖| = |‖Ūi Ū
T
i b‖−‖Ûi Û

T
i b‖| ≤ ‖(Ūi Ū

T
i − Ûi Û

T
i)b‖

≤ ‖b‖‖ sin�(Ûi , Ūi)‖,
where |‖Ū T

i b‖−‖Û T
i b‖| is the corresponding version of the left-hand term of (3.12). Using

the same approach as that for analyzing (3.12), we can obtain the result for the multiple
singular values case.
�

Using model (3.9), the minimum of σi − σi+1 for 1 ≤ i ≤ k is achieved at i = k∗. Thus
for 1 ≤ i ≤ k∗, we have

σi − σi+1 = σi+1
(σi

σi+1
− 1

) ≥
{

σk∗+1(ρ − 1) severely ill-posed;
σk∗+1[(k∗+1

k∗)α − 1] moderately/mildly ill-posed.

By (3.7) and (3.8), we have σk∗+1 � (m−1/2ε)
1

1+β ‖A‖. Using these two inequalities, one can
check that if (3.6) and (3.11) hold, then the assumption that σi −σi+1 ‖E‖ for 1 ≤ i ≤ k∗
can be satisfied.

Note that the semi-convergence point k0 of LSQR for (3.3) is usually not big and thus
‖E‖= O(c(n, k0)‖A‖u) with c(n, k0) a moderate quantity. By Lemma 3.2 and Lemma 3.3,
if u satisfies (3.6) and (3.11), then relations (3.4) and (3.5) holds and the effective resolution
limit of (3.3) has the same accuracy as that of (1.1). Therefore by Theorem 3.1 x̄k0 as well

123

 55 Page 12 of 30 Journal of Scientific Computing (2024) 98:55

as xk0 will have the same accuracy as xopt , which implies that the best computed regularized
solution among xk can achive the same accuracy as xopt . The result is summarized in the
following theorem.

Theorem 3.2 Suppose that the LBFRO in LSQR is implemented in finite precisionwith round-
off unit u and (2.9) is solved exactly. If u satisfies

u 	 �(m−1/2ε)
2+β
1+β (3.14)

where

� =
{
min{1, ρ − 1} severely ill-posed;
min{1, (k∗+1

k∗)α − 1} moderately/mildly ill-posed,
(3.15)

then the best computed regularized solution among xk can achieve the same accuracy as the
best regularized LSQR solution to (1.1) obtained in exact arithmetic.

In Theorem 3.2, the parameters α, β and ρ are unknown in practical computations. In fact,
these parameters are ideal for simplifying singular value decaying and DPCmodels, and they
are closely related to properties of a given ill-posed problem. However, it is instructive from
them to get insight into a practical choice of u. For severely ill-posed problems, ρ − 1 is
usually a constant not very small, while for moderately/mildly ill-posed problems, if ε is very
small and α is not big that means the singular values of A decaying very slowly, then k∗ will
be big and thus (k

∗+1
k∗)α − 1 ≈ α/k∗ will be very small. Therefore, for moderately/mildly

ill-posed problems, if ε is very small and α is not big, then (3.14) may give a too small upper
bound on u.

Theorem 3.2 implies that for noisy level ε not very small, we can exploit lower precision
for constructing Lanczos vectors in the LSQR for solving (1.1) without loss of any accuracy
of final regularized solutions. We will use numerical examples to show that single precision
is enough for the three types of linear ill-posed problem. We need to stress a special practical
case that k∗ = n for a too small ε and α, which may be encountered in some image deblurring
problems. In this case the noise amplification is tolerable even without regularization, which
makes xnai a good approximation to xex , and the LSQR solves (1.1) in their standardmanners
as if they solved an ordinary other than ill-posed problem. Thus our result can not be applied
to this case.

4 Updating xk Using Lower Precision

In this section, we discuss how to use lower precision for updating xk step by step. Suppose
that the k-step LBFRO is implemented using the computing precision chosen as in Theorem
3.2. We first review the procedure for updating xk from x0 = 0 proposed in [37]. First, the
QR factorization

Q̂k

(
Bk β1e

(k+1)
1

)
=

(
Rk fk

φ̄k+1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ1 θ2 φ1

ρ2 θ3 φ2
. . .

. . .
...

ρk−1 θk φk−1

ρk φk

φ̄k+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.1)

123

Journal of Scientific Computing (2024) 98:55 Page 13 of 30 55

is performed using a series of Givens rotations, where at the i-th step the Givens rotation is
chosen to zero out βi+1:(

ci si
si −ci

) (
ρ̄i 0 φ̄i

βi+1 αi+1 0

) (
ρi θi+1 φi

0 ρ̄i+1 φ̄i+1

)
,

and the orthogonal matrix Qk is the product of these Givens rotation matrices. Since

‖Bk y − β1e
(k+1)
1 ‖2 =

∥∥∥Q̂k

(
Bk β1e

(k+1)
1

)(
y

−1

) ∥∥∥2 = ‖Rk y − fk‖2 + |φ̄k+1|2, (4.2)

the solution to miny∈Rk ‖Bk y − β1e
(k)
1 ‖ is yk = R−1

k fk . Factorize Rk as

Rk = Dk R̂k, Dk =

⎛
⎜⎜⎜⎝

ρ1
ρ2

. . .

ρk

⎞
⎟⎟⎟⎠ , R̂k =

⎛
⎜⎜⎜⎝
1 θ2/ρ1

1 θ3/ρ2
. . . θk/ρk−1

1

⎞
⎟⎟⎟⎠ ,

then we get

xk = Qk yk = Qk R
−1
k fk = (Qk R̂

−1
k)(D−1

k fk). (4.3)

Let Wk = Qk R̂
−1
k = (w1, . . . , wk). By using back substitution for solving Wk R̂k = Qk we

obtain the updating procedure for xi and wi :

xi = xi−1 + (φi/ρi)wi , wi+1 = qi+1 − (θi+1/ρi)wi , (4.4)

which is described in Algorithm 2.

Algorithm 2 Updating procedure

1: Let x0 = 0, w1 = q1, φ̄1 = β1, ρ̄1 = α1
2: for i = 1, 2, . . . , k, do
3: ρi = (ρ̄2i + β2

i+1)
1/2

4: ci = ρ̄i /ρi , si = βi+1/ρi
5: θi+1 = siαi+1, ρ̄i+1 = −ciαi+1
6: φi = ci φ̄i , φ̄i+1 = si φ̄i
7: xi = xi−1 + (φi /ρi)wi
8: wi+1 = qi+1 − (θi+1/ρi)wi
9: end for

From the above description, the procedure of updating xk is constituted of two parts: the
Givens QR factorization and the computation of xi andwi+1. First, we investigate the choice
of proper computing precision for the Givens QR factorization. Denote the roundoff unit
used in this process by ũ and assume the computations of other parts are exact. In finite
precision arithmetic, after the above process, we have computed the k-th iterative solution

x̃k = Qk ỹk with R̃k ỹk = f̃k , where

(
R̃k f̃k

φ̃k+1

)
is the computed R-factor of

(
Bk β1e

(k+1)
1

)
.

Using the backward error analysis result about the Givens QR factorization as (4.1), there
exist an orthogonal matrix Q̃k ∈ R

(k+1)×(k+1) such that

Q̃k

[(
Bk β1e

(k+1)
1

)
+

(
�B

k δ
β
k

)]
=

(
R̃k f̃k

φ̃k+1

)
(4.5)

123

 55 Page 14 of 30 Journal of Scientific Computing (2024) 98:55

where R̃k ∈ R
k×k is upper triangular and∥∥∥�B
k

∥∥∥ / ‖Bk‖ ≤ c1(k)ũ + O(ũ2), ‖δβ
k ‖/β1 ≤ c1(k)ũ + O(u2)

with a moderate value c1(k) depending on k; see [24, Theorem 19.10]. The above relation

means that Q̃k is the Q-factor of a perturbed
(
Bk β1e

(k+1)
1

)
, and R̃k is the R-factor of a

perturbed Bk . Using the perturbation analysis result about QR factorizations, we have

‖R̃k − Rk‖
‖Rk‖ ≤ c2(k)κ(Rk)ũ + O(ũ2), (4.6)

‖Q̃k − Q̂k‖ ≤ c3(k)κ(Rk)ũ + O(ũ2), (4.7)

where κ(Rk) = ‖Rk‖‖R−1
k ‖ is the condition number of Rk , and c2(k) and c3(k) are two

moderate values depending on k; see [24, §19.9]. Note that the F-norm result appeared in
[24, §19.9] also applies to the above 2-norm result besides a difference of multiplicative
factor depending on k. Thus, we have

‖ f̃k − fk‖ ≤
∥∥∥Q̃k

(
β1e

(k+1)
1 + δ

β
k

)
− Q̂kβ1e

(k+1)
1

∥∥∥
≤ β1‖Q̃k − Q̂k‖ + ‖Q̃kδ

β
k ‖

≤ β1 [c3(k)κ(Rk) + c1(k)] ũ + O(ũ2). (4.8)

Note that Rk yk = fk . Using the perturbation analysis result about this linear system [15,
§2.6.4], if ‖R−1

k (R̃k − Rk)‖ < 1, we get

‖ỹk − yk‖
‖yk‖ ≤ κ(Rk)

1 − κ(Rk)
‖R̃k−Rk‖‖Rk‖

(
‖R̃k − Rk‖

‖Rk‖ + ‖ f̃k − fk‖
‖ fk‖

)

≤ κ(Rk)

1 − c2(k)κ(Rk)2ũ

(
c2(k)κ(Rk) + β1c3(k)κ(Rk) + c1(k)

(β2
1 − φ̄2

k+1)
1/2

)
ũ + O(ũ2).

Notice that xk = Qk yk and x̃k = Qk ỹk , where Qk is computed by LBFRO in finite precision
with roundoff unit u. We get ‖x̃k − xk‖ ≤ ‖Qk‖‖ỹk − yk‖ ≤ ‖ỹk − yk‖ (1 + O(u)), where
we have used ‖Qk − Q̄k‖ = O(u) and ‖Q̄k‖ = 1 by (2.13). Using Theorem 3.1 and
‖yk‖ = ‖Q̄k yk‖ = ‖x̄k‖, we obtain

‖x̃k − xk‖
‖xk‖ = ‖x̃k − xk‖

‖x̄k‖
‖x̄k‖
‖xk‖ ≤ ‖ỹk − yk‖ (1 + O(u))

‖yk‖ (1 + O(u))

≤ κ(Rk)

1 − c2(k)κ(Rk)2ũ

(
c2(k)κ(Rk) + β1c3(k)κ(Rk) + c1(k)

(β2
1 − φ̄2

k+1)
1/2

)
ũ

+ O(uũ + ũ2). (4.9)

The upper bound (4.9) grows up at the speed of κ(Rk)
2ũ = κ(Bk)

2ũ. By Theorem 2.1, Bk is
the projection of A+E on span{P̄k+1} and span{Q̄k}, and it gradually becomes ill-conditioned
since A+ E is a slight perturbation of the ill-conditioned matrix A. This implies that a lower
computing precision used by the Givens QR factorization will lead to a loss of accuracy of
the computed solution. Therefore, in practical computation, we need to use double precision
to perform it. Fortunately, the Givens QR factorization (Line 3–6 in Algorithm 2) can always
be performed very quickly since only operations of scalars are involved. In contrast, the

123

Journal of Scientific Computing (2024) 98:55 Page 15 of 30 55

updating of xi andwi+1 involves vector operations, thereby it is better to be performed using
lower precision. The proper choice of the computing precision for it will be analyzed in the
following part.

In practical computation of the iterative regularization algorithm, the k-step LBFRO need
not to be implemented in advance, while it should be done in tandem with the updating
procedure. An early stopping criterion such as DP or L-curve criterion is used to estimate the
semi-convergence point. The whole process can be summarized in Algorithm 3 as a mixed
precision variant of LSQR for linear ill-posed problems.

Algorithm 3Mixed precision variant of LSQR for (1.1)
Input: A, b, x0 = 0
1: for k = 1, 2, . . . , do
2: Compute pk , qk , αk , βk by the LBFRO � roundoff unit is u
3: Compute ρk , θk+1, ρ̄k+1, φk , φ̄k+1 by the updating procedure � double precision
4: Compute xk , wk+1 by the updating procedure � roundoff unit is ū
5: if Early stopping criterion is satisfied then � DP or L-curve criterion
6: The semi-convergence point is estimated as k1
7: Terminate the iteration
8: end if
9: end for
Output: Final regularized solution x̂k1 � Computed solution corresponding to xk1

To analyze the choice of ū, we use the following model [15, §2.7.3] for the floating point
arithmetic:

fl(a op b) = (a op b)(1 + ε), |ε| ≤ ū, op = +,−, ∗, /. (4.10)

Under this model, we have the following rounding error results for matrix and vector com-
putations [15, §2.7.8]:

fl(u + αv) = u + αv + w, |w| ≤ (|u| + 2|αv|)ū + O(ū2), (4.11)

fl(AB) = AB + X , |X | ≤ n|A||B|ū + O(ū2). (4.12)

where u, v are vectors, α is a scalar, and A, B are two matrices of orders m × n and n × l,
respectively. In (4.11) and (4.12), the notation | · | is used to denote the absolute value of a
matrix or vector and “ ≤′′ means the relation “ ≤′′ holds componentwise. We remark that
(4.12) applies to both dot-product and outer-product based procedures for matrix multiplica-
tions; see [15, §1.1, §2.7] for these two types of computation of matrix multiplications and
the corresponding rounding error analysis results.

Denote by x̂k and ŵk the computed quantities where the roundoff unit of the computing
precision is ū and the Givens QR factorization is performed with double precision. To avoid
cumbersome using of notations, in the following analysis, notations such as vk , fk , xk , wk

denote the computed quantities for the process that the LBFRO is implemented in finite
precision with roundoff unit u while the Givens QR factorization is implemented in double
precision and other computations are exact. Using the above model, the computation of ŵi

in finite precision arithmetic can be formed as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŵ1 = v1 + δw
1

ŵ2 = v2 − (θ2/ρ1)ŵ1 + δw
2

...

ŵk = vk − (θk/ρk−1)ŵk−1 + δw
k

123

 55 Page 16 of 30 Journal of Scientific Computing (2024) 98:55

where

‖δw
1 ‖ ≤ ‖v1‖ū + O(ū2) = ū + O(ū2)

and

‖δw
i ‖ ≤ (‖vi‖ + 2‖(θi/ρi−1)ŵi−1‖)ū + O(ū2) = (1 + 2‖(θi/ρi−1)ŵi−1‖)ū + O(ū2).

Let hi = ŵi − wi . Then we have

hi+1 = vi+1 − (θi+1/ρi)ŵi + δw
i − (vi+1 − (θi+1/ρi)wi) = −(θi+1/ρi)hi + δw

i ,

which leads to

Hk R̂k = �w
k (4.13)

with Hk = (h1, . . . , hk) and �w
k = (δw

1 , . . . , δw
k). Therefore, we have

‖�w
k ‖ ≤ √

k max
1≤i≤k

‖δw
i ‖ ≤ √

k[1 + 2 max
1≤i≤k

(θi+1/ρi)‖wi + hi‖]ū + O(ū2)

≤ √
k[1 + 2‖R̂k‖(‖Wk‖ + ‖�w

k ‖‖R̂−1
k ‖)]ū + O(ū2),

where we have used |θi+1/ρi | ≤ ‖R̂k‖ and ‖hi‖ ≤ ‖Hk‖ ≤ ‖�w
k ‖‖R̂−1

k ‖. This inequality
leads to

(1 − 2
√
kκ(R̂k)ū)‖�w

k ‖ ≤ √
k(1 + 2‖R̂k‖‖Wk‖)ū + O(ū2),

where κ(R̂k) = ‖R̂k‖‖R̂−1
k ‖ is the condition number of R̂k . Notice that ‖Wk‖ ≤

‖Qk‖‖R̂−1
k ‖ = ‖R̂−1

k ‖ + O(u) where we have used ‖Qk − Q̄k‖ = O(u) and ‖Q̄k‖ = 1 by
(2.13). We obtain the upper bound on ‖�w

k ‖:
‖�w

k ‖ ≤ √
k[1 + 2(1 + √

k)κ(R̂k)]ū + O(ū2 + ūu). (4.14)

Now we can analyze the accuracy of x̂k .

Theorem 4.1 In Algorithm 3, denote by xk the computed solution where the Givens QR fac-
torization is performed in double precision and other computations of the updating procedure
are exact. Then at each iteration we have

‖x̂k − xk‖
‖xk‖ ≤ √

k[1 + (2 + 2
√
k + k)κ(R̂k)]ū + O(ū2 + ūu). (4.15)

Proof Notice from (4.3) and (4.4) that the formation of x̂k is thematrixmultiplication between
Ŵk = (ŵ1, . . . , ŵk) and D−1

k fk by the outer-product based procedure. Using model (4.12)
we have

x̂k − xk = Ŵk D
−1
k fk + �x

k − WkD
−1
k fk, (4.16)

where x̂k = Ŵk(D
−1
k fk) + �x

k with |�x
k | ≤ k|Ŵk ||D−1

k fk |ū + O(ū2). Therefore, we have

‖�x
k‖ ≤ ‖|�x

k |‖ ≤ k‖|Ŵk |‖F‖|D−1
k fk |‖ū + O(ū2)

= k‖Ŵk‖F‖D−1
k fk‖ū + O(ū2)

≤ k3/2‖Ŵk‖‖D−1
k fk‖ū + O(ū2),

123

Journal of Scientific Computing (2024) 98:55 Page 17 of 30 55

where ‖·‖F is the Frobenius norm of amatrix. By (4.13), we have Ŵk−Wk = Hk = �w
k R̂

−1
k ,

and thus

‖Ŵk‖ ≤ ‖Wk‖ + ‖Hk‖ ≤ ‖Wk‖ + ‖�w
k ‖‖R̂−1

k ‖.
Substituting it into the inequality about ‖�x

k‖ and noticing R̂−1
k D−1

k fk = R−1
k fk = yk , we

obtain

‖�x
k‖ ≤ k3/2(‖Wk‖ + ‖�w

k ‖‖R̂−1
k ‖)‖R̂k(R̂

−1
k D−1

k fk)‖ū + O(ū2)

≤ k3/2κ(R̂k)‖yk‖ū + O(ū2 + ūu),

where we have used ‖Wk‖ ≤ ‖R̂−1
k ‖ + O(u). Using Ŵk − Wk = �w

k R̂
−1
k again, we get

‖Ŵk D
−1
k fk − WkD

−1
k fk‖ = ‖(Ŵk − Wk)D

−1
k fk‖ = ‖�w

k (R̂−1
k D−1

k fk)‖ ≤ ‖�w
k ‖‖yk‖.

By (4.16) and combining with (4.14), we obtain

‖x̂k − xk‖ ≤ ‖�x
k‖ + ‖Ŵk D

−1
k fk − WkD

−1
k fk‖

≤ √
k[1 + (2 + 2

√
k + k)κ(R̂k)]‖yk‖ū + O(ū2 + ūu).

Since ‖Qk − Q̄k‖ = O(u) and Q̄k is orthonormal, we have ‖Q−1
k ‖ ≤ 1/(1 − O(u)) =

1+O(u). Using the relations ‖yk‖ = ‖Q−1
k xk‖ ≤ ‖xk‖ (1 + O(u)) and ‖x̂k − xk‖/‖xk‖ =

‖x̂k − xk‖/‖yk‖ · ‖yk‖/‖xk‖, we finally obtain (4.15).
�
Note that R̂k is obtained by scaling Rk using the diagonal of it, and the diagonal scaling

step can often dramatically reduces the condition number of Rk . In fact, we will show in the
numerical experiments section that κ(R̂k) is a moderate value even for an iteration k bigger
than the semi-convergence point. By Theorem 4.1, if u has been chosen such that the best
solution among xk can achieve the same accuracy as the best LSQR regularized solution to
(1.1) obtained in exact arithmetic, in order to make the practical updated x̂k can also achieve
the same accuracy, ū should be chosen such that the upper bound in (4.15) is much smaller
than ‖xopt −xex‖/‖xex‖. Thanks to (2.5), for a not very small noise level, the single precision
roundoff unit ū is enough. This ensures that we can use lower precision for updating xk , which
is more efficient than using double precision.

Now we discuss methods for estimating the optimal early stopping iteration, i.e., the
semi-convergence point. By 3.1 and (4.2) we have

φ̄k+1 = ‖Bk yk − β1e
(k+1)
1 ‖ = ‖(A + E)xk − (b + δb)‖.

For the proper choice of u, the noise norm of (3.2) is ‖e − Exex + δb‖ ≈ ‖e‖ since ‖ −
Exex + δb‖ 	 ‖e‖. Since x̂k , xk and x̄k have the same accuracy for the proper u and ū, we
only need to estimate the semi-convergence point of LSQR applied to (3.2). The discrepancy
principle corresponding to (3.2) can be written as

‖(A + E)xk − (b + δb)‖� τ‖e‖
with τ > 1 slightly, and we should stop iteration at the first k satisfying

φ̄k+1 = ‖Bk yk − β1e
(k+1)
1 ‖ ≤ τ‖e‖, (4.17)

and use this k as the estimate of semi-convergence point, where φ̄k+1 can be efficiently
computed by using 2. Numerical experiments will show that this estimate is almost the same
as that obtained by the discrepancy principle for LSQR in double precision arithmetic. The

123

 55 Page 18 of 30 Journal of Scientific Computing (2024) 98:55

discrepancy principle method usually suffers from under-estimating and thus the solution is
over-regularized.

Another approach is the L-curve criterion, which does not need ‖e‖ in advance. The
motivation is that one can plot (log ‖Axk − b‖, log ‖xk‖) in the shape of an L-curve, and the
corner of the curve is a good estimate of the semi-convergence point. The L-curve for (3.2)
is

(log ‖(A + E)xk − (b + δb)‖, log ‖xk‖) ,

which is just (
log φ̄k+1, log ‖xk‖

)
, (4.18)

where the normof xk should be computed at each iteration.Amodification of (4.18) computes
the norm of x̂k instead of xk , and this may make a little difference with the estimate by (4.18).
Numerical experimentswill show that these two estimates are almost the same as that obtained
by the L-curve criterion for LSQR in double precision arithmetic.

Finally, we give a model for comparing computing efficiency between the double and
mixed precision implementations of LSQR. We also perform full reorthogonalization of the
Lanczos bidiagonalization for the double precision implementation, since without reorthog-
onalization the convergence behavior is irregular and the convergence rate is much slow.
We count the computations involving matrix/vector operations in the two main parts of the
algorithm:

• For the LBFRO process, at each step it takes O(mn) flops for matrix–vector products
andO(m + n) flops for scalar-vector multiplications; besides, the reorthogonalization at
the k-th step takes O((m + n)k2) flops. Therefore, at each k-th iteration, LBFRO takes
O(mn + (m + n)(k2 + 1)) flops.

• For the updating procedure, the most time-consuming part is the computation of xi and
wi+1, and it takes O(n) flops.

From the above investigation, we find that the matrix–vector products in LBFRO are the
most dominant computations in the entire algorithm. In the ideal case, the performance of
32-bit operations is at least twice as fast as that of 64-bit operations on modern computing
architectures [1]. Therefore, the proposed mixed precision algorithm can save approximately
half the time compared to the original double precision algorithm.

In pracital computations, to give a convincing comparison between the two imple-
mentations, the mixed precision algorithm need to be performed on a specific computing
architecture supporting well for lower precision computations such as NVIDIA Tesla V100
GPU [36], and the codes should be optimized to take full advantage of the computing power.
This will de considered in our future work.

5 Numerical Experiments

In this section, we present some numerical experiments to justify the theoretical results
obtained. Two mixed precision variants of LSQR are implemented to be compared with
the double precision LSQR for several test linear ill-posed problems. We use “d” to denote
the algorithm implemented using double precision, and use “s+d” and “s+s” to denote the
algorithms that use single precision for LBFRO while use double and single precisions for
updating xk , respectively.Note that for “d” theLanczos bidiagonalization is also implemented
using full reorthogonalization to avoid delay of convergence.

123

Journal of Scientific Computing (2024) 98:55 Page 19 of 30 55

Table 2 The description of test problems

Problem m × n Ill-posedness Description

shaw 1000 × 1000 Severe 1-D image restoration model

deriv2 1000 × 1000 Moderate Computation of second derivative

gravity 2000 × 2000 Severe 1-D gravity surveying problem

heat 2000 × 2000 Moderate Inverse heat equation

PRblurspeckle 16384 × 16384 Mild 2-D image deblurring problem

PRblurdefocus 65536 × 65536 Mild 2-D image deblurring problem

For these different implementations, we compare accuracy of the regularized solutions by
using the relative reconstruction error

RE(k) = ‖xk − xex‖
‖xex‖ (5.1)

to plot semi-convergence curves, where xk (for “s+s” it should be x̂k) denote the computed
solutions produced by the three implementations. We emphasis that computing efficiency
in terms of time-to-solution between “d”, “s+d” and “s+s” is not compared here, since the
purpose of this paper is to verify the feasibility of lower precision LSQR.

In this paper, we implement the MATLAB codes with MATLAB R2019b to perform
numerical experiments, where the roundoff units for double and single precision are 2−53 ≈
1.11×10−16 and 2−24 ≈ 5.96×10−8, respectively. The codes are available at https://github.
com/Machealb/Lower_precision_solver. We choose some one dimensional (1-D) problems
from the regularization toolbox [21], and two dimensional (2-D) image deblurring problems
from [13]. The description of all test examples is listed in Table 2.

5.1 One Dimensional Case

For one dimensional problems shaw, deriv2, gravity and heat, we use the codes from [21]
to generate A, xex and bex = Axex , and then add a white Gaussian noise e with a prescribed
noise level ε = ‖e‖/‖bex‖ to bex and form the noisy b = bex + e.

First, we compare the relative errors RE(k) for the three different implementations of
LSQR when ε = 10−3. From Fig. 1 we can find the convergence behaviors of the three
implementations “d”, “s+d” and “s+s” are of highly consistence. The semi-convergence
points k0 are the same and the relative error curves coincide until many steps after semi-
convergence, and thus the optimal regularized solutions computed by “d”, “s+d” and “s+s”
have the same accuracy. In order to give amore clear comparison about accuracy of solutions,
we also plot the relative error curves of xk /x̂k computed by “s+d”/“s+s” with respect to that
by “d”. Figure2 shows that these two relative errors are much smaller than RE(k) of “d”
until semi-convergence occurs and this is also true for many iterations afterwards. These
results confirm that both the LBFRO and updating procedure can be implemented using
single precision without sacrificing any accuracy of final regularized solutions for ε = 10−3.

To further compare the accuracy of solutions computed by “s+d” and “s+s”, we plot in
Fig. 3 the relative error curves of these two solutions and their upper bounds in (4.15). Here
we set the upper bounds as κ(R̂k)ū with ū the roundoff unit of single precision. From Fig.3
we can find that κ(R̂k) for the four test problems grow very slightly, which lead to the upper

123

https://github.com/Machealb/Lower_precision_solver
https://github.com/Machealb/Lower_precision_solver

 55 Page 20 of 30 Journal of Scientific Computing (2024) 98:55

Fig. 1 Semi-convergence curves for LSQR implemented using different computing precisions, ε = 10−3

bounds much smaller than RE(k). Therefore, the regularized solutions computed by “s+d”
and “s+s” have the same accuracy, which has already been clearly observed from Fig. 1.

Table 3 shows the relative errors of the regularized solutions at the semi-convergence
point k0 and the estimates of k0 by L-curve criterion and discrepancy principle, where the
corresponding iteration number is in brackets. We find that the three optimal iterations and
corresponding RE(k) for “d”, “s+d” and “s+s” are the same, which has also been observed
from Fig. 1. This is also true for the L-curve criterion, and the method gets an over-estimate
of k0 for heat. For the discrepancy principle, by (4.17) we know that the estimates of k0 for
“s+d” and “s+s” are always the same since they compute the same φ̄k+1, and we find these
estimates are the same at that for “d”. The discrepancy principle gets under-estimates of k0
for the four test problems and thus the solutions are over-regularized.

From the above experimental results, we can make sure that the two mixed precision
variants “s+d” and “s+s” can compute regularized solutions with the same accuracy as the
double precision LSQR when ε = 10−3. We have also made numerical experiments for ε =
10−4, 10−5 and get similar results. Here we only show the semi-convergence curves for ε =
10−5 in Fig. 4. For this noise level, single precision computing of the LBFRO and updating
xk is also enough for LSQR for solving the four test problems. Note from subfigure (a) that
the relative errors for “s+d” and “s+s” quickly become bigger than that for “d” after semi-
convergence. This reminds us that for shaw, if ε is smaller than 10−5, simply implementing
the LBFRO with single precision will lead to a loss of accuracy of regularized solutions. For
extremely small noise level ε = 10−7, we plot the semi-convergence curves for gravity and

123

Journal of Scientific Computing (2024) 98:55 Page 21 of 30 55

Fig. 2 Relative errors of the regularized solutions computed by “s+d”/“s+s” with respect to that by “d”,
ε = 10−3

Table 3 Comparison of relative errors RE(k) and estimates of the optimal iteration k0 by L-curve criterion
and DP (τ = 1.001), ε = 10−3

Work precision Shaw Deriv2 Gravity Heat

Optimal

d 0.0396 (8) 0.1471 (15) 0.0105 (10) 0.0206 (22)

s+d 0.0396 (8) 0.1471 (15) 0.0105 (10) 0.0206 (22)

s+s 0.0396 (8) 0.1471 (15) 0.0105 (10) 0.0206 (22)

L-curve

d 0.0396 (8) 0.1529 (17) 0.0105 (10) 0.0392 (27)

s+d 0.0396 (8) 0.1529 (17) 0.0105 (10) 0.0392 (27)

s+s 0.0396 (8) 0.1529 (17) 0.0105 (10) 0.0392 (27)

Discrepancy principle

d 0.0473 (7) 0.1557 (13) 0.0166 (8) 0.0280 (19)

s+d/s 0.0473 (7) 0.1557 (13) 0.0166 (8) 0.0280 (19)

123

 55 Page 22 of 30 Journal of Scientific Computing (2024) 98:55

Fig. 3 Relative errors between regularized solutions computed by “s+d” and “s+s”, ε = 10−3

heat in Fig. 5. We can clearly find that neither “s+d” nor “s+s” can compute a regularized
solution with accuracy as good as the best one achieved by “d”. In real applications, the noise
levels are seldom so small, and it is almost always possible to implement LSQR using lower
precisions to compute a regularized solution without sacrificing accuracy.

5.2 Two Dimensional Case

We generate two image deblurring problems using codes from [13] for testing two dimen-
sional linear ill-posed problems, with the goal to restore an image from a blurred and noisy
one b = Axex + e, where xex denotes the true image and A denotes the blurring operator.
For the background of image deblurring, we refer the readers to [23]. For PRblurspeckle,
which simulates spatially invariant blurring caused by atmospheric turbulence, we use the
true image “Hubble Space Telescope” with image size of N = 128 (i.e., the true and blurred
images have 128 × 128 pixels), and the blur level is set to be medium. For PRblurdefocus,
which simulates a spatially invariant, out-of-focus blur, we use the true image “Cameraman”
with image size of N = 256, and the blur level is set to be severe. Zero boundary condition
is used for both the two blurs to construct A. The two true images are shown in Fig. 6.

For PRblurspeckle with image “Hubble Space Telescope”, the noise levels are set as
ε = 10−2 and ε = 10−3. Figure7 depicts the semi-convergence curves for “d”, “s+d” and
“s+s” as well as relative error curves of xk computed by “s+d” and “s+s” with respect to

123

Journal of Scientific Computing (2024) 98:55 Page 23 of 30 55

Fig. 4 Semi-convergence curves for LSQR implemented using different computing precisions, ε = 10−5

Fig. 5 Semi-convergence curves for LSQR implemented using different computing precisions, ε = 10−7

that by “d”. For both the two noise levels, we find that the curves of RE(k) coincide until
many steps after semi-convergence and the three semi-convergence points are the same. The
relative errors of xk /x̂k computed by “s+d”/“s+s” with respect to that by “d” are shown in
subfigures (c) and (d), and they are much smaller than RE(k) of “d” until many steps after
semi-convergence. The numerical results confirm that for PRblurspeckle, the LSQR can be
implemented using lower precisions without sacrificing accuracy of regularized solutions for

123

 55 Page 24 of 30 Journal of Scientific Computing (2024) 98:55

Fig. 6 True images for testing PRblurspeckle and PRblurdefocus

Fig. 7 Semi-convergence curves for LSQR implemented using different computing precisions, and relative
errors of regularized solutions computed by “s+d”/“s+s” with respect to that by “d”, PRblurspeckle

ε = 10−2 or ε = 10−3. Figure8 shows the blurred images and corresponding restored ones
for the two noise levels, where the restored images are obtained from the best regularized
solution at the semi-convergence point (k0 and RE(k0) are the same for “d”, “s+d” and
“s+s”, and we choose x̂k0 computed by “s+s”). The result shows a good deblurring effect

123

Journal of Scientific Computing (2024) 98:55 Page 25 of 30 55

Fig. 8 Images “Hubble Space Telescope” blurred by PRblurspeckle and restored by themixed precision LSQR
“s+s” at the optimal iteration: a, b ε = 10−2; c, d ε = 10−3

of LSQR implemented using single precision. For noise levels smaller than 10−4, we find
that the semi-convergence behavior does not appear, which means that noise amplification
is tolerable even without regularization, and thus we need not test for smaller noise cases.

For PRblurdefocus with image “Cameraman”, the noise levels are set as ε = 10−3 and
ε = 10−4. For noise levels smaller than 10−5, the semi-convergence behavior will not
appear and we need not test for those cases. Figures9 and 10 show the relative error curves
and blurred and restored images. Subfigures (b) and (d) of Fig. 9 depict the relative errors
between regularized solutions computed by “s+d” and “s+s” with upper bounds κ(R̂k)ū. We
can find that κ(R̂k) for the two noise levels grow very slightly, which lead to the upper bounds
much smaller than RE(k). Therefore, the regularized solutions computed by “s+d” and “s+s”
have the same accuracy, which can clearly observed from subfigures (a) and (c). The other
experimental results are similar to those of PRblurdefocus and we do not illustrate them in
detail any longer.

Table4 shows the relative errors of the regularized solutions at the semi-convergence point
k0 and the estimates by L-curve criterion and discrepancy principle. For PRblurspeckle,
the three optimal iterations k0 and corresponding RE(k0) for “d”, “s+d” and “s+s” are the
same, while for PRblurdefocus the k0 for “d” and “s+d/s” are differed only by one and
the corresponding RE(k0) are the same. For the discrepancy principle, the estimates of k0
are the same for “d” and “s+d/s”, and the corresponding RE(k0) is only slightly different
for PRblurdefocus with ε = 10−3. For the L-curve criterion, the estimates of k0 and the
corresponding RE(k0) for “d”, “s+d” and “s+s” are not the same for some cases, but the
differences are very slight.

123

 55 Page 26 of 30 Journal of Scientific Computing (2024) 98:55

Fig. 9 Semi-convergence curves for LSQR implemented using different computing precisions, and relative
errors between regularized solutions computed by “s+d” and “s+s”, PRblurdefocus

From the above experimental results, we can make sure that single precision computing
of LBFRO and updating xk is enough for LSQR for solving the 2-D image deblurring ill-
posed problems if the noise level is not extremely small. For those large scale problems,
the mixed precision variant of LSQR has a great potential of defeating the double precision
implementation in computation efficiency. We will consider implementing and optimizing
mixed precision codes of LSQR for large scale problems on a high performance computing
architecture in the future work.

6 Conclusion

For the most commonly used iterative regularization algorithm LSQR for solving linear dis-
crete ill-posed problems, we have investigated how to get a mixed precision implementation
by analyzing the choice of proper computing precision for the two main parts of the algo-
rithm, including the construction of Krylov subspace and updating procedure of iterative
solutions. Based on the commonly used regularization model for linear inverse problems, we
have shown that, for not extremely small noise levels, single precision is enough for comput-
ing Lanczos vectors with full reorthogonalization without loss of any accuracy of the final
regularized solution. For the updating procedure, we have shown that the update of xk and
wk , which is the most time consuming part, can be performed using single precision without

123

Journal of Scientific Computing (2024) 98:55 Page 27 of 30 55

Fig. 10 Images “Cameraman” blurred by PRblurdefocus and restored by the mixed precision LSQR “s+s” at
the optimal iteration: a, b ε = 10−3; c, d ε = 10−4

Table 4 Comparison of relative errors RE(k) and estimates of the optimal iterations k0 by L-curve criterion
and DP (τ = 1.001)

Work precision PRblurspeckle PRblurdefocus
ε = 10−2 ε = 10−3 ε = 10−3 ε = 10−4

Optimal

d 0.1850 (34) 0.1102 (135) 0.1058 (80) 0.0542 (190)

s+d 0.1850 (34) 0.1102 (135) 0.1058 (81) 0.0542 (191)

s+s 0.1850 (34) 0.1102 (135) 0.1058 (81) 0.0542 (191)

L-curve

d 0.1992 (47) 0.1105 (149) 0.1293 (96) 0.0764 (100)

s+d 0.1992 (47) 0.1105 (149) 0.1157 (91) 0.0771 (100)

s+s 0.1992 (47) 0.1103 (145) 0.1157 (91) 0.0771 (100)

Discrepancy principle

d 0.1937 (24) 0.1200 (78) 0.1081 (74) 0.0599 (137)

s+d/s 0.1937 (24) 0.1200 (78) 0.1099 (74) 0.0599 (137)

123

 55 Page 28 of 30 Journal of Scientific Computing (2024) 98:55

sacrificing any accuracy as long as κ(R̂k) is not very big that is almost always satisfied.
Several numerical experiments are made to test two mixed precision variants of LSQR and
confirm the theoretical results.

Our results indicate that several highly time consuming parts of the algorithm can be
implemented using lower precisions, and provide a theoretical guideline for implementing
a robust and efficient mixed precision variant of LSQR for solving discrete linear ill-posed
problems. Futurework includes developing practicalC codes on high performance computing
architectures for specific real applications.

Acknowledgements The author thank Dr. Long Wang and Professor Weile Jia for many useful discussions
about lower and mixed precision computations on high performance computing architectures. The author
is grateful to the anonymous referees for their detailed reading of the manuscript and providing insightful
comments that helped to improve the paper.

Funding This work was supported in part by the National Natural Science Foundation of China under Grant
No. 3192270206.

Data Availability The source code and data used in this work is available at https://github.com/Machealb/
Lower_precision_solver.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
work.

References

1. Abdelfattah, A., Anzt, H., Boman, E.G., Carson, E., Cojean, T., Dongarra, J., Fox, A., Gates, M., Higham,
N.J., Li, X.S., et al.: A survey of numerical linear algebra methods utilizing mixed-precision arithmetic.
Int. J. High Perform Comput Appl 35(4), 344–369 (2021). https://doi.org/10.1177/10943420211003313

2. Ahmad, K., Sundar, H., Hall, M.W.: Data-driven mixed precision sparse matrix vector multiplication for
GPUs. ACM Trans. Archit. Code Optim. 16, 51:1-51:24 (2019). https://doi.org/10.1145/3371275

3. Amestoy, P., Boiteau, O., Buttari, A., Gerest, M., Jézéquel, F., L’Excellent, J.Y., Mary, T.: Mixed precision
low rank approximations and their application to block low rank LU factorization. Int. J. High Perform.
Comput. Appl. (2021). https://hal.archives-ouvertes.fr/hal-03251738v1

4. Björck, Å.: A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equa-
tions. BIT Numer. Math. 28(3), 659–670 (1988)

5. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
6. Blanchard, P., Higham, N.J., Lopez, F., Mary, T., Pranesh, S.: Mixed precision block fused multiply-add:

error analysis and application to GPU tensor cores. SIAM J. Sci. Comput. 42(3), C124–C141 (2020).
https://doi.org/10.1137/19M1289546

7. Borges, L.S., Bazán, F.S.V., Cunha, M.C.C.: Automatic stopping rule for iterative methods in discrete
ill-posed problems. Comp. Appl. Math. 34, 1175–1197 (2015)

8. Carson, E., Higham, N.J., Pranesh, S.: Three-precision GMRES-based iterative refinement for least
squares problems. SIAM J. Sci. Comput. 42(6), A4063–A4083 (2020). https://doi.org/10.1137/
20M1316822

9. Chung, J., Gazzola, S.: Computational methods for large-scale inverse problems: a survey on hybrid
projection methods. arXiv:2105.07221v2 (2021).

10. Chung, J., Nagy, J.G., O’Leary, D.P.: A weighted-GCVmethod for Lanczos-hybrid regularization. Electr.
Trans. Numer. Anal. 28(29), 149–167 (2008)

11. Durand, Y., Guthmuller, E., Fuguet, C., Fereyre, J., Bocco, A., Alidori, R.: Accelerating variants of the
conjugate gradient with the variable precision processor. In: 2022 IEEE 29th Symposium on Computer
Arithmetic (ARITH), pp. 51–57. IEEE (2022)

12. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers
(2000)

123

https://github.com/Machealb/Lower_precision_solver
https://github.com/Machealb/Lower_precision_solver
https://doi.org/10.1177/10943420211003313
https://doi.org/10.1145/3371275
https://hal.archives-ouvertes.fr/hal-03251738v1
https://doi.org/10.1137/19M1289546
https://doi.org/10.1137/20M1316822
https://doi.org/10.1137/20M1316822
http://arxiv.org/abs/2105.07221v2

Journal of Scientific Computing (2024) 98:55 Page 29 of 30 55

13. Gazzola, S., Hansen, P.C., Nagy, J.G.: IR tools: a MATLAB package of iterative regularization methods
and large-scale test problems. Numer. Algor. 81(3), 773–811 (2019)

14. Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization. Electr.
Trans. Numer. Anal. 44, 83–123 (2015)

15. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Bal-
timore (2013)

16. Golub, G.H.,Wahba, H.G.: Generalized cross-validation as amethod for choosing a good ridge parameter.
Technometrics 21(2), 215–223 (1979)

17. Gratton, S., Simon, E., Titley-Peloquin, D., Toint, P.: Exploiting variable precision in GMRES.
arXiv:1907.10550v2 (2019).

18. Gratton, S., Simon, E., Titley-Peloquin, D., Toint, P.L.: Minimizing convex quadratics with variable
precision conjugate gradients. Numer. Linear Algebra Appl. 28(1), e2337 (2021)

19. Hansen, P.C.: Analysis of discrete ill-posed problems bymeans of the l-curve. SIAMRev. 34(4), 561–580
(1992)

20. Hansen, P.C.: Rank-deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion.
SIAM, Philadelphia (1998)

21. Hansen, P.C.: Regularization Tools version 4.0 for Matlab 7.3. Numer. Algor. 46(2), 189–194 (2007)
22. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)
23. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices. Spectra and Filtering. SIAM,

Philadelphia (2006)
24. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (2002)
25. Higham, N.J., Pranesh, S., Zounon, M.: Squeezing a matrix into half precision, with an application to

solving linear systems. SIAM J. Sci. Comput. 41(4), A2536–A2551 (2019). https://doi.org/10.1137/
18M1229511

26. Hnštynková, I., Plešinger, M., Strakoš, Z.: The regularizing effect of the Golub-Kahan iterative bidiag-
onalization and revealing the noise level in the data. BIT Numer. Math. 49(4), 669–696 (2009). https://
doi.org/10.1007/s10543-009-0239-7

27. Jia, Z.: Regularization properties of LSQR for linear discrete ill-posed problems in the multiple singular
value case and best, near best and general low rank approximations. Inverse Probl. 36(8), 085009 (2020)

28. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer (2006)
29. Kilmer, M.E., O’Leary, D.P.: Choosing regularization parameters in iterative methods for ill-posed prob-

lems. SIAM J. Matrix Anal. Appl. 22(4), 1204–1221 (2001)
30. Larsen, R.M.: Lanczos bidiagonalization with partial reorthogonalization. DAIMI Report Series (1998)
31. Li, H., Tan, G., Zhao, T.: Backward error analysis of the Lanczos bidiagonalization with reorthogonal-

ization. arXiv:2210.10297v1 (2022).
32. Lopez, F., Mary, T.: Mixed precision LU factorization on GPU tensor cores: Reducing data movement and

memory footprint. MIMS EPrint 2020, Manchester Institute for Mathematical Sciences, The University
of Manchester, UK (2020). http://eprints.maths.manchester.ac.uk/2782/

33. Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic.
Acta Numer. 15, 471–542 (2006)

34. Morozov, V.A.: Regularization of incorrectly posed problems and the choice of regularization parameter.
USSR Comput. Math. Math. Phys. 6(1), 242–251 (1966)

35. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)
36. NVIDIA: NVIDIA Tesla V100. https://www.nvidia.com/en-gb/data-center/tesla-v100/
37. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares.

ACM Trans. Math. Softw. 8, 43–71 (1982)
38. Reichel, L., Sadok, H., Zhang, W.H.: Simple stopping criteria for the LSQR method applied to discrete

ill-posed problems. Numer. Algor. 84(4), 1381–1395 (2020)
39. Renaut, R.A., Vatankhah, S., Ardesta, V.E.: Hybrid and iteratively reweighted regularization by unbiased

predictive risk andweightedGCV for projected systems. SIAM J. Sci. Statist. Comput. 39(2), B221–B243
(2017)

40. Richter, M.: Inverse problems: basics. Theory Appl. Geophys. (2016). https://doi.org/10.1007/978-3-
319-48384-9_3

41. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Washington, DC (1977)
42. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)
43. Wedin, P.Å.: Perturbation bounds in connection with singular value decomposition. BIT Numer. Math.

12(1), 99–111 (1972)
44. Yang, L.M., Fox, A., Sanders, G.: Rounding error analysis of mixed precision block householder QR

algorithms. SIAM J. Sci. Comput. 43(3), A1723–A1753 (2021). https://doi.org/10.1137/19M1296367

123

http://arxiv.org/abs/1907.10550v2
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://doi.org/10.1007/s10543-009-0239-7
https://doi.org/10.1007/s10543-009-0239-7
http://arxiv.org/abs/2210.10297v1
http://eprints.maths.manchester.ac.uk/2782/
https://www.nvidia.com/en-gb/data-center/tesla-v100/
https://doi.org/10.1007/978-3-319-48384-9_3
https://doi.org/10.1007/978-3-319-48384-9_3
https://doi.org/10.1137/19M1296367

 55 Page 30 of 30 Journal of Scientific Computing (2024) 98:55

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Double Precision is not Necessary for LSQR for Solving Discrete Linear Ill-Posed Problems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Regularization of Linear Ill-Posed Problems and LSQR
	2.2 Finite Precision Computing

	3 Choice of Computing Precision for the Construction of Krylov Subspace
	4 Updating xk Using Lower Precision
	5 Numerical Experiments
	5.1 One Dimensional Case
	5.2 Two Dimensional Case

	6 Conclusion
	Acknowledgements
	References

