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CHARACTERIZING GSVD BY SINGULAR VALUE EXPANSION OF
LINEAR OPERATORS AND ITS COMPUTATION\ast 

HAIBO LI\dagger 

Abstract. The generalized singular value decomposition (GSVD) of a matrix pair \{ A,L\} with
A \in \BbbR m\times n and L \in \BbbR p\times n generalizes the singular value decomposition (SVD) of a single matrix.
In this paper, we provide a new understanding of GSVD from the viewpoint of SVD, based on
which we propose a new iterative method for computing nontrivial GSVD components of a large-
scale matrix pair. By introducing two linear operators \scrA and \scrL induced by \{ A,L\} between two
finite-dimensional Hilbert spaces and applying the theory of singular value expansion (SVE) for
linear compact operators, we show that the GSVD of \{ A,L\} is nothing but the SVEs of \scrA and
\scrL . This result characterizes completely the structure of GSVD for any matrix pair with the same
number of columns. As a direct application of this result, we generalize the standard Golub--Kahan
bidiagonalization (GKB) that is a basic routine for large-scale SVD computation such that the
resulting generalized GKB (gGKB) process can be used to approximate nontrivial extreme GSVD
components of \{ A,L\} , which is named the gGKB GSVD algorithm. We use the GSVD of \{ A,L\} 
to study several basic properties of gGKB and also provide preliminary results about convergence
and accuracy of gGKB GSVD for GSVD computation. Numerical experiments are presented to
demonstrate the effectiveness of this method.

Key words. GSVD, linear operator, singular value expansion, generalized Golub--Kahan
bidiagonalization, Krylov subspace

MSC codes. 15A22, 47A05, 65F99

DOI. 10.1137/24M1651150

1. Introduction. The generalized singular value decomposition (GSVD) of a
matrix pair is an extension of the singular value decomposition (SVD) of a single
matrix. First introduced by Van Loan [54] and further developed by many others
[43, 51, 55], now the GSVD has become a standard matrix decomposition [8, 20]. The
GSVD provides an important mathematical tool for analyzing relationships between
two sets of variables or matrices, which is particularly useful in various applications,
including signal processing [39, 50], statistics [41, 45], computational biology [1], and
many others [7, 18, 24, 29, 31].

Let Ik denote the identity matrix of order k and 0 denote the zero matrix or
vector with dimensions clarified by the context. For any two matrices with the same
number of columns, the general-form GSVD is stated as follows [43].

Theorem 1.1 (GSVD). Let A\in \BbbR m\times n and L\in \BbbR p\times n with rank((A\top ,L\top )\top ) = r.
Then the GSVD of \{ A,L\} is

A= PACAX
 - 1, L= PLSLX

 - 1(1.1a)

with

(1.1b) CA = ΣA 0 m

r n− r
, SL = ΣL 0 p

r n− r
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and

(1.1c)
ΣA =

⎛
⎝
Iq1 q1

Cq2 q2
0 m− q1 − q2

q1 q2 q3

⎞
⎠ , ΣL =

⎛
⎝

0 p− r + q1

Sq2 q2
Iq3 q3

q1 q2 q3

⎞
⎠ ,

where q1 + q2 + q3 = r, and PA \in \BbbR m\times m, PL \in \BbbR p\times p are orthogonal, X \in \BbbR n\times n is
invertible, and \Sigma \top 

A\Sigma A+\Sigma \top 
L\Sigma L = Ir. The values of q1, q2, and q3 are defined internally

by the matrices A and L.

If r = n, then \{ A,L\} is called a regular matrix pair. Discussions about GSVD
for regular and nonregular matrix pairs can be found in [37, 51] and [40, 43, 52],
respectively. Write Cq2 = diag(cq1+1, . . . , cq1+q2) with 1 > cq1+1 \geq \cdot \cdot \cdot \geq cq1+q2 > 0
and Sq2 = diag(sq1+1, . . . , sq1+q2) with 0 < sq1+1 \leq \cdot \cdot \cdot \leq sq1+q2 < 1. Let c1 = \cdot \cdot \cdot =
cq1 = 1, cq1+q2+1 = \cdot \cdot \cdot = cr = 0, and s1 = \cdot \cdot \cdot = sq1 = 0, sq1+q2+1 = \cdot \cdot \cdot = sr = 1.
Write X = (x1, . . . , xn), PA = (pA,1, . . . , pA,m), and PL = (pL,1, . . . , pL,p). We call the
tuple (ci, si, xi, pA,i, pL,i) the ith nontrivial GSVD components, and the ith largest
generalized singular value is \gamma i := ci/si satisfying c2i + s2i = 1, where 1\leq i\leq r. In this
paper, we consider the nontrivial GSVD components and their computations.

Despite its remarkable capabilities, computing the GSVD poses significant chal-
lenges. Early computational approaches for the GSVD were built upon adaptations
of algorithms designed for the SVD; for small-scale matrices, there are several such
numerical algorithms for full GSVD computation [5, 42, 55]. Recent developments on
stable computation of the CS decomposition (CSD) [53] provide another alternative
for small-scale GSVD computation. For large and sparse problems, obtaining the
full GSVD may not be feasible, yet it is often necessary to compute only a subset of
GSVD components relevant to practical applications. Typically, this refers to certain
extreme GSVD components, which are those with the largest or smallest correspond-
ing generalized singular values, or interior GSVD components, which are those whose
corresponding desired generalized singular values are closest to a specified target.

For large-scale GSVD computation, the first step is usually transforming it as an
equivalent generalized eigendecomposition (GED) problem [4] or CSD problem. The
joint bidiagonalization (JBD) method proposed by Zha [56] can be used to compute
a few extreme GSVD components, which is essentially an indirect procedure for CSD
of the Q-factor of a regular \{ A,L\} (i.e., the Q matrix in the QR factorization). This
method relies on a JBD process that iteratively reduces \{ A,L\} to bidiagonal forms
simultaneously. Jia and Li [27, 28] made a detailed analysis of the numerical behavior
of the JBD method and the convergence behavior for extreme GSVD components
in finite precision arithmetic. They proposed the semiorthogonalization strategy and
designed a partial reorthogonalization procedure to maintain regular convergence of
the computed approximate GSVD components. Subsequently, Li [34] analyzed the
influence of computational errors resulting from inaccurate inner iterations in JBD
on the convergence and final accuracy of computed GSVD components and proposed
a modified version of the JBD method. Recently, Alvarruiz, Campos, and Roman [2]
developed a thick restart technique for JBD to compute a partial GSVD, enabling the
storage and computation cost to be further saved. On the other hand, the Jacobi--
Davidson type algorithms [23] are capable of computing a few interior GSVD com-
ponents. A representative work is the Jacobi--Davidson GSVD (JDGSVD) method
proposed by Hochstenbach [22], which formulates the GSVD of a regular \{ A,L\} as
a GED problem of an augmented symmetric matrix pair. This method is further
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CHARACTERIZING GSVD BY SVE 441

analyzed and developed in several subsequent works; see, e.g., [25, 26, 47]. As a re-
sult of the development of contour integration techniques for eigenvalue problems of
finding interior eigenvalues [46, 49], recently a contour integral-based algorithm has
been adopted for interior GSVD components computation [38].

Apart from regarding the GSVD as an equivalent CSD or GED, there is very lit-
tle work on understanding and analyzing GSVD from other perspectives. In [10], the
authors studied the GSVD using a variational formulation analogous to that of the
SVD, providing a new understanding of the generalized singular vectors. Recently, by
treating (A\top ,L\top )\top (more precisely, the range space of it) as a point in the real Grass-
mann manifold Gr(m+p, r)---the manifold composed of all r-dimensional subspaces of
\BbbR m+p---the authors in [15] interpreted a modified form of GSVD as a coordinate rep-
resentation of (A\top ,L\top )\top . For developing practical GSVD algorithms, however, these
new perspectives on GSVD are not enough. It would be beneficial to understand the
GSVD from the viewpoint of SVD so that many existing algorithms for large-scale
SVD can be adapted for large-scale GSVD computation. One well-known result is
that \{ \gamma i\} are the singular values of AL\dagger if L has full column rank [56], where ``\dagger "" is the
Moore--Penrose pseudoinverse. But when L does not have full column rank, generally
the GSVD of \{ A,L\} is not related to the SVD of AL\dagger ; this issue becomes much more
complicated for nonregular matrix pairs. In [21], the authors proposed a method to
compute the leading GSVD components of \{ A,L\} by considering an equivalent SVD
problem, but the method requires that L is a banded matrix with full row rank and
a weighted pseudoinverse [16] should be computed, which is extremely difficult for
general matrix pairs.

In this paper, we provide a new understanding of GSVD from the viewpoint of
SVD. This new perspective relies on the theory of singular value expansion (SVE) for
linear compact operators [17, section 2.2], which is essentially the SVD if the compact
operator is a matrix between two Euclidean spaces. Denote by\scrR (\cdot ) and\scrN (\cdot ) the range
space and null space of a matrix, respectively. By defining the positive semidefinite
matrix M = A\top A+ L\top L, we first investigate the structure of trivial and nontrivial
GSVD components xi, showing that those trivial \{ xi\} form a basis for \scrN (M) and any
nontrivial xi belongs to the coset \=xi+\scrN (M), where \=xi \in \scrR (M) is a nontrivial GSVD
component. Then we consider the nontrivial xi \in \scrR (M) and other corresponding
GSVD components. By introducing a linear operator \scrA induced by \{ A,L\} between
two finite-dimensional Hilbert spaces, where a non-Euclidean inner product is used,
we show that the SVE of \scrA is just the nontrivial GSVD components of A, i.e., the
first decomposition in (1.1a). Similarly, we introduce a linear operator \scrL induced by
\{ A,L\} and show that the SVE of \scrL is just the nontrivial GSVD components of L.
This result reveals that the nontrivial part of the GVSD of \{ A,L\} is nothing but the
SVEs of the two linear operators induced by \{ A,L\} . Combined with the trivial GSVD
components \{ xi\} , it completely characterizes the structure of GSVD for any matrix
pair with the same number of columns.

As a direct application of the above result, we propose a new iterative method
for computing several extreme nontrivial GSVD components of \{ A,L\} . This iter-
ative method is a natural extension of the Golub--Kahan bidiagonalization (GKB)
method for large-scale SVD computation [19], which iteratively reduces a matrix to
a bidiagonal form by a Lanczos-type iterative process. There are several variants
and extensions for the standard GKB of a single matrix, which are proposed to solve
large-scale generalized least squares problems [3, 6], saddle point problems [14], or
regularization of inverse problems [11, 12, 33, 35, 36]; most of them are named the
generalized Golub--Kahan bidiagonalization (gGKB) while some have other different

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

0/
25

 to
 1

28
.2

50
.0

.3
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



442 HAIBO LI

names. As a natural analogy of the standard GKB for SVD computation, we develop
an operator-type GKB for linear operators \scrA and \scrL to approximate their SVE com-
ponents, which is also named the gGKB process. We derive matrix-form recursive
relations for this operator-type GKB so that it can be used in practical computa-
tions. Moreover, this approach offers a unified and general treatment for extending
the standard GKB, which can be used to derive nearly all of the aforementioned
gGKB processes.

Using the GSVD of \{ A,L\} , we study several basic properties of the proposed
gGKB process. Due to the correspondence of GSVD and SVE, the gGKB method
can approximate well the extreme nontrivial GSVD components of \{ A,L\} , resulting
in the gGKB GSVD algorithm. We derive a relative residual norm and its sharp up-
per bound for the computed nontrivial GSVD components, which is a good measure
of the approximating accuracy and can be used in a stopping criterion for practi-
cal computations. Several preliminary results about the convergence and accuracy
of gGKB GSVD in exact arithmetic are provided, showing the effectiveness of this
method. An advantage of gGKB GSVD is that it can efficiently compute the extreme
nontrivial GSVD components of a large-scale matrix pair, regardless of whether the
pair is regular, whereas most existing methods require the matrix pair to be regular.

The paper is organized as follows. In section 2, we review several basic properties
of the GSVD. In section 3, we introduce two linear operators induced by \{ A,L\} to
characterize the structure of GSVD by their SVEs. In section 4 we propose the new
gGKB process and study its basic properties. In section 5, we propose the gGKB GSVD
algorithm for computing nontrivial GSVD components. Numerical experiments are
presented in section 6, and concluding remarks follow in section 7.

2. GSVD, SVD, and Golub--Kahan bidiagonalization. We review several
basic properties of the GSVD of \{ A,L\} presented in Theorem 1.1. The nontrivial
generalized singular values of \{ A,L\} in descending order are

\infty , . . . ,\infty \underbrace{}  \underbrace{}  
q1

, cq1+1/sq1+1, . . . , cq1+q2/sq1+q2\underbrace{}  \underbrace{}  
q2

, 0, . . . ,0\underbrace{}  \underbrace{}  
q3

.(2.1)

We remark that the three numbers q1, q2, q3 are uniquely determined by the properties
of \{ A,L\} , and some of them may be zero in certain instances. The nontrivial GSVD
components are linked by the vector-form relations

\left\{ 
  
  

Axi = cipA,i,

Lxi = sipL,i,

siA
\top pA,i = ciL

\top pL,i

(2.2)

for 1\leq i\leq r. For those trivial GSVD components, it holds that

Axi = 0, Lxi = 0, A\top pA,i = 0, L\top pL,i = 0(2.3)

for r+1\leq r\leq n. Let \scrP S be the projection operator onto a subspace S. The following
result describes the structure of trivial and nontrivial GSVD components \{ xi\} .

Proposition 2.1. Let M =A\top A+L\top L and partition X as X1 X2

r n− r
. Then

\scrR (X2) =\scrN (M). Moreover, let

\=X = ( \=X1 X2), \=X1 = (\scrP \scrR (M)x1, . . . ,\scrP \scrR (M)xr).(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Then it holds that

A= PACA
\=X - 1, L= PLSL

\=X - 1.(2.5)

Proof. It is clear that \scrN (M) =\scrN (A)\cap \scrN (L), and using the GSVD of \{ A,L\} , it
is easy to obtain that \scrN (A)\cap \scrN (L) =\scrR (X2). Thus, we have \scrR (X2) =\scrN (M). Using
the relation that \scrP \scrR (M)xi = xi  - \scrP \scrN (M)xi, for 1\leq i\leq r we have

A\scrP \scrR (M)xi =Axi  - A\scrP \scrN (M)xi =Axi, L\scrP \scrR (M)xi =Lxi  - L\scrP \scrN (M)xi =Lxi.

Using the above two relations, it is easy to verify (2.5).

Since dim(\scrN (M)) = n - r = rank(\{ xi\} ni=r+1), it follows that \{ xi\} ni=r+1 forms a
basis for \scrN (M). Proposition 2.1 also indicates that for any xi with 1\leq i\leq r, \scrP \scrR (M)xi

is also an ith generalized singular vector of \{ A,L\} . Therefore, any nontrivial xi can
be decomposed into two components, one being \scrP \scrR (M)xi \in \scrR (M) and the other being
an arbitrary vector in \scrN (M), which means that any nontrivial xi belongs to the coset
\=xi +\scrN (M), where \=xi \in \scrR (M) is the ith nontrivial GSVD component. In particular,
we can focus on those nontrivial xi in \scrR (M), which results in the new form of GSVD
(2.5). In the subsequent part, we always consider this form of GSVD by requiring

xi \in \scrR (M) for 1\leq i\leq r.(2.6)

There exists a direct relationship between the SVD and GSVD for a matrix pair
with a special property. If L has full column rank, it follows from (1.1) that r = n
and q1 = 0, leading to

AL\dagger = PACAX
 - 1[(PLSL)X

 - 1]\dagger = PACAX
 - 1X(PLSL)

\dagger = PA(CAS
\dagger 
L)P

\top 
L ,(2.7)

where we have used the property that (M1M2)
\dagger =M\dagger 

2M
\dagger 
1 if M1 has full column rank

and M2 has full row rank. Therefore, the SVD of AL\dagger is PA(CAS
\dagger 
L)P

\top 
L with the

singular values being \{ \gamma i\} ni=1.
For the above case, one can compute the SVD of AL\dagger to get the GSVD com-

ponents.1 For a large-scale matrix, the GKB process is a basic routine for comput-
ing a few extreme SVD components. At each iteration, it reduces the matrix to a
lower-order bidiagonal matrix and generates two Krylov subspaces. The Rayleigh--
Ritz procedure is then exploited to approximate extreme SVD components using the
bidiagonal matrix and Krylov subspaces [4].

In the following part of the paper, we characterize the GSVD from the viewpoint
of SVD for any matrix pair with the same number of columns. Then we generalize
the GKB process so that it can be used to compute extreme GSVD components.

3. Characterizing GSVD by singular value expansion of linear opera-
tors. We first discuss linear operators between two finite-dimensional Hilbert spaces.
Then we study the GSVD of \{ A,L\} using the SVE of linear operators. Note that
subsection 3.1 is quite general without requiring M =A\top A+L\top L.

3.1. Linear operator induced by matrices. SupposeG\in \BbbR m\times m is symmetric
positive definite. It is obvious that \langle u,u\prime \rangle G := u\top Gu\prime defines an inner product on \BbbR m

such that (\BbbR m, \langle \cdot , \cdot \rangle G) is an m-dimensional Hilbert space. On the other hand, for any
symmetric positive semidefinite matrix M \in \BbbR n\times n with rank(M) = r, the bilinear
form \langle v, v\prime \rangle M := v\top Mv\prime is not a well-defined inner product on \BbbR n if r < n. In this
case, we consider the inner product on the subspace \scrR (M).

1For numerical computations, it is not recommended to explicitly form AL\dagger due to its numerical
instability, especially when L is close to column rank-deficient.
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Lemma 3.1. The bilinear form \langle v, v\prime \rangle M := v\top Mv\prime for any v, v\prime \in \scrR (M) is an
inner product, and (\scrR (M), \langle \cdot , \cdot \rangle M ) is an r-dimensional Hilbert space.

Proof. The statement dim(\scrR (M)) = rank(M) is a basic property. We need to
show that \langle \cdot , \cdot \rangle M is indeed an inner product, i.e., it is a symmetric and positive
bilinear form on \scrR (M)\times \scrR (M). We only need to prove the positiveness. To see it,
let v \in \scrR (M) such that \langle v, v\rangle M = v\top Mv = 0. It follows that v \in \scrN (M). Note that
\scrR (M)\cap \scrN (M) = \{ 0\} since M is symmetric, which leads to v= 0.

Given a matrix A\in \BbbR m\times n, define the linear map

\scrA : (\scrR (M), \langle \cdot , \cdot \rangle M )\rightarrow (\BbbR m, \langle \cdot , \cdot \rangle G), v \mapsto \rightarrow Av,(3.1)

where v and Av are column vectors under the canonical bases of \BbbR n and \BbbR m. LetWr \in 
\BbbR n\times r and Z \in \BbbR m\times m be two matrices whose columns constitute orthonormal bases of
(\scrR (M), \langle \cdot , \cdot \rangle M ) and (\BbbR m, \langle \cdot , \cdot \rangle G), respectively, i.e., W\top 

r MWr = Ir and Z\top GZ = Im.
Then we have the commutative diagram:

(3.2)

(R(M), , M ) (Rm, , G)

(Rr, , 2) (Rm, , 2) ,

A

π1 π2

[A]

where [\scrA ] denotes the matrix representation of \scrA under bases Wr and Z, and \pi 1 and
\pi 2 are two linear maps:

\pi 1 : (\BbbR r, \langle \cdot , \cdot \rangle 2)\rightarrow (\scrR (M), \langle \cdot , \cdot \rangle M ), x \mapsto \rightarrow Wrx,(3.3)

\pi 2 : (\BbbR m, \langle \cdot , \cdot \rangle 2)\rightarrow (\BbbR m, \langle \cdot , \cdot \rangle G), y \mapsto \rightarrow Zy.(3.4)

Note that \pi 1 and \pi 2 are two isomorphism maps such that (\scrR (M), \langle \cdot , \cdot \rangle M )\sim = (\BbbR r, \langle \cdot , \cdot \rangle 2)
and (\BbbR m, \langle \cdot , \cdot \rangle G) \sim = (\BbbR m, \langle \cdot , \cdot \rangle 2). Since \scrA is a bounded linear operator, we can define
its adjoint

\scrA \ast : (\BbbR m, \langle \cdot , \cdot \rangle G)\rightarrow (\scrR (M), \langle \cdot , \cdot \rangle M ), u \mapsto \rightarrow \scrA \ast u(3.5)

by the relation

\langle \scrA v,u\rangle G = \langle \scrA \ast u, v\rangle M(3.6)

for any v \in (\scrR (M), \langle \cdot , \cdot \rangle M ) and u\in (\BbbR m, \langle \cdot , \cdot \rangle G). We have the following corresponding
commutative diagram:

(3.7)

(R(M), , M ) (Rm, , G)

(Rr, , 2) (Rm, , 2) ,

A∗

π1 π2

[A∗]

where [\scrA \ast ] is the matrix representation of \scrA \ast under bases Wr and Z. The following
result gives the matrix-forms of [\scrA ] and [\scrA \ast ].

Lemma 3.2. The matrix representations of \scrA and \scrA \ast under bases Wr and Z are

[\scrA ] =Z - 1AWr, [\scrA \ast ] =W\top 
r A\top GZ.(3.8)
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CHARACTERIZING GSVD BY SVE 445

Proof. By the commutative diagram (3.2), we have \scrA \circ \pi 1(x) = \pi 2 \circ [\scrA ](x) for any
x \in \BbbR r, which is equivalent to AWrx = Z[\scrA ]x. Thus, we have AWr = Z[\scrA ], leading
to [\scrA ] =Z - 1AWr. Similarly, by the commutative diagram (3.7), we have

\scrA \ast \circ \pi 2(y) = \pi 1 \circ [\scrA \ast ](y) \leftrightarrow \scrA \ast Zy=Wr[\scrA \ast ]y

for any y \in \BbbR m, which leads to

\scrA \ast Z =Wr[\scrA \ast ].(3.9)

From the definition of \scrA \ast , we have \langle \scrA \circ \pi 1(x), \pi 2(y)\rangle G = \langle \pi 1(x),\scrA \ast \circ \pi 2(y)\rangle M for any
x\in \BbbR r and y \in \BbbR m, which can also be written as

(AWrx)
\top GZy= (Wrx)

\top M(\scrA \ast Zy) \leftrightarrow x\top W\top 
r A\top GZy= x\top W\top 

r M\scrA \ast Zy.

Thus, we have

W\top 
r A\top GZ =W\top 

r M\scrA \ast Z.(3.10)

Combining (3.9) and (3.10) and using W\top 
r MWr = Ir, we finally obtain

[\scrA \ast ] =W\top 
r MWr[\scrA \ast ] =W\top 

r M\scrA \ast Z =W\top 
r A\top GZ.

The proof is completed.

The following result will be used throughout the paper.

Lemma 3.3. If \scrR (Wr) = \scrR (M) and W\top 
r MWr = Ir, then the Moore--Penrose

pseudoinverse of M can be expressed as M\dagger =WrW
\top 
r .

Proof. Let \=M =WrW
\top 
r . We only need to verify the following four identities:

M \=MM =M, (M \=M)\top =M \=M,

\=MM \=M = \=M, ( \=MM)\top = \=MM.

The third identity is the easiest to verify: \=MM \=M =WrW
\top 
r MWrW

\top 
r =WrW

\top 
r = \=M .

Suppose the compact-form eigenvalue decomposition of M is M = Pr\Lambda rP
\top 
r with \Lambda r =

diag(\lambda 1, . . . , \lambda r), where \lambda 1 \geq \cdot \cdot \cdot \geq \lambda r > 0 and Pr \in \BbbR n\times r with 2-orthonormal columns.
Since \scrR (Wr) =\scrR (M) =\scrR (Pr), there exists D \in \BbbR r\times r such that Wr = PrD. It follows
that Ir =W\top 

r MWr =D\top \Lambda rD. Therefore, it follows that M \=MM =MPrDD\top P\top 
r M =

Pr\Lambda rDD\top \Lambda rP
\top 
r = Pr\Lambda rP

\top 
r =M, since \Lambda rDD\top =D\top \Lambda rD= Ir. Similarly, we have

M \=M = Pr\Lambda rP
\top 
r PrDD\top P\top 

r = Pr\Lambda rDD\top P\top 
r = PrP

\top 
r = (M \=M)\top ,

\=MM = PrDD\top P\top 
r M = PrDD\top \Lambda rP

\top 
r = PrP

\top 
r = ( \=MM)\top .

Now all the four identities have been verified.

3.2. Characterizing GSVD by singular value expansion. In this subsec-
tion, we consider the simpler case that G = Im, since it has direct connections with
the GSVD of a matrix pair. For notational simplicity, let \scrX = (\scrR (M), \langle \cdot , \cdot \rangle M ) and
\scrY = (\BbbR m, \langle \cdot , \cdot \rangle 2). For the linear compact operator

\scrA :\scrX \rightarrow \scrY , v \mapsto \rightarrow Av(3.11)

between the two Hilbert spaces \scrX and \scrY , where v and Av are column vectors un-
der the canonical bases of \BbbR n and \BbbR m, it has the SVE with finite terms; see, e.g.,
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446 HAIBO LI

[30, section 15.4]. Here we use the terminology ``SVE"" instead of ``SVD"" to distinguish
it from the SVD of a matrix. The theory of SVE for \scrA states that there exist positive
scalars \sigma 1 \geq \cdot \cdot \cdot \geq \sigma d > 0, two orthonormal systems \{ fi\} di=1 \subseteq \scrX and \{ hi\} di=1 \subseteq \scrY such
that

\scrA fi = \sigma ihi, \scrA \ast hi = \sigma ifi,(3.12)

and any v \in \scrX has the expansion

v= v0 +

d\sum 

i=1

\langle v, fi\rangle Mfi(3.13)

with some v0 \in ker(\scrA ), and

\scrA v=

d\sum 

i=1

\sigma i\langle v, fi\rangle Mhi,(3.14)

where d= dim(im(\scrA )). Here we use ker(\cdot ) and im(\cdot ) to denote the kernel and image
of a linear operator, respectively, to distinguish them from the null space \scrN (\cdot ) and
range space \scrR (\cdot ) of a matrix.

The following result provides more details about the SVE of \scrA .

Theorem 3.4. For any A \in \BbbR m\times n and symmetric positive semidefinite matrix
M \in \BbbR n\times n with rank r, define the linear operator \scrA as (3.11). Then there exist an
M -orthonormal matrix F \in \BbbR n\times r, a 2-orthonormal matrix H \in \BbbR m\times m, and a diagonal
matrix \Sigma \in \BbbR m\times r, such that for any v \in \scrX and u\in \scrY , it holds that

\scrA v=H\Sigma F\top Mv, \scrA \ast u= F\Sigma \top H\top u(3.15)

under the canonical bases of \BbbR n and \BbbR m.

Proof. Let \scrX 1 = span\{ fi\} di=1. We first prove \scrX = ker(\scrA )\oplus \scrX 1. Noticing (3.13),
we only need to prove ker(\scrA )\cap \scrX 1 = \{ 0\} . Let v=\sum d

j=1 \mu jfj \in ker(\scrA )\cap \scrX 1. By (3.14),
it follows that 0=\scrA v =

\sum n
j=1 \sigma i\mu ihi, leading to \sigma i\mu i = 0 for 1\leq i\leq d. Since \sigma i > 0,

we have \mu i = 0 for 1\leq i\leq d, and thereby v= 0. Then we prove ker(\scrA )\bot M \scrX 1, where
\bot M is the orthogonal relation in \scrX . For any v \in ker(\scrA ) and any fi, by (3.12) we have
fi = \sigma  - 1

i \scrA \ast hi, and thereby

\langle v, fi\rangle M = \langle v,\sigma  - 1
i \scrA \ast hi\rangle M = \langle \scrA v,\sigma  - 1

i hi\rangle 2 = \langle 0, \sigma  - 1
i hi\rangle 2 = 0.

Note dim(\scrX 1) = d. Therefore, we can find r  - d M -orthonormal vectors in ker(\scrA )
that are M -orthogonal to each fi. Denote these vectors by \{ fd+1, . . . , fr\} . Then
\{ fi\} ri=1 constitute a complete orthonormal basis for \scrX . From (3.14) we have im(\scrA ) =
span\{ hi\} di=1 =:\scrY 1. Using the relation ker(\scrA \ast ) = im(\scrA )\bot =\scrY \bot 

1 , where the orthogonal-
ity is taken in (\BbbR m, \langle \cdot , \cdot \rangle 2), there exist m - d 2-orthonormal \{ hd+1, . . . , hm\} \subseteq ker(\scrA \ast )
such that \{ hi\} mi=1 constitute a complete orthonormal basis for \scrY .

Therefore, for any v \in \scrX , it can be written as v=
\sum r

i=1\langle v, fi\rangle Mfi, and thereby

\scrA v=

r\sum 

i=1

\langle v, fi\rangle M\scrA fi =

r\sum 

i=1

\sigma i\langle v, fi\rangle Mhi,

where we define \sigma d+1 = \cdot \cdot \cdot = \sigma r = 0. Similarly, for any u \in \scrY with the expansion
u=

\sum m
i=1\langle u,hi\rangle 2hi, it holds that
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CHARACTERIZING GSVD BY SVE 447

\scrA \ast u=

m\sum 

i=1

\langle u,hi\rangle M\scrA \ast hi =

r\sum 

i=1

\sigma i\langle u,hi\rangle 2fi.

Let the matrices F = (f1, . . . , fr), H = (h1, . . . , hm), and \Sigma = (\Sigma d
0 )\in \BbbR m\times r with \Sigma d =

diag(\sigma 1, . . . , \sigma d). Then (3.15) is just the matrix-form of the above two identities.

One can verify that (3.12)--(3.14) can be derived from (3.15). Therefore, the two
relations in (3.15) describe completely the SVE of \scrA . In the following part, we use
the notation

\scrA \sim H\Sigma F\top (3.16)

to denote the SVE of \scrA . From the proof of Theorem 3.4, we have the following basic
relations for the four important subspaces:

ker(\scrA ) = span\{ fi\} ri=d+1, im(\scrA ) = span\{ hi\} di=1,(3.17a)

ker(\scrA \ast ) = span\{ hi\} mi=d+1, im(\scrA \ast ) = span\{ fi\} di=1.(3.17b)

From the theory of SVE for linear compact operators, if the multiplicity of \sigma i is 1, then
the corresponding fi and hi are uniquely determined (at most differing by a sign). If
the multiplicity of \sigma i is mi > 1, then there are mi corresponding linearly independent
\{ fi\} and \{ hi\} , respectively, which are M -orthonormal and 2-orthonormal.

Based on Theorem 3.4, now we can use the SVE of \scrA to characterize the GSVD
of \{ A,L\} . Remember that we consider that xi \in \scrR (M) for 1\leq i\leq r.

Theorem 3.5. Let the GSVD of \{ A,L\} be (1.1) and let \scrA be defined as (3.11)
with M =A\top A+L\top L. Partition PA and X as

(3.18)
PA = PA1 PA2 PA3 m

q1 q2 m− q1 − q2

, X = X1 X2 X3 X4 n

q1 q2 q3 n− r

and let \widetilde X1 = (X1 X2 X3). Then the SVE of \scrA has the form

\scrA \sim PA\Sigma A
\widetilde X\top 
1 ,(3.19)

and it holds that

ker(\scrA ) =\scrR (X3), im(\scrA ) =\scrR ((PA1 PA2)),(3.20a)

ker(\scrA \ast ) =\scrR (PA3), im(\scrA \ast ) =\scrR ((X1 X2)).(3.20b)

Proof. Using the GSVD of \{ A,L\} , we have

A\top A+L\top L=X - \top 
\biggl( \biggl( 

\Sigma \top 
A\Sigma A

0

\biggr) 
+

\biggl( 
\Sigma \top 

L\Sigma L

0

\biggr) \biggr) 
X - 1 =X - \top 

\biggl( 
Ir

0

\biggr) 
X - 1,

which leads to rank(M) = r and

\biggl( 
Ir

0

\biggr) 
=

\biggl( \widetilde X\top 
1

X\top 
4

\biggr) 
M
\Bigl( 
\widetilde X1 X4

\Bigr) 
=

\Biggl( 
\widetilde X\top 
1 M \widetilde X1

\widetilde X\top 
1 MX4

X\top 
4 M \widetilde X1 X\top 

4 MX4

\Biggr) 
.

Therefore, we have \widetilde X\top 
1 M \widetilde X1 = Ir. Note that \scrR ( \widetilde X1) \subseteq \scrR (M). It follows that \widetilde X1 is

an M -orthonormal basis of (\scrR (M), \langle \cdot , \cdot \rangle M ), and thereby we obtain from Lemma 3.3
that M\dagger = \widetilde X1

\widetilde X\top 
1 . Notice from (1.1) that

A( \widetilde X1 X4) = PA(\Sigma A 0)\Rightarrow A \widetilde X1 = PA\Sigma A.
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448 HAIBO LI

Thus, we have AM\dagger =A \widetilde X1
\widetilde X\top 
1 = PA\Sigma A

\widetilde X\top 
1 . For any v \in (\scrR (M), \langle \cdot , \cdot \rangle M ), it holds that

\scrA v=\scrA \scrP \scrR (M)v=AM\dagger Mv= PA\Sigma A
\widetilde X\top 
1 Mv.

Using the commutative diagram (3.7) and noticing G= Z = Im for the current case,
we have for any u\in (\BbbR m, \langle \cdot , \cdot \rangle 2) that

\scrA \ast u= \pi 1 \circ [\scrA \ast ](u) = \widetilde X1( \widetilde X\top 
1 A\top )u=M\dagger A\top u= (AM\dagger )\top u= \widetilde X1\Sigma 

\top 
AP

\top 
A u,(3.21)

where we have used [\scrA \ast ] = \widetilde X\top 
1 A\top by Lemma 3.2. This proves that the SVE of \scrA has

the form PA\Sigma A
\widetilde X\top 
1 .

From the SVE of \scrA we have dim(im(\scrA )) = q1 + q2. Using the relations (3.17), it
follows that im(\scrA ) =\scrR ((PA1 PA2)). Since PA is a 2-orthogonal matrix, we then have
ker(\scrA \ast ) =\scrR (PA3). The other two relations can also be verified easily.

Corresponding to Theorem 3.5, we have the following result.

Theorem 3.6. Define \scrL as

\scrL : (\scrR (M), \langle \cdot , \cdot \rangle M )\rightarrow (\BbbR p, \langle \cdot , \cdot \rangle 2), v \mapsto \rightarrow Lv,(3.22)

where v and Lv are column vectors under the canonical bases of \BbbR n and \BbbR p. Partition
PL as

(3.23)
PL = PL1 PL2 PL3 p

p− q2 − q3 q2 q3

.

Then the SVE of \scrL has the form

\scrL \sim PL\Sigma L
\widetilde X\top 
1 ,(3.24)

and it holds that

ker(\scrL ) =\scrR (X1), im(\scrL ) =\scrR ((PL2 PL3)),(3.25a)

ker(\scrL \ast ) =\scrR (PL1), im(\scrL \ast ) =\scrR ((X2 X3)).(3.25b)

Proposition 2.1 together with Theorems 3.5 and 3.6 characterizes completely the
GSVD of \{ A,L\} based on the SVEs of linear operators \scrA and \scrL . Particularly, they
show that the nontrivial part \widetilde X1 is the common right SVE components of \scrA and \scrL ,
while PA and PL are the left SVE components of \scrA and \scrL , respectively. Moreover,
the relations (3.20) and (3.25) use the image spaces and kernel spaces of \scrA , \scrA \ast and
\scrL , \scrL \ast to describe the structure of each GSVD blocks and give a new explanation of
the three numbers q1, q2, and q3 in (1.1).

Based on the SVE characterization of GSVD, we can expect to modify those
algorithms for large-scale SVD computation for large-scale GSVD computation. To
compute nontrivial extreme GSVD components, we generalize the standard GKB
process from the viewpoint of linear operators.

4. Generalizing the Golub--Kahan bidiagonalization. In this section, the
generalization of GKB is quite general without requiring M = A\top A+ L\top L, and we
follow the notation and assumptions in subsection 3.1. For the linear operator in
(3.1), the iterative process of GKB can be described as follows; see [9] for discussions
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CHARACTERIZING GSVD BY SVE 449

about GKB for linear compact operators. Choosing a nonzero vector b\in (\BbbR m, \langle \cdot , \cdot \rangle G),
the basis recursive relations are\left\{ 

  
  

\beta 1u1 = b,

\alpha ivi =\scrA \ast ui  - \beta ivi - 1,

\beta i+1ui+1 =\scrA vi  - \alpha iui,

(4.1)

where ui \in (\BbbR m, \langle \cdot , \cdot \rangle G) and vi \in (\scrR (M), \langle \cdot , \cdot \rangle M ), and \alpha i and \beta i are positive scalars
such that \| vi\| M = \| ui\| G = 1. Note that v0 := 0 for the initial step.

For the purpose of practical computation, we need to derive a matrix-form ex-
pression of the recursive relations. Using the isomorphisms \pi 1 and \pi 2, denote ui and
vi by ui =Zyi and vi =Wrxi with yi \in \BbbR m and xi \in \BbbR r for any i\geq 1. Then we have

\scrA vi =\scrA \circ \pi 1(xi) = \pi 2 \circ [\scrA ]xi =ZZ - 1AWrxi =Avi,

\scrA \ast ui =\scrA \ast \circ \pi 2(yi) = \pi 1 \circ [\scrA \ast ]yi =WrW
\top 
r A\top GZyi =M\dagger A\top Gui.

Therefore, the last two recursions in (4.1) can be written in the matrix-vector forms
\Biggl\{ 
\alpha ivi =M\dagger A\top Gui  - \beta ivi - 1,

\beta i+1ui+1 =Avi  - \alpha iui.
(4.2)

Using (4.2), the GKB of \scrA can proceed step by step. We name the above iterative
process the gGKB. The pseudocode of gGKB is shown in Algorithm 4.1.

Remark 4.1. If G is also positive semidefinite, define the linear operator \scrA :
(\scrR (M), \langle \cdot , \cdot \rangle M )\rightarrow (\scrR (G), \langle \cdot , \cdot \rangle G) to be v \mapsto \rightarrow Av. In this case, a similar gGKB process
can be obtained. A slight difference is that the initial vector should satisfy b\in \scrR (G).

For large-scale matrices, we cannot directly compute M\dagger . In this case, using the
relation

M\dagger \=s= argmin
s\in \BbbR n

\| Ms - \=s\| 2,(4.3)

we can compute M\dagger \=s by iteratively solving the above least squares problems. If we
use gGKB to compute the GSVD of \{ A,L\} (see section 5), which means G= Im, then
M\dagger \=s=M\dagger A\top ui is the minimum 2-norm solution to the least squares problem

min
s\in \BbbR n

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
A
L

\biggr) 
s - 

\biggl( 
ui

0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

.(4.4)

Algorithm 4.1. Generalized Golub--Kahan bidiagonalization.

Input: A\in \BbbR m\times n, M \in \BbbR n\times n, G\in \BbbR m\times m, b\in \BbbR m

1: Initialize: let \beta 1 = \| b\| G, u1 = b/\beta 1

2: Compute \=s=A\top Gu1, s=M\dagger \=s
3: \alpha 1 = \| s\| M , v1 = s/\alpha 1

4: for i= 1,2, . . . , k, do
5: q=Avi  - \alpha iui

6: \beta i+1 = \| q\| G, ui+1 = q/\beta i+1

7: \=s=A\top Gui+1, s=M\dagger \=s - \beta i+1vi
8: \alpha i+1 = \| s\| M , vi+1 = s/\alpha i+1

9: end for

Output: \{ \alpha i, \beta i\} k+1
i=1 , \{ ui, vi\} k+1

i=1
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450 HAIBO LI

Both (4.3) and (4.4) can be iteratively solved by using the LSQR algorithm [44]. If
(AL ) is sparse, then it is more efficient to compute M\dagger \=s by solving (4.4). For both
cases, gGKB has a nested inner-outer iteration structure.

If G = Im and M = In, then gGKB becomes the standard GKB. If G = Im
and M is invertible, the gGKB is equivalent to the generalizations of GKB proposed
in [3, 11, 12, 33, 35] with different forms. The following result describes the basic
property of gGKB, very similar to that of the standard GKB.

Proposition 4.1. For each vi generated by gGKB, it holds that vi \in \scrR (M). The
group of vectors \{ vi\} ki=1 is an M -orthonormal basis of the Krylov subspace

\scrK k(M
\dagger A\top GA,M\dagger A\top Gb) = span\{ (M\dagger A\top GA)iM\dagger A\top Gb\} k - 1

i=0 ,(4.5)

and \{ ui\} ki=1 is a G-orthonormal basis of the Krylov subspace

\scrK k(AM\dagger A\top G,b) = span\{ (AM\dagger A\top G)ib\} k - 1
i=0 .(4.6)

Proof. To get a better understanding of gGKB, we give two proofs.
The first proof. We prove vi \in \scrR (M) by mathematical induction. First note

\scrR (M\dagger ) = \scrR (M) for a symmetric M . For i = 1, we have \alpha 1 = M\dagger A\top Gu1 \in \scrR (M).
Suppose vi \in \scrR (M) for i\geq 1. From the recursion (4.2) we obtain

\alpha i+1vi+1 =M\dagger A\top Gui  - \beta i+1vi \in \scrR (M),

leading to vi+1 \in \scrR (M). To prove the second property, we exploit the theory about
the GKB of \scrA : (\scrR (M), \langle \cdot , \cdot \rangle M ) \rightarrow (\BbbR m, \langle \cdot , \cdot \rangle G) with starting vector b, which states
that \{ vi\} ki=1 and \{ ui\} ki=1 are the M -orthonormal basis and G-orthonormal basis of
the two Krylov subspaces:

\scrK k(\scrA \ast \scrA ,\scrA \ast b) := span\{ (\scrA \ast \scrA )i\scrA \ast b\} k - 1
i=0 ,

\scrK k(\scrA \scrA \ast , b) := span\{ (\scrA \scrA \ast )ib\} k - 1
i=0 ,

respectively. For any u\in \BbbR m = \pi 2(y) =Zy, from the commutative diagram (3.7) and
using Lemmas 3.2 and 3.3, we obtain

\scrA \ast u=\scrA \ast \circ \pi 2(y) = \pi 1 \circ [\scrA \ast ](y) =Wr(W
\top 
r A\top GZ)y=M\dagger A\top Gu.

Therefore, we have

(\scrA \ast \scrA )i\scrA \ast b= (M\dagger A\top GA)iM\dagger A\top Gb, (\scrA \scrA \ast )ib= (AM\dagger A\top G)ib.

The second proof. Using the coordinates of ui and vi under bases Wr and Z, we
can write the last two relations in (4.1) as

\alpha iWrxi =\scrA \ast Zyi  - \beta iWrxi - 1, \beta i+1Zyi+1 =\scrA Wrxi  - \alpha iZyi,

where vi =Wrxi and ui = Zyi. Note that Z\top GZ = Im implies Z - 1 = Z\top G. Letting
\=b=Z - 1b, multiplying from left the first and second relations by W\top 

r M and Z - 1, and
using (3.10), we obtain

\left\{ 
  
  

\beta 1y1 =\=b1,

\alpha ixi =W\top 
r A\top GZyi  - \beta ixi - 1,

\beta i+1yi+1 =Z\top GAWrxi  - \alpha iyi.

(4.7)
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CHARACTERIZING GSVD BY SVE 451

Since G\top = G, it follows that (4.7) is the standard GKB of matrix Z\top GAWr with
starting vector \=b. Therefore, \{ xi\} ki=1 and \{ yi\} ki=1 are 2-orthonormal bases of the two
Krylov subspaces

span\{ ((Z\top GAWr)
\top Z\top GAWr)

i(Z\top GAWr)
\top \=b\} k - 1

i=0 ,

span\{ (Z\top GAWr(Z
\top GAWr)

\top )i\=b\} k - 1
i=0 ,

respectively. Note that

Wr((Z
\top GAWr)

\top Z\top GAWr)
i(Z\top GAWr)

\top \=b

=Wr(W
\top 
r A\top GZZ\top GAWr)

iW\top 
r A\top GZ\=b=Wr(W

\top 
r A\top GAWr)

iW\top 
r A\top Gb

= (WrW
\top 
r ATGA)iWrW

\top 
r A\top Gb= (M\dagger A\top GA)iM\dagger A\top Gb.

We have vi =Wrxi \in \scrR (M) and obtain (4.5). Similarly, we can obtain (4.6).

It is easy to verify that (4.7) is equivalent to (4.1). Note from Lemma 3.2 that
[\scrA \ast ] = [\scrA ]\top since Z - 1 =Z\top G. Therefore, the matrix representations of \scrA and \scrA \ast are
Z\top GAWr \in \BbbR m\times r and (Z\top GAWr)

\top , respectively, which maps a coordinate vector
from \BbbR r to \BbbR m. In this sense, we can say that the recursive relation (4.7) is the
coordinate representation for the gGKB of \scrA under bases Wr and Z.

From the first proof of Proposition 4.1, we have s \in \scrR (M). Therefore, for each
i \geq 1, if s = M\dagger A\top Gui  - \beta ivi - 1 \not = 0, then \alpha i = \| s\| M \not = 0. This indicates that
even if M is not positive definite, the gGKB does not terminate as long as s or
q = Avi  - \alpha iui is nonzero. Here ``terminate"" means that \alpha i or \beta i equals zero at the
current step. Suppose gGKB does not terminate before the kth iteration, i.e., \alpha i\beta i \not = 0
for 1 \leq i \leq k. Then the k-step gGKB process generates an M -orthonormal matrix
Vk+1 = (v1, . . . , vk+1)\in \BbbR n\times (k+1) and a G-orthonormal matrix Uk+1 = (u1, . . . , uk+1)\in 
\BbbR m\times (k+1), satisfying the relations

\beta 1Uk+1e1 = b,(4.8a)

AVk =Uk+1Bk,(4.8b)

M\dagger A\top GUk+1 = VkB
T
k + \alpha k+1vk+1e

\top 
k+1,(4.8c)

where e1 and ek+1 are the first and (k+ 1)th columns of Ik+1, and

Bk =

\left( 
       

\alpha 1

\beta 2 \alpha 2

\beta 3
. . .

. . . \alpha k

\beta k+1

\right) 
       

\in \BbbR (k+1)\times k(4.9)

has full column rank. Note that it may occur that \beta k+1 = 0, which means gGKB
terminates just at the kth step, and in this case vk+1 = 0.

We emphasize that gGKB will eventually terminate in at most min\{ m,r\} steps,
since the column rank of Uk or Vk cannot exceed min\{ m,r\} . Using the GSVD of
\{ A,L\} , we can give a detailed description of the ``terminate step"" of gGKB, defined as

kt =min\{ k : \alpha k+1\beta k+1 = 0\} .(4.10)

For any closed subspace \scrG of a Hilbert space, denote by \scrP \scrG the projection operator
onto \scrG . We have the following result.
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452 HAIBO LI

Theorem 4.2. Define the linear operator \scrA as (3.11) with M = A\top A + L\top L,
where the GSVD of \{ A,L\} is as (1.1). Suppose there are l distinct positive ci in \Sigma A

with l subspaces \scrG 1, . . . ,\scrG l spanned by the corresponding pA,i. Then kt = s, the number
of nonzero elements in \{ \scrP \scrG 1

b, . . . ,\scrP \scrG l
b\} .

The following lemma is needed to prove this theorem.

Lemma 4.3. For any square matrix C and a vector v, define the degree of v with
respect to C as

degC(v) =min\{ k : \exists p\in \scrP k s.t. p(C)v= 0\} ,

where \scrP k is the set of all polynomials with degrees not bigger than k. Then we have

degAM\dagger A\top (b) = degM\dagger A\top A(M
\dagger A\top b) = s.(4.11)

Proof. First notice that degC(v) is nothing but the maximum rank of \{ Civ\} ki=0

with respect to k \geq 0. By Theorem 3.5, we have AM\dagger A\top = A \widetilde X1
\widetilde X\top 
1 A\top . Using

the relation A \widetilde X1 = PA\Sigma A, we have AM\dagger A\top = PA(\Sigma A\Sigma 
\top 
A)P

\top 
A , which is the ei-

genvalue decomposition of AM\dagger A\top . Thus, the positive eigenvalues of AM\dagger A\top are
1, c2q1+1, . . . , c

2
q1+q2 with the corresponding eigenvectors being the columns of (PA1 PA2),

and the corresponding eigenspaces are subspaces \scrG 1, . . . ,\scrG l. Denote the l distinct posi-
tive eigenvalues by \lambda 1, . . . , \lambda l and let Gi be those matrices with 2-orthonormal columns
spanning \scrG i for 1\leq i\leq l. Then we can write the eigenvalue decomposition of AM\dagger A\top 

as AM\dagger A\top =
\sum l

i=1 \lambda iGiG
\top 
i , and we have \scrP \scrG i

=GiG
\top 
i . For each j \geq 0, it follows that

wj := (AM\dagger A\top )jb=
l\sum 

i=1

(\lambda iGiG
\top 
i )

jb=

l\sum 

i=1

\lambda j
iGiG

\top 
i b,

since Gi are mutually 2-orthogonal. Without loss of generality, suppose the first s
elements in \{ \scrP \scrG 1

b, . . . ,\scrP \scrG l
b\} are nonzero and gi = \scrP \scrG i

b/\| \scrP \scrG i
b\| 2 \not = 0 for 1 \leq i \leq s.

Then \{ gi\} si=1 are mutually 2-orthogonal, and

wj =

s\sum 

i=1

\lambda j
igi\| \scrP \scrG i

b\| 2 =
s\sum 

i=1

\lambda j
igi(g

\top 
i b),

since

g\top i b= (GiG
\top 
i b)

\top b/\| \scrP \scrG i
b\| 2 = \| G\top 

i b\| 22/\| G\top 
i b\| 2 = \| \scrP \scrG i

b\| 2.

Thus, the rank of \{ wj\} kj=0 is at most s, leading to degAM\dagger A\top (b) \leq s. On the other
hand, for 1 \leq k \leq s, by setting \=wj := gj(g

\top 
j b), we have (w1 . . . ,wk) = ( \=w1, . . . , \=ws)Tk,

where

Tk =

⎛
⎜⎜⎜⎝

1 λ1 · · · λk−1
1

1 λ2 · · · λk−1
2

...
... · · ·

...
1 λs · · · λk−1

s

⎞
⎟⎟⎟⎠ =:

Tk1 k

Tk2 s− k
k

.

Since \lambda i \not = \lambda j for 1\leq i \not = j \leq k, the Vandermonde matrix Tk1 is invertible, and thereby
Tk has full column rank. Therefore, the rank of \{ wi\} ki=1 is k for 1\leq k\leq s, leading to
degAM\dagger A\top (b)\geq s. This proves degAM\dagger A\top (b) = s.
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CHARACTERIZING GSVD BY SVE 453

To prove degM\dagger A\top A(M
\dagger A\top b) = s, it is sufficient to show

rank
\bigl( 
\{ (M\dagger A\top A)jM\dagger A\top b\} ki=0

\bigr) 
= rank

\bigl( 
\{ wj\} kj=0

\bigr) 

for any k\geq 0. Notice that

(M\dagger A\top A)jM\dagger A\top b=M\dagger A\top (AM\dagger A\top )jb=M\dagger A\top wi

and

M\dagger A\top = \widetilde X1(A \widetilde X1)
\top = \widetilde X1\Sigma 

\top 
AP

\top 
A = (X1 X2Cq2)(PA1 PA2)

\top .

Let \~wj = (M\dagger A\top A)jM\dagger A\top b. It follows that rank
\bigl( 
\{ \~wj\} kj=0

\bigr) 
\leq rank

\bigl( 
\{ wj\} kj=0

\bigr) 
. To

prove the inverse inequality, suppose \{ wj\} kj=0 are linearly independent. We only need
to show \{ \~wj\} kj=0 are linearly independent. If there exist real numbers \mu 0, . . . , \mu k

such that
\sum k

j=0 \mu j \~wj = 0, then M\dagger A\top Wz = 0, where W = (w0, . . . ,wk) has full

column rank and z = (\mu 0, . . . , \mu k)
\top . By the expression of M\dagger A\top , it follows that

Wz \in \scrN (M\dagger A\top ) = \scrR (PA3). On the other hand, from AM\dagger A\top = PA(\Sigma A\Sigma 
\top 
A)P

\top 
A we

get Wz \in \scrR (W )\subseteq \scrR (AM\dagger A\top ) =\scrR ((PA1 PA2)). Since \scrR ((PA1 PA2))\cap \scrR (PA3) = \{ 0\} ,
we obtain Wz = 0\Rightarrow z = 0, meaning that \{ \~wj\} kj=0 are independent. This completes
the proof.

Proof of Theorem 4.2. Suppose gGKB terminates at the ktth step. By Proposition
4.1, the rank of \{ ui\} kt

i=1 is kt, implying kt \leq degAM\dagger A\top (b) = s by Lemma 4.3. Then
we show kt \geq s. Notice from the relations (4.1) and (4.2) that

\alpha 1\beta 1v1 =M\dagger A\top b,

\alpha i+1\beta i+1vi+1 =M\dagger A\top Avi  - (\alpha 2
i + \beta 2

i+1)vi  - \alpha i\beta ivi - 1

for 1\leq i\leq kt, where we have used

M\dagger A\top Avi = \alpha iM
\dagger A\top ui + \beta i+1M

\dagger A\top ui+1

= \alpha i(\alpha ivi + \beta ivi+1) + \beta i+1(\alpha i+1vi+1 + \beta i+1vi).

Therefore, it follows that

vi+1 =
1

\alpha i+1\beta i+1

\bigl( 
M\dagger A\top Avi  - (\alpha 2

i + \beta 2
i+1)vi  - \alpha i\beta ivi - 1

\bigr) 

for 1\leq i < kt. Combining with v1 =
1

\alpha 1\beta 1
M\dagger A\top b, the above recursion leads to

vk+1 =

k\sum 

i=0

\xi i(M
\dagger A\top A)iM\dagger A\top b, \xi k = 1/\Pi k+1

i=1 \alpha i\beta i \not = 0

for 1 \leq k < kt. Since 0 = \alpha kt+1\beta kt+1vkt+1 is a linear combination of vkt
and vkt - 1

with nonzero coefficients, the above identity implies that \alpha kt+1\beta kt+1vkt+1 must be a
linear combination of \{ (M\dagger A\top A)iM\dagger A\top b\} kt

i=0 with nonzero coefficients, and thereby
\{ (M\dagger A\top A)iM\dagger A\top b\} kt

i=0 is linearly dependent. By Lemma 4.3, it follows that kt \geq s.
Finally, we obtain kt = s.

Just as the standard GKB can be employed to approximate extreme SVD com-
ponents, we will utilize gGKB to approximate nontrivial extreme GSVD components.
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454 HAIBO LI

5. GSVD computation by generalized Golub--Kahan bidiagonalization.
We first show that gGKB can be used to approximate the SVE components. Then
we use Theorems 3.5 and 3.6 to relate these approximations to the nontrivial GSVD
components.

5.1. Computing nontrivial GSVD components by gGKB. Suppose gGKB
does not terminate before the kth step. Then the compact-form SVD of Bk can be
written as

Bk = Yk\Theta kH
\top 
k , \Theta k =diag

\Bigl( 
\theta 
(k)
1 , . . . , \theta 

(k)
k

\Bigr) 
, \theta 

(k)
i > \cdot \cdot \cdot > \theta 

(k)
k > 0,(5.1)

where Yk = (y
(k)
1 , . . . , y

(k)
k ) \in \BbbR (k+1)\times k and Hk = (h

(k)
1 , . . . , h

(k)
k ) \in \BbbR k\times k are two 2-

orthonormal matrices. The approximation to the SVE triplet (ci, pA,i, xi) of \scrA is

defined as (\=c
(k)
i , \=p

(k)
A,i, \=x

(k)
i ) := (\theta 

(k)
i ,Uk+1y

(k)
i , Vkh

(k)
i ). To measure the quality of this

approximation, we give the following result.

Theorem 5.1. The approximate SVE triplet for \scrA satisfies

\scrA \=x
(k)
i  - \=c

(k)
i \=p

(k)
A,i = 0,(5.2a)

\scrA \ast \=p(k)A,i  - \=c
(k)
i \=x

(k)
i = \alpha k+1vk+1e

\top 
k+1y

(k)
i .(5.2b)

Proof. Note that \scrA v=Av. The first relation can be verified using (4.8b):

\scrA \=x
(k)
i  - \=c

(k)
i \=p

(k)
A,i =AVkh

(k)
i  - \theta 

(k)
i Uk+1y

(k)
i =Uk+1

\Bigl( 
Bkh

(k)
i  - \theta 

(k)
i y

(k)
i

\Bigr) 
= 0.

For the second relation, using (3.21), that is, \scrA \ast u = M\dagger A\top u, we obtain from (4.8c)
that

\scrA \ast \=p(k)A,i  - \=c
(k)
i \=x

(k)
i =M\dagger A\top Uk+1y

(k)
i  - \theta 

(k)
i Vkh

(k)
i

=
\bigl( 
VkB

\top 
k + \alpha k+1vk+1e

\top 
k+1

\bigr) 
y
(k)
i  - \theta 

(k)
i Vkh

(k)
i

= Vk(B
\top 
k y

(k)
i  - \theta 

(k)
i h

(k)
i ) + \alpha k+1vk+1e

\top 
k+1y

(k)
i

= \alpha k+1vk+1e
\top 
k+1y

(k)
i .

The proof is completed.

Therefore, the triplet (\=c
(k)
i , \=p

(k)
A,i, \=x

(k)
i ) can be accepted as a satisfied SVE triplet

at the iteration where | \alpha k+1vk+1e
\top 
k+1y

(k)
i | is sufficiently small. Using the connection

between the SVE of \scrA and the GSVD of \{ A,L\} revealed by Theorem 3.5, the tu-

ple (\=c
(k)
i , \=s

(k)
i , \=p

(k)
A,i, \=x

(k)
i ) := (\theta 

(k)
i , (1  - (\theta 

(k)
i )2)1/2,Uk+1y

(k)
i , Vkh

(k)
i ) can be used as a

good approximation to a GSVD component. To further measure the quality of this
approximation, note from (2.2) that

s2iA
\top Axi = c2iL

\top Lxi, 1\leq i\leq r.(5.3)

This is a well-known basic relation for GSVD, which indicates that the nontrivial
generalized eigenvalues of the generalized eigenvalue problem ATAx = \lambda LTLx are
\{ \gamma 2

i \} ri=1 and the corresponding generalized eigenvectors are \{ xi\} ri=1 [20, section 8.7].
Now we can give the following result.

Theorem 5.2. The above approximate GSVD tuple for \{ A,L\} satisfies

(\=s
(k)
i )2A\top A\=x

(k)
i  - (\=c

(k)
i )2L\top L\=x(k)

i = \alpha k+1\beta k+1Mvk+1e
\top 
k h

(k)
i .(5.4)
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CHARACTERIZING GSVD BY SVE 455

Proof. First notice from (5.3) that

A\top Axi = (c2i + s2i )A
\top Axi = c2i (A

\top A+L\top L)xi = c2iMxi,

L\top Lxi = (c2i + s2i )L
\top Lxi = s2i (A

\top A+L\top L)xi = s2iMxi

for 1 \leq i \leq r. Since \widetilde X1 = (x1, . . . , xr) is an M -orthonormal basis of (\scrR (M), \langle \cdot , \cdot \rangle M ),
it follows that A\top A\scrR (M) \subseteq \scrR (M) and L\top L\scrR (M) \subseteq \scrR (M). Therefore, we have

A\top A\=x
(k)
i ,L\top L\=x(k)

i \in \scrR (M) due to \=x
(k)
i = Vkh

(k)
i \in \scrR (M). By Theorem 5.1, we have

M\dagger [(\=s(k)i )2A\top A\=x
(k)
i  - (\=c

(k)
i )2L\top L\=x(k)

i ] =M\dagger [A\top A\=x
(k)
i  - (\=c

(k)
i )2M \=x

(k)
i ]

= \theta 
(k)
i M\dagger A\top Uk+1y

(k)
i  - (\theta 

(k)
i )2Vkh

(k)
i

= \theta 
(k)
i

\bigl( 
VkB

\top 
k + \alpha k+1vk+1e

\top 
k+1

\bigr) 
y
(k)
i  - (\theta 

(k)
i )2Vkh

(k)
i

= \alpha k+1\beta k+1vk+1e
\top 
k h

(k)
i ,

where we have used B\top 
k y

(k)
i = \theta 

(k)
i h

(k)
i and Bkh

(k)
i = \theta 

(k)
i y

(k)
i . Multiplying the above

equality by M and using \scrP \scrR (M) =MM\dagger , we finally obtain (5.4).

Combining Theorems 5.1 and 5.2, it is more proper to use the residual norm

\| r(k)i \| 2 :=
\Bigl( 
\| A\=x

(k)
i  - \=c

(k)
i \=p

(k)
A,i\| 22 + \| (\=s(k)i )2A\top A\=x

(k)
i  - (\=c

(k)
i )2L\top L\=x(k)

i \| 22
\Bigr) 1/2

(5.5)

to measure the quality of the approximate GSVD components of A. Since \| vk+1\| M =
1, it follows from (5.4) that

\| r(k)i \| 2/\| (A\top ,L\top )\top \| 2 \leq \alpha k+1\beta k+1| e\top k h(k)
i | ,(5.6)

because \| M\| 1/22 = \| (A\top ,L\top )\top \| 2. The easily computed quantity \alpha k+1\beta k+1| e\top k h
(k)
i | is

an upper bound of the scaling-invariant relative residual norm \| r(k)i \| 2/\| (A\top ,L\top )\top \| 2,
which can be used in a stopping criterion.

We present the pseudocode of the gGKB-based GSVD computation (computing
the GSVD components of A) in Algorithm 5.1. We remark that in order to approx-
imate the GSVD components of L, the gGKB of \scrL should be used; the spirit is the
same as that for \scrA and we omit it. This process can be computed independently from

Algorithm 5.1. The gGKB-based GSVD computation (gGKB GSVD).

Input: A\in \BbbR m\times n, L\in \BbbR p\times n, tol> 0
1: Initialize: choose a nonzero b\in \BbbR m; form M =A\top A+L\top L
2: Compute \beta 1, \alpha 1, u1, v1 by gGKB
3: for i= 1,2, . . . , k, do
4: Compute \beta k+1, \alpha k+1, uk+1, vk+1 by gGKB; form Bk, Uk+1 and Vk

5: Compute the SVD of Bk as (5.1)

6: if \alpha k+1\beta k+1| e\top k h
(k)
i | < tol then

7: Compute
\Bigl( 
\=c
(k)
i , \=s

(k)
i , \=p

(k)
A,i, \=x

(k)
i

\Bigr) 
:=
\Bigl( 
\theta 
(k)
i , (1 - (\theta 

(k)
i )2)

1
2 ,Uk+1y

(k)
i , Vkh

(k)
i

\Bigr) 

8: end if
9: end for

Output: Approximate GSVD components
\Bigl( 
\=c
(k)
i , \=s

(k)
i , \=p

(k)
A,i, \=x

(k)
i

\Bigr) 
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456 HAIBO LI

that of \scrA , allowing the GSVD components of A and L to be computed in parallel.
Furthermore, it is possible to join the two gGKB processes together to save some
repeated computations. A systematic comparison of the parallel and joint gGKB
processes for large-scale GSVD computations will be explored in future research.

5.2. Convergence and accuracy. We provide preliminary results about the
convergence and accuracy of gGKB GSVD for GSVD computation. The following
result demonstrates the good property of gGKB GSVD at the terminate step.

Theorem 5.3. Following the notation and assumptions of Theorem 4.2, then
at the ktth step, the gGKB GSVD algorithm computes exactly kt GSVD components
corresponding to the nonzero elements in \{ \scrP \scrG 1

b, . . . ,\scrP \scrG l
b\} .

Proof. By Theorems 5.1 and 5.2, at the terminate step of gGKB, it computes the
exact SVE components of \scrA , which are also the exact GSVD components of \{ A,L\} 
by Theorem 3.5. Following the notation in the proof of Lemma 4.3, we need to prove
that the s vectors \=p

(s)
A,i belong separately to the invariant subspaces \scrG 1, . . . ,\scrG s. Since

\theta 
(s)
i > 0 have different values and \scrG i are mutually 2-orthogonal, these \=p

(s)
A,i must belong

to different invariant subspaces. Therefore, we only need to prove \scrP \scrG \=p
(s)
A,i = \=p

(s)
A,i for

each 1 \leq i \leq s, where \scrG = \scrG 1 \oplus \cdot \cdot \cdot \oplus \scrG s. From the proof of Lemma 4.3, we have
\=p
(s)
A,i \in \scrK s(AM

\dagger A\top , b) = span\{ wi\} s - 1
i=0 , and

\widetilde Ws := (w0, . . . ,ws - 1) = \widetilde Gs

\left( 
  
g\top 1 b

. . .

g\top 1 b

\right) 
  

\left( 
    

1 \lambda 1 \cdot \cdot \cdot \lambda s - 1
1

1 \lambda 2 \cdot \cdot \cdot \lambda s - 1
2

...
... \cdot \cdot \cdot 

...
1 \lambda s \cdot \cdot \cdot \lambda s - 1

s

\right) 
    =: \widetilde Gs\Lambda sTs,

where \widetilde Gs = (g1, . . . , gs). Since g\top i b \not = 0 and Ts is nonsingular, it follows that \scrR (\widetilde Ws) =

\scrR ( \widetilde Gs). Thus, we can write \=p
(s)
A,i as \=p

(s)
A,i = \widetilde Gsz with a nonzero z \in \BbbR s. Now we

immediately obtain

\scrP \scrG \=p
(s)
A,i =

s\sum 

i=1

\scrP \scrG i
\=p
(s)
A,i =

s\sum 

i=1

GiG
\top 
i ( \widetilde Gsz) = ( \widetilde Gs

\widetilde G\top 
s ) \widetilde Gsz = \=p

(s)
A,i,

which is the desired result.

To investigate the convergence behavior of the approximations, we give the fol-
lowing result to describe the convergence speed of the Ritz values \theta 

(k)
i .

Theorem 5.4. For any 1\leq i\leq q1 + q2, let

\phi i = arccos
| cip\top A,ib| 

\| \Sigma \top 
AP

\top 
A b\| 2

.(5.7)

Then at the kth iteration of gGKB GSVD, it holds for 1\leq i\leq k that

0\leq c2i  - (\theta 
(k)
i )2 \leq (c21  - c2r)

\Biggl( 
\kappa 
(k)
i tan\phi i

Ck - i(1 + 2\gamma i)

\Biggr) 
,(5.8)

where Cj(t) is the jth Chebyshev polynomial

Cj(t) =
1

2

\Bigl[ 
(t+

\sqrt{} 
t2  - 1)k + (t+

\sqrt{} 
t2  - 1) - k

\Bigr] 
, | t| \geq 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

0/
25

 to
 1

28
.2

50
.0

.3
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



CHARACTERIZING GSVD BY SVE 457

and

\gamma i =
c2i  - c2i+1

c2i+1  - c2r
, \kappa 

(k)
i =

i - 1\prod 

j=1

(\theta 
(k)
j )2  - c2r

(\theta 
(k)
j )2  - c2i

(i > 1), \kappa 
(k)
1 = 1 (i= 1).

Proof. Using the relations (4.7) with G=Z = Im and Wr = \widetilde X1, it follows that the
coordinate representation of gGKB is the standard GKB of A \widetilde X1 with starting vector
b. This GKB process is equivalent to the symmetric Lanczos process of (A \widetilde X1)

\top A \widetilde X1 \in 
\BbbR r\times r with starting vector (A \widetilde X1)

\top b, which generates 2-orthogonal vectors \{ ui\} ki=1 and
the symmetric tridiagonal matrix B\top 

k Bk; see, e.g., [32]. Since A \widetilde X1 = PA\Sigma A, it follows

that (A \widetilde X1)
\top A \widetilde X1 = Ir(\Sigma 

\top 
A\Sigma A)I

\top 
r is the eigenvalue decomposition of (A \widetilde X1)

\top A \widetilde X1, and

(A \widetilde X1)
\top b=\Sigma \top 

AP
\top 
A b. Since the ith eigenvector of (A \widetilde X1)

\top A \widetilde X1 is ei and

(A \widetilde X1)
\top b=\Sigma \top 

AP
\top 
A b=

\bigl( 
(P\top 

A1b)
\top (P\top 

A2b)
\top 0

\bigr) \top 
,

the angle between (A \widetilde X1)
\top b and ei for q1+q2+1\leq i\leq r is \pi /2, and for 1\leq i\leq q1+q2

the angle is expressed as (5.7). Notice that the eigenvalues of B\top 
k Bk are (\theta 

(k)
i )2. Using

the convergence theory of the symmetric Lanczos process (see, e.g., [48, Theorem 6.4]),
we immediately obtain (5.8).

Theorem 5.4 indicates that the convergence rate of \theta 
(k)
i primarily depends on two

factors: the closeness between b and the corresponding vector pA,i and the degree of
separation of ci from others. Therefore, usually we can expect rapid convergence to
the extreme and well-separated positive ci. Note again that the approximations will
not converge to the GSVD components corresponding to those zero ci, since the angle
between (A \widetilde X1)

\top b and ei is \pi /2 for q1 + q2 + 1 \leq i \leq r. The convergence behavior

of \=p
(k)
A,i and \=x

(k)
i can also be described similarly based on the convergence theory of

the symmetric Lanczos process, but the mathematical expressions are more complex.
Interested readers can refer to [48, section 6.6]

We remark that all the aforementioned results are derived for the gGKB with
exact computations, i.e., we do not take into account rounding errors and computa-
tional errors arising from iteratively solving (4.3). In the presence of rounding errors,
the Lanczos-type iterative process behaves very differently from that in exact arith-
metic. One well-known result is that the orthogonality of ui and vi will be gradually
lost, which leads to a delay of convergence of approximations and the appearance of
spurious convergent quantities [32]. Also, the inaccurate computation of M\dagger \=s may
affect the final accuracy of the approximations. These issues for gGKB GSVD will
be addressed in future work. We will demonstrate several of them in the subsequent
numerical experiments.

6. Experimental results. We report some experimental results to demonstrate
the performance of gGKB GSVD for computing nontrivial extreme GSVD components.
All the experiments are performed in MATLAB R2023b using double precision. The
codes are available at https://github.com/Machealb/gsvd iter. For the starting vector
of gGKB for A and L, we use the random vector b= randn(m,1) and b= randn(p,1)

with random seed rng(2024), respectively.

Example 1. The matrix pair \{ A,L\} is constructed as follows. Set m = n = p =
1000. Let CA = diag(\{ ci\} ni=1) with c(1) = 1, c(2) = 0.95, c(3) = 0.90, c(4 : n  - 3) =
linspace(0.88,0.12,n-6), and c(n - 2) = 0.1, c(n - 1) = 0.05, c(n) = 0.01, and let
SL = diag(\{ si\} ni=1) with si = (1  - c2i )

1/2. Then let W be an orthogonal matrix by
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letting W = gallery(`orthog',n,2) and D = diag(linspace(1,100,n)). Finally,
let A=CAW

\top D and L= SLW
\top D. By construction, \{ A,L\} is a regular matrix pair,

and the ith generalized singular value of \{ A,L\} is ci/si, where the corresponding
generalized singular vectors are the ith columns of In, In, and D - 1W .

In this experiment, we use gGKB GSVD to compute several largest and smallest
generalized singular values and show the convergence behavior of Ritz values \theta 

(k)
i ,

where gGKB is performed with and without reorthogonalization. This is a small-
scale problem, and therefore we directly compute M - 1 for computing M - 1\=s at each
iteration of gGKB. Figure 6.1 shows the convergence of the first three largest and
smallest Ritz values, where in the top two subfigures the right vertical lines indicate
the values of ci. There are four findings. (1) If no reorthogonalization is used for gGKB,
then as the iteration proceeds, the converged Ritz values may suddenly jump up (they
also may jump down for converging to those smallest ci) to become a ghost and then
converge to the next larger ci; this phenomenon leads to the appearance of spurious
copies of computed ci. (2) If gGKB is performed with full reorthogonalization, the
convergence of the Ritz values remains regular, and the first three largest and smallest
Ritz values converge to the first three largest and smallest ci, respectively. (3) The
final accuracy of the approximated ci is around \scrO (u), where u= 2 - 53 \approx 10 - 16 is the
roundoff unit of double precision. (4) The convergence to those largest ci is faster
than the convergence to those smallest ci; also, the convergence to c1, c2 and cn, cn - 1

is faster than that to c3 and cn - 2. This is because c1, c2 are more well-separated from
others than c3; the same reason applies to cn, cn - 1, and cn - 2.
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Fig. 6.1. Convergence and accuracy of approximations to ci, Example 1. Top: convergence of

Ritz values \theta 
(k)
i to largest/smallest ci by gGKB GSVD without reorthogonalization (left) and with full

reorthogonalization (right). Bottom: error curves (full reorthogonalization).
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Fig. 6.2. Convergence and accuracy of approximations to si, Example 1. Top: convergence of

Ritz values \theta 
(k)
i to largest/smallest si by gGKB GSVD without reorthogonalization (left) and with full

reorthogonalization (right). Bottom: error curves (full reorthogonalization).

We also test using the gGKB of \scrL to approximate several largest and smallest si.
The convergence behavior of the Ritz values and error curves are plotted in Figure 6.2.
In addition to the findings closely resembling those depicted in Figure 6.1, there are
two additional insights. First, we find that the first three smallest Ritz values converge
to s2, s3, s4 instead of s1, s2, s3. This is because s1 = 0, which cannot be converged
upon by Ritz values, as revealed by Theorems 5.3 and 5.4. Therefore, we should use
gGKB of \scrA to compute the generalized singular values with value \infty . Second, we
find from the bottom two subfigures that those smallest si can be approximated more
quickly than the largest ones, due to their well-separated locations. Given that these
smallest si correspond to those largest ci, it is unsurprising that they exhibit similar
convergence behaviors.

Example 2. The matrix A named well1850 is taken from the SuiteSparse matrix
collection [13], and the matrix L is set as

L=

\left( 
    

1.1  - 1
1.1  - 1

. . .
. . .

1.1  - 1

\right) 
    \in \BbbR (n - 1)\times n.

This is a regular matrix pair. We use the MATLAB built-in function gsvd.m to
compute the full GSVD of \{ A,L\} as the baseline of comparison.
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Fig. 6.3. Error curves of the approximate GSVD components by gGKB GSVD and relative resid-
ual norm with its upper bound, Example 2. Left: approximations to the 1st GSVD components.
Right: approximations to the nth GSVD components.

In this experiment, we test the performance of gGKB GSVD for computing the
first and nth GSVD components of A for a matrix pair with nonsquare matrices. We
only show the results for the gGKB of \scrA and omit the similar results for the gGKB
of \scrL . Full reorthogonalization is used and M - 1 is computed directly. The errors for
the approximated generalized singular vectors are measured by sin\angle (x, y) between
two vectors. We also plot the variation of the relative residual norm and its upper
bound \alpha k+1\beta k+1| e\top k h

(k)
i | . Figure 6.3 shows that gGKB GSVD can approximate very

well the two group extreme GSVD components, with final accuracy around \scrO (u).

The upper bound \alpha k+1\beta k+1| e\top k h
(k)
i | exhibits a nearly identical decreasing trend as

the relative residual norm. Therefore, it is a highly suitable quantity to be employed
in the stopping criterion. We also observe that the convergence to the first GSVD
components is faster than the convergence to the nth.

Example 3. The matrix pair \{ A,L\} is constructed as follows. Set m = n =
p = 1000 and set r = 900. Let CA = (\Sigma A,0) with CA = diag(\{ ci\} ri=1), where
c(1) = 0.99, c(2) = 0.98, c(3 : r - 2) = linspace(0.96,0.06,r-4), and c(r - 1) = 0.04,
c(r  - 1) = 0.02, and let SL = (\Sigma L,0) with \Sigma L = diag(\{ si\} ri=1) and si = (1 - c2i )

1/2.
Then let W = gallery(`orthog',n,2) be an orthogonal matrix and D =
diag(linspace(1,10,n)). Finally, let A = CAW

\top D and L = SLW
\top D. By con-

struction, we have rank((A\top ,L\top )\top ) = r < n, and the nontrivial GSVD components
are ci, si, and the ith columns of In, In, and D - 1W for 1\leq i\leq r. For each nontrivial
xi, we compute \scrP \scrR (M)xi =MM\dagger xi to get the corresponding right generalized singular
vector belonging to \scrR (M). We use gGKB GSVD to compute xi that belongs to \scrR (M).

In this experiment, we test the performance of gGKB GSVD for computing the first
and rth GSVD components for a nonregular matrix pair. We directly compute M\dagger 

and use full reorthogonalization for gGKB. Figure 6.4 shows very good performance of
the algorithm: (1) the two extreme GSVD components (ci, pA,i, xi) for i= 1, r can be
approximated with final accuracy around \scrO (u); (2) the relative residual norm and its

upper bound \alpha k+1\beta k+1| e\top k h
(k)
i | follow nearly identical decreasing curves, with both

eventually stabilizing at a level around \scrO (u). Again, we observe that the convergence
to the first GSVD components is faster than the convergence to the rth.

Example 4. The matrix pair \{ A,L\} is constructed as follows. Set m=n=p=10000.
Let CA = diag(\{ ci\} ni=1) with c(1) = 0.99, c(2) = 0.97, c(3 : n - 2) = linspace(0.95,

0.15,n-4), and c(n  - 1) = 0.1, c(n) = 0.05. Let SL = diag(\{ si\} ni=1) with
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Fig. 6.4. Error curves of the approximate GSVD components by gGKB GSVD and relative resid-
ual norm with its upper bound, where rank((A\top ,L\top )\top ) = r < n, Example 3. Left: approximations
to the 1st GSVD components. Right: approximations to the rth GSVD components.

si = (1  - c2i )
1/2. Then let W = gallery(`orthog',n,2) be an orthogonal matrix

and D = diag(linspace(1,10,n)). Finally, let A = CAW
\top D and L = SLW

\top D.
By construction, \{ A,L\} is a regular matrix pair, and the ith GSVD components are
ci, si, and ith columns of In, In, and D - 1W .

We use this experiment to demonstrate the impact of inaccuracy in the compu-
tation of M\dagger \=s on the final accuracy of the approximate GSVD components. We use
the MATLAB built-in function lsqr.m to solve (4.4) iteratively with stopping tol-
erance tol = 10 - 10,10 - 8 at each iteration of gGKB, respectively. Figure 6.5 shows
the decrease of relative errors of the first and nth approximate GSVD components
with the two stopping tolerances. We observe that the computational accuracy of
M\dagger \=s significantly affects the final accuracy of both the generalized singular values
and vectors. As the computational accuracy deteriorates, so does the final accuracy
of the computed GSVD components. Further theoretical investigation into this issue
should be conducted in future research.

Example 5. The matrix pair \{ A,L\} is constructed as follows. Set m = n =
p = 100000. Let CA = diag(\{ ci\} ni=1) with c(1) = 1.0, c(2) = 0.99, c(3 : n  - 2) =
linspace(0.98,0.03,n-4), and c(n - 1) = 0.02, c(n) = 0.01. Let SL = diag(\{ si\} ni=1)
with si = (1 - c2i )

1/2. Then let D= diag(linspace(1,50,n)). Finally, let A=CAD
and L = SLD. By construction, \{ A,L\} is a regular matrix pair, and the ith GSVD
components are ci, si, and ith columns of In, In, and D - 1.

The aim of this experiment is to test the performance of gGKB GSVD for very
large matrix pairs and compare it with JBD GSVD, which is an efficient algorithm for
computing extreme GSVD components based on the JBD process [28, 56]. Note that
both algorithms are Krylov subspace methods and have nested inner-outer structures.
Thus, we use the MATLAB built-in function lsqr.m to compute the inner iterations
for the two algorithms with stopping tolerance tol= 10 - 10. The convergence behav-
ior for approximating the largest GSVD components (c1, pA,1, x1) and the smallest
GSVD components (cn, pA,n, xn) is shown in Figure 6.6. For the largest components
(c1, pA,1, x1), both algorithms can approximate them very quickly, even for this very
large matrix pair. For the smallest components (cn, pA,n, xn), the two algorithms take
many more iterations to converge. Although the specific convergence histories differ,
the convergence rates of the algorithms are very similar, likely due to the fact that
both algorithms are Krylov subspace methods. We also find that the final accuracy
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Fig. 6.5. Accuracy of computed GSVD components by gGKB GSVD, where s = M\dagger \=s at each
gGKB iteration is computed by solving (4.4) using lsqr.m with different stopping tolerance tol, Ex-
ample 4. Top: tol=10 - 10. Bottom: tol=10 - 8.
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Fig. 6.6. Comparison of two algorithms for large-scale GSVD computations, which are based
on gGKB and JBD processes, respectively. Top: convergence history for approximating the largest
GSVD components. Bottom: convergence history for approximating the smallest GSVD components.
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of the two algorithms is similar, with both being influenced by the accuracy of the
inner iterations. For large-scale matrices, the primary computational bottleneck of
gGKB GSVD lies in the computation of the inner iterations. Future work will focus on
theoretically analyzing the required accuracy for these inner iterations and exploring
strategies to enhance their computational efficiency.

7. Conclusion and outlook. Based on the theory of SVE of linear compact
operators, we have provided a new understanding of the GSVD of \{ A,L\} with A \in 
\BbbR m\times n and L\in \BbbR p\times n. By defining the positive semidefinite matrix M =A\top A+L\top L,
we have shown that (1) the trivial GSVD components \{ xi\} form a basis for \scrN (M) and
any nontrivial xi belongs to the coset \=xi +\scrN (M), where \=xi \in \scrR (M) is a nontrivial
GSVD component; (2) the nontrivial GSVD components of A and L are just the
SVEs of the linear operators \scrA : (\scrR (M), \langle \cdot , \cdot \rangle M ) \rightarrow (\BbbR m, \langle \cdot , \cdot \rangle 2), v \mapsto \rightarrow Av and \scrL :
(\scrR (M), \langle \cdot , \cdot \rangle M ) \rightarrow (\BbbR p, \langle \cdot , \cdot \rangle 2), v \mapsto \rightarrow Lv, respectively. As a direct application of this
result, we have developed an operator-type GKB for \scrA and \scrL , leading to a novel gGKB
process. We have used the GSVD of \{ A,L\} to study basic properties of gGKB and
proposed the gGKB GSVD algorithm to compute several nontrivial extreme GSVD
components of large-scale matrix pairs. Preliminary results about convergence and
accuracy of gGKB GSVD for GSVD computation have been provided, and numerical
experiments are presented to demonstrate the effectiveness of this method.

The idea of this paper offers potential directions for developing new algorithms
for large-scale GSVD computation. Note that the SVE of \scrA or \scrL can be treated
as a ``weighted"" SVD, where the weight matrix M induces a non-Euclidean inner
product. Therefore, existing SVD algorithms based on Krylov subspace projection
may be modified to approximate the SVE and consequently, the nontrivial GSVD
components.
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