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Abstract. Computing the regularized solution of Bayesian linear inverse problems as well as the
corresponding regularization parameter is highly desirable in many applications. This paper proposes
a novel iterative method, termed the Projected Newton method (PNT), that can simultaneously
update the regularization parameter and solution step by step without requiring any expensive
matrix inversions or decompositions. By reformulating the Tikhonov regularization as a constrained
minimization problem and leveraging its Lagrangian function, a Newton-type method coupled with
a Krylov subspace method is designed for the unconstrained Lagrangian function. The resulting
PNT algorithm only needs solving a small-scale linear system to get a descent direction of a merit
function at each iteration, thus significantly reducing computational overhead. Rigorous convergence
results are proved, showing that PNT always converges to the unique regularized solution and the
corresponding Lagrangian multiplier. Experimental results on both small and large-scale Bayesian
inverse problems demonstrate its excellent convergence property, robustness and efficiency. Given
that the most demanding computational tasks in PNT are primarily matrix-vector products, it is
particularly well-suited for large-scale problems.
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1. Introduction. Inverse problems arise in various scientific and engineering
fields, where the aim is to recover unknown parameters or functions from noisy ob-
served data. Applications include image reconstruction, computed tomography, med-
ical imaging, geoscience, data assimilation and so on [6,25,28,30,49]. A linear inverse
problem of the discrete form can be written as

(1.1) b = Ax+ ε,

where x ∈ Rn is the underlying quantity to reconstruct, A ∈ Rm×n is the discretized
forward model matrix, b ∈ Rm is the vector of observation with noise ε. We assume
that the distribution of ε is known, which follows a zero mean Gaussian distribution
with positive definite covariance matrix M , i.e., ε ∼ N (0,M). A big challenge for
reconstructing a good solution is the ill-posedness of inverse problems, which means
that there may be multiple solutions that fit the observation equally well, or the
solution is very sensitive with respect to observation perturbation.

To overcome the ill-posedness, regularization is a commonly used technique.
From a Bayesian perspective [28, 53], this corresponds to adding a prior distribu-
tion of the desired solution to constrain the set of possible solutions to improve
stability and uniqueness. By treating x and b as random variables, the obser-
vation vector b has a conditional probability density function (pdf) of the form
p(b|x) ∝ exp

(
− 1

2‖Ax− b‖
2
M−1

)
. To get a regularized solution, this paper consid-

ers a Gaussian prior about the desired solution with the form x ∼ N (0, µ−1N),
where N is a positive definite covariance matrix. Then the Bayes’ formula leads to

p(x|b, λ) ∝ p(x|λ)p(b|x) ∝ exp

(
−1

2
‖Ax− b‖2M−1 −

µ

2
‖x‖2N−1

)
,
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where ‖x‖B := (x>Bx)1/2 is the B-norm of x for a positive definite matrix B.
Maximize the posterior pdf p(x|b, λ) leads to the Tikhonov regularization problem

(1.2) min
x∈Rn

{‖Ax− b‖2M−1 + µ‖x‖2N−1},

where the regularization term µ‖x‖2
N−1 enforces extra structure on the solution that

comes from the prior distribution of x.
The parameter µ in the Gaussian prior N (0, µ−1N) is crucial for obtaining a

good regularized solution, which controls the trade-off between the data-fit term and
regularization term. There is tremendous effort in determining a proper value of µ.
For the standard 2-norm problem, i.e. M = I and N = I, the classical parameter-
selection methods include the L-curve criterion [23], generalized cross-validation [22],
unbiased predictive risk estimation [47] and discrepancy principle [40]. There are also
some iterative methods based on solving a nonlinear equation of µ; see e.g. [2,20,37,46].
However, the aforementioned methods can not be directly applied to (1.2). A common
procedure needs to first transform (1.2) into standard 2-norm form

(1.3) min
x∈Rn

{‖LM (Ax− b)‖22 + µ‖LNx‖22},

where M−1 = L>MLM and N−1 = L>NLN are the Cholesky factorizations, and then
apply the parameter-selection methods. This procedure needs the matrix inversions
of M and N as well as the Cholesky factorizations of M−1 and N−1. For large-
scale matrices, these two types of computations are almost impossible or extremely
expensive.

For large-scale problems, there exist some iterative regularization methods that
can avoid choosing µ in advance. A class of commonly used iterative methods is
based on Krylov subspace [35], where the original linear system is projected onto
lower-dimensional subspaces to become a series of small-scale problems [19,27,33,42].
For dealing with the general-form Tikhonov regularization term ‖LNx‖22, some recent
Krylov iterative methods include [26, 29, 34, 39, 45] and so on. When the Cholesky
factor LN is not accessible, a key difficulty is dealing with the prior covariance N ,
which means that the subspaces should be constructed elaborately such that the prior
information of x can be effectively incorporated into these subspaces [8, 32]. Such
methods have been proposed in [7–9], where a statistically inspired priorconditioning
technique is used to whiten the noise and the desired solution. However, these methods
still require large-scale matrix inversions and Cholesky factorizations, which prohibits
their applications to large-scale problems.

Recently, there are several Krylov methods for directly solving (1.1) without
choosing µ in advance and can avoid the matrix inversions and Cholesky factor-
izations [12, 32]. These methods use the generalized Golub-Kahan bidiagonalization
(gen-GKB), which can iteratively reduce the original large-scale problem to small-scale
ones and generate Krylov subspaces that effectively incorporate the prior information
of x encoded by N . In [32], the regularization effect of the proposed method comes
from early stopping the iteration, where the iteration number plays the role of the
regularization parameter, while in [12], the authors proposed a hybrid regularization
method that simultaneously computes the regularized parameter and solution step by
step. Although these two methods are very efficient for large-scale problems, there
may be some issues in certain situations. The method in [32] only computes a good
regularized solution but not a good µ. However, in some applications, we need an
accurate estimate of µ to get the posterior distribution of x for sampling and un-
certainty quantification [17, 52, 53]. For the hybrid method in [12], the convergence
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property does not have a solid theoretical foundation, and it has been numerically
found that the method sometimes does not converge to a good solution, which is a
common potential flaw for hybrid methods [11,48].

Many optimization methods have been proposed for inverse problems, particularly
those stemming from image processing that leads to total variation regularization or
`p regularization. These methods include the Bregman iteration [21, 43, 56], iterative
shrinkage thresholding [3, 15], and many others [1, 36, 54]. However, these methods
either need a good parameter µ in advance or can not well deal with M−1 and N−1.
In [31] the author proposed a modification of the Newton method that can iteratively
compute a good µ and regularized solution simultaneously. However, this method
needs to solve a large-scale linear system at each iteration, which is very costly for
large-scale problems. This method was improved in [13,14], where the Newton method
is successfully combined with a Krylov subspace method to get a so-called projected
Newton method. Compared with the original method, the projected Newton method
only needs to solve a small-scale linear system at each iteration, thereby very efficient
for large-scale Tikhonov regularization (1.3). However, for solving (1.2), this method
needs to compute ∇( 1

2‖x‖
2
N−1) = N−1x to construct subspaces, which is also very

costly. Besides, their methods lack rigorous proof of convergence.
In this paper, we develop a new efficient iterative method for (1.2) that simulta-

neously updates the regularization parameter and solution step by step, and it does
not require any expensive matrix inversions or Cholesky factorizations. This method
follows the Newton-type approach for noise constrained Tikhonov regularization pro-
posed in [13], where the gen-GKB process is integrated to compute a projected Newton
direction by solving a small-scale linear system at each iteration, thereby it is also
named the projected Newton method (PNT). The main contributions of this paper are
listed as follows:

• We reformulate the regularization of the original Bayesian linear inverse prob-
lem as a noise constrained minimization problem and prove the existence,
uniqueness and positivity of its Lagrangian multiplier λ under a very reason-
able assumption. The correspondence between the constrained minimization
problem and Tikhonov regularization (1.2) is connected by µ = 1/λ.

• We propose a gen-GKB based Newton-type method to compute the regular-
ized solution by optimizing its Lagrangian function and obtaining the corre-
sponding Lagrangian multiplier. A series of Krylov subspaces is generated by
gen-GKB, avoiding the need for costly matrix inversions or Cholesky factor-
izations. Using the subspace projection technique, we only need to solve a
small-scale linear system to compute the descent direction at each iteration.

• A rigorous proof of convergence for the proposed method is provided. With
a very practical initialization (x0, λ0), we prove that PNT always converges
to the unique solution of the constrained minimization problem and the cor-
responding Lagrangian multiplier.

We use both small-scale and large-scale inverse problems to test the proposed
method and compare it with other state-of-the-art methods. The experimental re-
sults demonstrate excellent convergence properties of PNT, and it is very robust and
efficient for regularizing Bayesian linear inverse problems. Since the most computa-
tionally intensive operations in PNT primarily involve matrix-vector products, it is
especially appropriate for large-scale problems.

This paper is organized as follows. In Section 2, we formulate the noise constrained
minimization problem for regularizing (1.1) and study its properties. In Section 3, we
propose the PNT method. In Section 4, we prove the convergence of PNT. Numerical
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results are presented in Section 5 and conclusions are provided in Section 6.

2. Noise constrained minimization for Bayesian inverse problems. In
order to get a good estimate of µ in (1.2), the discrepancy principle (DP) criterion is
commonly used, which depends on the variance of the noise. Based on DP, we can
rewrite (1.2) as an equivalent form of noise constrained minimization problem.

2.1. Noise constrained minimization. If ε ∼ N (0, σ2I) is a white Gaussian
noise, the DP criterion states that the 2-norm discrepancy between the data and
predicted output ‖Ax(µ)− b‖2 should be of the order of ‖ε‖2 ≈

√
mσ, where x(µ) is

the solution to (1.2); see [28, §5.6]. If ε is a general Gaussian noise, notice that (1.1)
leads to LMb = LMAx + LMε, and LMε ∼ N (0, I), thereby this transformation
whitens the noise. Since ε̄ := LMε is a white Gaussian noise with zero mean and
covariance I, it follows that

E
[
‖ε̄‖22

]
= E

[
trace

(
ε̄>ε̄

)]
= E

[
trace

(
ε̄ε̄>

)]
= trace

(
E
[
ε̄ε̄>

])
= trace (I) = m.

Therefore, the DP for (1.1) can be written as

(2.1) ‖Ax(µ)− b‖2M−1 = ‖LMAx(µ)−LMb‖22 = τm,

where τ is chosen to be marginally greater than 1, such as τ = 1.01.
Using this expression of DP, we rewrite the regularization of (1.1) as the noise

constrained minimization problem

(2.2) min
x∈Rn

1

2
‖x‖2N−1 s.t.

1

2
‖Ax− b‖2M−1 ≤

τm

2
,

where its Lagrangian is

(2.3) L(x, λ) =
1

2
‖x‖2N−1 +

λ

2

(
‖Ax− b‖2M−1 − τm

)
with λ ≥ 0 the Lagrangian multiplier. To further investigate (2.2) and (2.3), we first
state the following basic assumption, which is used throughout the paper.

Assumption 1. For all x ∈ {x ∈ Rn : ‖Ax− b‖M−1 = min}, it holds

(2.4) ‖Ax− b‖2M−1 < τm < ‖b‖2M−1 .

The first inequality means that the naive solutions to (1.1) fit the observation very
well, and it ensures the feasible set of (2.2) is nonempty. The second inequality comes
from the condition ‖LMε‖2 < ‖LMb‖2, meaning that the noise does not dominate
the observation, which ensures the effectiveness of the regularization. Under this
assumption, the following result describes the solution to (2.2).

Theorem 2.1. The noise constrained minimization (2.2) has a unique solution
x∗ satisfying ‖Ax∗ − b‖2

M−1 = τm. Furthermore, there is a unique λ∗ > 0, which is
the Lagrangian multiplier corresponding to x∗ in (2.3).

Proof. Let ϕ(x) := 1
2 (‖Ax− b‖2

M−1 − τm), which is a convex function. In (2.2)

we seek solutions to min 1
2‖x‖

2
N−1 in the feasible set S := {x ∈ Rn : ϕ(x) ≤ 0},

which is the 0-lower level set of ϕ(x). Note that S is a compact and convex set and
1
2‖x‖

2
N−1 is continuous and strictly convex. Thus, there is a unique solution x∗ to
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(2.2). Suppose λ∗ is a Lagrangian multiplier corresponding to x∗. By the Karush-
Kuhn-Tucker (KKT) condition [41, §12.3], the solution (x∗, λ∗) satisfies

N−1x∗ + λ∗∇ϕ(x∗) = 0,

λ∗ϕ(x∗) = 0,

λ∗ ≥ 0.

If λ∗ = 0, then N−1x∗, leading to x∗ = 0. This means 0 ∈ S, i.e. ‖b‖2
M−1 ≤ τm, a

contradiction. Consequently, it must hold λ∗ > 0. From the relation λ∗ϕ(x∗) = 0 we
have ϕ(x∗) = 0, i.e. ‖Ax∗ − b‖2

M−1 = τm.
For the uniqueness of λ∗, here we give two proofs. In the first proof, we note

that ∇ϕ(x∗) = A>M−1(Ax∗ − b) 6= 0 since x∗ /∈ {x ∈ Rn : ‖Ax − b‖M−1 = min}
by Assumption 1. Therefore, the linear independence constraint qualification (LICQ)
holds at x∗, which leads to the uniqueness of λ∗; see [41, §12.3].

In the second proof, we note that for any λ ≥ 0, there is a unique xλ that solves
the first equality of the KKT condition:

(2.5) N−1x+ λ∇ϕ(x) = 0 ⇔ (N−1 + λA>M−1A)x = λA>M−1b,

since N−1 +λA>M−1A is positive definite. Here we prove a stronger property: there
exist a unique λ ≥ 0 such that ‖Axλ − b‖2M−1 = τm. The existence of such a λ has
been proved, since x∗ = xλ∗ . For the uniqueness, define two functions

K(λ) :=
1

2
‖xλ‖2N−1 , H(λ) :=

1

2

(
‖Axλ − b‖2M−1 − τm

)
.

Note that L(x, λ) is strictly convex for a fixed λ > 0, which has the unique minimizer
xλ. Thus, for any two positive λ1 6= λ2, we have L(xλ1

, λ1) < L(xλ2
, λ1)⇔ K(λ1) +

λ1H(λ1) < K(λ2)+λ1H(λ2), since xλ1
6= xλ2

; see the following Lemma 2.2. Similarly,
we have K(λ2) + λ2H(λ2) < K(λ1) + λ2H(λ1). Adding the above two inequalities
leads to (λ1 − λ2)(H(λ1) − H(λ2)) < 0, meaning that H(λ) is a strictly monotonic
decreasing function. Therefore, there is a unique λ such that H(λ) = 0.

We emphasize that Assumption 1 is essential for ensuring the validity of The-
orem 2.1 and plays a key role in the regularization of (1.1). If the left inequal-
ity of Assumption 1 is violated, then either the feasible set of (2.2) is empty when
‖Ax− b‖2

M−1 > τm or it becomes the equivalent least squares problem

min
1

2
‖x‖2N−1 s.t. ‖Ax− b‖2M−1 = min

when ‖Ax− b‖2
M−1 = τm. The latter case means that no regularization is required,

which makes the problem much easier to handle. The right inequality of Assumption 1
ensures the positivity of the Lagrangian multiplier λ∗, which is a necessary condition.
To see it, let us assume there exist a λ∗ > 0 and follow the second proof for the
uniqueness of λ∗. From the KKT condition it must hold that ϕ(xλ∗) = H(λ∗) = 0.
Now H(0) = 1

2 (‖b‖2
M−1 − τm) ≤ 0 and H(+∞) = 1

2 (‖Ax − b‖2M−1 − τm) < 0 for
any x ∈ argminx∈Rn ‖Ax− b‖M−1 . Since H(λ) is strictly monotonically decreasing,
the only possible zero root of H(λ) is λ = 0, which leads to a contradiction. In this
case, it implies that the noise in b is too large, resulting in λ∗ = 0 and a very poor
regularized solution x∗ = 0.
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Lemma 2.2. For each λ ≥ 0, the regularization problem

(2.6) min
x∈Rn

{λ‖Ax− b‖2M−1 + ‖x‖2N−1}

has the unique solution xλ. If λ1 6= λ2, then xλ1
6= xλ2

.

Proof. Note that the normal equation of (2.6) is equivalent to (2.5). Thus, xλ is
the unique solution to (2.6). Using the Cholesky factors of M−1 and N−1, and notic-
ing that LN is invertible, we can write the generalized singular value decomposition
(GSVD) [55] of {LMA,LN} as LMA = UAΣAZ

−1, LN = UNΣNZ
−1 with

ΣA =

(
DA r

0 m− r
r n− r

)
, ΣN =

(
DN r

I n− r
r n− r

)
,

where UA ∈ Rm×m and UN ∈ Rn×n are orthogonal, Z = (z1, . . . ,zn) in nonsingular,
r = rank(A), and DA = diag(σ1, . . . , σr) with 1 > σ1 ≥ · · · ≥ σr > 0 and DN =
diag(ρ1, . . . , ρr) with 0 < ρ1 ≤ · · · ≤ ρr < 1, such that σ2

i + ρ2
i = 1. Then xλ can be

expressed as xλ =
∑r
i=1

λσi

λσ2
i +ρ2i

(u>A,iLMb)zi where uA,i is the i-th column of UA.

Since {zi}ri=1 are linear independent, if xλ1
= xλ2

, then it must hold

λ1σi
λ1σ2

i + ρ2
i

=
λ2σi

λ2σ2
i + ρ2

i

⇔ (λ1 − λ2)σiρ
2
i = 0, i = 1, . . . , r.

Since σiρi > 0 for i = 1, . . . , r, we obtain λ1 = λ2.

Remark 1. From the proof of Theorem 2.1, we find that λ plays the role of
µ−1 in (1.2), meaning that x(µ) = xλ if λ = µ−1. In fact, there is a one-to-one
correspondence between (1.2) and (2.2). Note that x∗ = xλ∗ . Comparing (2.6) with
(1.2), we can use (λ∗)−1 as a good estimate of the optimal regularization parameter.

Corollary 2.3. Let R+ = [0,∞). Write the gradient of L(x, λ) as

(2.7) F (x, λ) =

(
λA>M−1(Ax− b) +N−1x

1
2‖Ax− b‖

2
M−1 − τm

2

)
.

Then F (x, λ) = 0 has a unique solution (x∗, λ∗) in Rn × R+, which is the unique
minimizer and corresponding Lagrangian multiplier of (2.2).

2.2. Newton method. A modification of the Newton method was proposed
in [31] to solve the nonlinear equation F (x, λ) = 0, which is referred to as the Lagrange
method since it is based on the Lagrangian of (2.2). In this method, the Jacobian
matrix of F (x, λ) is first computed as

(2.8) J(x, λ) =

(
λA>M−1A+N−1 A>M−1(Ax− b)
(Ax− b)>M−1A 0

)
at the current iterate (x, λ), and then it computes the Newton direction (∆x>,∆λ)>

by solving inexactly the linear system

(2.9) J(x, λ)

(
∆x
∆λ

)
= −F (x, λ)

using the MINRES solver [44]. We remark that this method is essentially a Newton-
Krylov method [5] for optimizing the nonlinear and nonconvex Lagrangian function
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(2.3). It was shown that the computed (∆x,∆λ) is a descent direction for the merit
function

hw(x, λ) =
1

2

(
‖∇xL(x, λ)‖22 + w|∇λL(x, λ)|2

)
with a w > 0, which means that (∆x>,∆λ)∇hw(x, λ) ≤ 0. By a backtracking
line search strategy to determine a step length γ > 0, the iterate is updated as
(x, λ)← (x, λ) + γ(∆x,∆λ).

An advantage of this method is that it can compute a good regularized solution
and its regularization parameter simultaneously. However, for large-scale problems,
we need to compute M−1 and N−1 to form F (x, λ) and J(x, λ), which is almost
impossible. Moreover, at each iteration, an (n+ 1)× (n+ 1) linear system (2.9) needs
to be solved, which is very computationally expensive even if we only compute a less
accurate solution by an iterative algorithm.

In [13], the authors proposed a projected Newton method, where at each iteration,
the large-scale linear system (2.9) is projected to be a small-scale linear system that
can be solved cheaply. However, this method can only deal with the standard `2 − `2
regularization, which means we can only apply this method to (1.3) by the substitution
x̄ = LNx, requiring the expensive Cholesky factorization of N−1. A generalization
of this method [14] can deal with a general-form regularization term. However, for
(2.2), it needs to compute ∇( 1

2‖x‖
2
N−1) = N−1x to construct subspace for projecting

(2.9), also very costly.

3. Projected Newton method based on generalized Golub-Kahan bidi-
agonalization. To reduce expensive computations of the Newton method for large-
scale problems, we design a new projected Newton method to solve (2.2). This method
uses the generalized Golub-Kahan bidiagonalization (gen-GKB) to construct Krylov
subspaces to compute projected Newton directions by only solving small-scale prob-
lems, and it does not need any expensive matrix inversions or decompositions. This
method is composed by the following three main steps:
Step 1: Construct Krylov subspaces. We adopt gen-GKB to iteratively construct a

series of low-dimensional Krylov subspaces; see Algorithm 3.1.
Step 2: Compute the projected Newton direction. At each iteration, we compute the

projected Newton direction by solving a small-scale problem; see (3.12).
Step 3: Determine the step-length to update solution. We use the Armijo backtracking

line search to determine a step-length and update the solution; see Routine 1.
In the next subsection, we present detailed derivations of the whole algorithm.

All the proofs can be found in Subsection 3.2.

3.1. Derivation of projected Newton method. This subsection presents
detailed derivations for the above three steps.

Step 1: Construct Krylov subspaces by gen-GKB. The gen-GKB process has
been proposed for solving Bayesian linear inverse problems in [12,32]. The basic idea
is to treat A as the compact linear operator

A : (Rn, 〈·, ·〉N−1)→ (Rm, 〈·, ·〉M−1), x 7→ Ax,

where x and Ax are vectors under the canonical bases of Rn and Rm, respectively.
Here the two inner products are defined as 〈x,x′〉N−1 := x>N−1x′ and 〈y,y′〉M−1 :=
y>M−1y′. Therefore, we can define

A∗ : (Rm, 〈·, ·〉M−1)→ (Rn, 〈·, ·〉N−1), y 7→ A∗y,
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which is the adjoint operator of A, by the relation 〈Ax,y〉M−1 = 〈x,A∗y〉N−1 . Note
that (Ax)>M−1y = x>N−1A∗y for any x ∈ Rn and y ∈ Rm. Thus, the matrix-
form expression of A∗ is A∗ = NA>M−1.

Applying the standard Golub-Kahan bidiagonalization (GKB) to the compact
operator A with starting vector b between the two Hilbert spaces (Rn, 〈·, ·〉N−1) and
(Rm, 〈·, ·〉M−1), we can obtain the gen-GKB process; see [10] for GKB for compact
operators. The basic recursive relations of gen-GKB are as follows:

β1u1 = b,(3.1a)

αivi = A∗ui − βivi−1,(3.1b)

βi+1ui+1 = Avi − αiui,(3.1c)

where αi and βi are computed such that ‖ui‖M−1 = ‖vi‖N−1 = 1, and v0 := 0.
The whole iterative process is summarized in Algorithm 3.1. For more details of the
derivation, please see [32].

We remark that computing with M−1 can not be avoided, but for the most
commonly encountered cases that ε is a Gaussian noise with uncorrelated components,
M is diagonal and thereby M−1 can be directly obtained. For applications that ε
is a colored Gaussian noise such that M is not diagonal, computing M is the most
expensive operation. In these cases, the proposed PNT method based on gen-GKB
may not be the optimal choice.

Algorithm 3.1 Generalized Golub-Kahan bidiagonalization (gen-GKB)

Input: A ∈ Rm×n, b ∈ Rm, M ∈ Rm×m, N ∈ Rn×n
1: s̄ = M−1b, β1 = s̄>b, u1 = b/β1, ū1 = s̄/β1

2: r̄ = A>ū1, r = Nr̄
3: α1 = (r>r̄)1/2, v̄1 = r̄/α1, v1 = r/α1

4: for i = 1, 2, . . . , k do
5: s = Avi − αiui, s̄ = M−1s
6: βi+1 = (s>s̄)1/2, ui+1 = s/βi+1, ūi+1 = s̄/βi+1

7: r̄ = A>ūi+1 − βi+1v̄i, r = Nr̄
8: αi+1 = (r>r̄)1/2, v̄i+1 = r̄/αi+1, vi+1 = r/αi+1

9: end for
Output: {αi, βi}k+1

i=1 , {ui,vi}k+1
i=1

The following result gives the basic property of gen-GKB; see [32] for the proof.

Proposition 3.1. The group of vectors {ui}ki=1 is an M−1-orthonormal basis of
the Krylov subspace

(3.2) Kk(ANA>M−1, b) = span{(ANA>M−1)ib}k−1
i=0 ,

and {vi}ki=1 is an N−1-orthonormal basis of the Krylov subspace

(3.3) Kk(NA>M−1A,NA>M−1b) = span{(NA>M−1A)iNA>M−1b}k−1
i=0 .

Define Uk+1 = (u1, . . . ,uk+1) and V k+1 = (v1, . . . ,vk+1). Then Proposition 3.1
indicates that U>k+1M

−1Uk+1 = I and V >k+1N
−1V k+1 = I. We remark that gen-

GKB will eventually terminate in at most min{m,n} steps, since the column rank of
Uk or V k can not exceed min{m,n}. If we define the termination step as

(3.4) kt := max{k : αkβk > 0},



PROJECTED NEWTON METHOD 9

then V k will eventually expand to be V kt with kt ≤ min{m,n}.
By (3.1a)–(3.1c), we can write the k-step (k ≤ kt) gen-GKB in the matrix-form

β1Uk+1e1 = b,(3.5a)

AV k = Uk+1Bk,(3.5b)

NA>M−1Uk+1 = V kB
>
k + αk+1vk+1e

>
k+1,(3.5c)

where e1 and ek+1 are the first and (k+ 1)-th columns of the identity matrix of order
k + 1, respectively, and

(3.6) Bk =



α1

β2 α2

β3
. . .

. . . αk
βk+1

 ∈ R(k+1)×k.

Note that Bk has full column rank if k ≤ kt. At the kt-th iteration, it is possible
that either βkt+1 = 0 occurs first or αkt+1 = 0 occurs first. For the former case, the
relations (3.5) are replaced by

β1Ukte1 = b,(3.7a)

AV kt = UktBkt
,(3.7b)

NA>M−1Ukt = V ktB
>
kt
,(3.7c)

where Bkt is the first k × k part of Bkt by discarding βkt+1.

Step 2: Compute the projected Newton direction. At the k-th iteration, we
update xk ∈ span{V k} and λk from the previous ones. For any x ∈ span{V k} of the
form x = V ky with y ∈ Rk, define the projected gradient of L(x, λ) as

(3.8) F (k)(y, λ) =

(
V >k

1

)
F (x, λ)

and the projected Jacobian of F (x, λ) as

(3.9) J (k)(y, λ) =

(
V >k

1

)
J(x, λ)

(
V k

1

)
.

Remark 2. Since gen-GKB must terminate at the kt-th iteration and V k even-
tually expands to be V kt , we need to discuss the two different cases that k ≤ kt and
k > kt. For notational simplicity, in the rest part of the paper, we use V k and Bk by
default unless stated otherwise to denote

V k =

{
V k, k ≤ kt
V kt , k > kt

, Bk =

{
Bk, k ≤ kt
Bkt , k > kt

, xk =

{
V kyk, k ≤ kt
V ktyk, k > kt

,

where y ∈ Rk for k ≤ kt and y ∈ Rkt for k > kt. Moreover, for the case βkt+1 = 0,
the relations (3.5) are replaced by (3.7) and Bkt is replaced by Bkt

. In the subsequent
discussions, we employ the unified notations as presented in (3.5), but the readers can
readily differentiate between the two cases.
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Notice that y is uniquely determined by x = V ky since V k has full-column rank.
Thus, F (k)(y, λ) and J (k)(y, λ) are well-defined. The next result shows how we can
obtain F (k)(y, λ) and J (k)(y, λ) from Bk without any additional computations.

Lemma 3.2. For any x ∈ span{V k} with the form x = V ky, the projected gra-
dient of L(x, λ) has the expression

(3.10) F (k)(y, λ) =

(
λB>k (Bky − β1e1) + y
1
2‖Bky − β1e1‖22 − τm

2

)
,

and the projected Jacobian of F (x, λ) has the expression

(3.11) J (k)(y, λ) =

(
λB>kBk + I B>k (Bky − β1e1)

(Bky − β1e1)>Bk 0

)
.

Now we can compute the projected Newton direction for updating the solution.
Starting from an initial solution (x0, λ0), consider the following two cases.
Case 1: Update (xk, λk) from (xk−1, λk−1) for k ≤ kt. Suppose at the (k−1)-th

iteration, we have xk−1 = V k−1yk−1, where x0 := 0 and y0 := () is an empty vector.

Let ȳk−1 = (y>k−1, 0)> ∈ Rk. If J (k)(ȳk−1, λk−1) is nonsingular, we compute the

Newton direction for the projected function F (k)(y, λ) at (ȳk−1, λk−1):

(3.12a)

(
∆yk
∆λk

)
= −J (k)(ȳk−1, λk−1)−1F (k)(ȳk−1, λk−1).

Then we update (ȳk, λk) by

(3.12b) yk = ȳk−1 + γk∆yk, λk = λk−1 + γk∆λk

with a suitably chosen step-length γk > 0, and let xk = V kyk.
Case 2: Update (xk, λk) from (xk−1, λk−1) for k > kt. At each iteration, we seek
a solution of the form xk = V ktyk with yk ∈ Rkt . We compute the Newton direction

(3.12c)

(
∆yk
∆λk

)
= −J (kt)(yk−1, λk−1)−1F (kt)(yk, λk−1),

and then compute

(3.12d) yk = yk−1 + γk∆yk, λk = λk−1 + γk∆λk

to get xk = V ktyk.
For both the two cases, we call (∆yk,∆λk) the projected Newton direction, since

it is the Newton direction of a projected problem. The corresponding update formula
for xk is

xk = xk−1 + γk∆xk, ∆xk := V k∆yk,

which is easy to be verified. For notational simplicity, in the subsequent part we
always use the unified notation

(3.13) ȳk−1 =

{
(y>k−1, 0)>, k ≤ kt
yk−1, k > kt

for ȳk−1. Following the notations stated in Remark 2 and (3.13), we can use (3.12a)
and (3.12b) to describe the update procedure for both the two cases.

It is vital to make sure that the projected Jacobian matrix J (k)(ȳk−1, λk−1) is
always nonsingular. This desired property is given in the following result. The proof
appears as a part of the proof of Lemma 4.6.
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Proposition 3.3. If we choose x0 = 0 and ȳ0 = 0, then at each iteration
J (k)(ȳk−1, λk−1) is nonsingular as long as λk−1 ≥ 0.

In order to investigate the convergence behavior of the method, define the follow-
ing merit function:

(3.14) h(x, λ) =
1

2
[‖λA>M−1(Ax− b) +N−1x‖2N + (

1

2
‖Ax− b‖2M−1 −

τm

2
)2].

Notice from Corollary 2.3 that (x∗, λ∗) is the unique minimizer of h(x, λ) and that
h(x∗, λ∗) = 0. The following result shows that (∆x>k ,∆λk)> is indeed a descent
direction for h(x, λ).

Theorem 3.4. Let ∆xk = V k∆yk. Then it holds

(3.15) ∇h(xk−1, λk−1)>
(

∆xk
∆λk

)
= −2h(xk−1, λk−1) ≤ 0.

Theorem 3.4 is a desired property for a gradient descent type algorithm. At the
(k − 1)-th iteration, if h(xk−1, λk−1) = 0, then we have (xk−1, λk−1) = (x∗, λ∗),
meaning we have obtained the unique solution to (2.2). Otherwise, (∆x>k ,∆λk)> is
a descent direction of h(x, λ) at (xk−1, λk−1), thereby we can continue updating the
solution by a backtracking line search strategy.

Step 3: Determine step-length by backtracking line search. For the case
that h(xk−1, λk−1) 6= 0, we need to determine a step-length γk such that h(xk, λk)
decreases strictly. To this end, we use the backtracking line search procedure to ensure
that the Armijo condition [41, §3.1] is satisfied:

(3.16) h(xk, λk) ≤ h(xk−1, λk−1) + cγk(∆x>k−1,∆λk)∇h(xk−1, λk−1),

where (xk, λk) = (xk−1, λk−1) + γk(∆xk,∆λk), and c ∈ (0, 1) is a fixed constant. At
each iteration, we can quickly compute h(xk, λk) based on the following result.

Lemma 3.5. Let

F̄ (k)(y, λ) =

(
λB̄
>
k (B̄ky − β1e1) + y

1
2‖B̄ky − β1e1‖22 − τm

2

)
, B̄k =


α1

β2 α2

. . .
. . .

βk+1 αk+1

 .

Then we have

h(xk−1, λk−1) =
1

2
‖F (k)(ȳk−1, λk−1)‖22, h(xk, λk) =

1

2
‖F̄ (k)(ȳk, λk)‖22.(3.17)

We remark that in the above expression we have B̄k = Bkt for k ≥ kt, and
specifically, we have B̄k = B>kt if βkt+1 = 0. The following theorem shows the
existence of a suitable step-length; see e.g. [4, pp. 121, Theorem 2.1] for details.

Theorem 3.6. For any continuously differentiable function f(s) : Rl → R, sup-
pose ∇f is Lipschitz continuous with constant ζ(s) at s. If p is a descent direction
at s, i.e ∇f(s)>p < 0, then for a fixed c ∈ (0, 1) the Armijo condition f(s + γp) ≤
f(s) + cγ∇f(s)>p is satisfied for all γ ∈ [0, γmax] with γmax = 2(c−1)∇f(s)>p

ζ(s)‖p‖2 .

With the aid of Lemma 3.5, a suitable step-length γk can be determined using
the following backtracking line search strategy.
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Routine 1. Armijo backtracking line search:
1. Given γinit > 0, let γ(0) = γinit and l = 0.
2. Until 1

2‖F̄
(k)(ȳk, λk)‖22 ≤

(
1
2 − cγ

(l)
)
‖F (k)(ȳk−1, λk−1)‖22,

(i) set γ(l+1) = ηγ(l), where η ∈ (0, 1) is a fixed constant;
(ii) l← l + 1.

3. Set γk = γ(l).

We set c = 10−4, γinit = 1.0 and η = 0.9 by default. Note that at each iteration we
need to ensure λk > 0. Suppose at the (k− 1)-th iteration we already have λk−1 > 0.
Then at the k-th iteration, if ∆λk < 0, we only need to enforce γinit < −λk−1/∆λk.

Overall, the whole procedure of PNT is presented in Algorithm 3.2. In the PNT
algorithm, at each k-th iteration, computing the projected Newton direction requires
solving only the (k + 1)-order linear system (3.12a), which can be done very quickly
when k � n. Starting from the termination step kt, at each subsequent iteration,
a (kt + 1)-order linear system (3.12c) needs to be solved. We numerically find that
the algorithm almost always obtains a satisfied solution before gen-GKB terminates.
The PNT method is a natural generalization of the projected Newton method in [13].
Specifically, when M = I and N = I, it can be confirmed that both methods are
identical.

We remark that for very large-scale problems, it may take too many iterations
for PNT to converge. In this case, we can update the solution starting from the k0-th
step of gen-GKB to save some computation for solving (3.12a). This means that we
first run k0− 1 steps gen-GKB to construct a (k0− 1)-dimensional subspace and then
start to update the solution from the k0-th iteration. From the derivation of PNT, it
can be easily verified that if we set ȳk0−1 = 0 ∈ Rk0 , then (∆x>k ,∆λk)> is a descent
direction of h(x, λ) at each iteration k ≥ k0. We refer to this modified PNT method
as PNT-md.

Algorithm 3.2 Projected Newton method (PNT) for (2.2) and (2.3)

Input: A ∈ Rm×n, b ∈ Rm, M ∈ Rm×m, N ∈ Rn×n, τ & 1
1: Initialization: λ0 > 0, ȳ0 = 0; c = 10−4, η = 0.9; tol > 0
2: Compute β1, α1, u1, v1 by Algorithm 3.1
3: for k = 1, 2, . . . do
4: Compute βk+1, αk+1, uk+1, vk+1 by Algorithm 3.1; Form Bk+1 and V k

5: (Terminate gen-GKB if βk+1 or αk+1 is extremely small)
6: Compute F (k)(ȳk−1, λk−1) and J (k)(ȳk−1, λk−1) by (3.10) and (3.11)
7: Compute (∆yk,∆λk) by (3.12a)
8: if ∆λk > 0 then
9: γinit = 1

10: else
11: γinit = min{1,−ηλk−1/∆λk} . Ensure the positivity of λk
12: end if
13: Determine the step-length γk by Routine 1
14: Update (yk, λk) by (3.12b)
15: if 1

2‖F̄
(k)(ȳk, λk)‖2 ≤ tol then

16: Compute xk = V kyk; Stop iteration
17: end if
18: end for
Output: Final solution (xk, λk)
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From the derivations, we find that the success of PNT is attributed to the fact
that M and N can induce inner products. Therefore, the PNT method can not
be directly used to handle the total variation (TV) or `1 regularization terms. One
possible approach for handling TV or `1 norms is to approximate them with weighted
`2 norms at each iterated point [50,51]. Furthermore, for the nonlinear inverse problem
b = G(x)+ε with differentiable G, at each iterated point we can approximate ‖G(x)−
b‖2

M−1 by a quadratic convex function using the first-order Taylor expansion of G.
The above approaches follow a similar idea to the sequential quadratically constrained
quadratic programming (SQCQP) method [16,38]. This allows us to obtain a sequence
of optimization problems similar to (2.2), which can be solved efficiently by PNT.
Theoretical and computational aspects of this approach will be further studied in the
future.

3.2. Proofs. We give the proofs of all the results in Subsection 3.1. Remember
again that we always follow the notations as stated in Remark 2 and (3.13).

Proof of Lemma 3.2. By (3.8) and (3.9) we have

F (k)(y, λ) =

(
λ(AV k)>M−1(AV ky − b) + V >kN

−1V ky
1
2‖AV ky − b‖2M−1 − τm

2

)
,

and

J (k)(y, λ) =

(
λ(AV k)>M−1(AV k) + V >kN

−1V k (AV k)>M−1(AV ky − b)
(AV ky − b)>M−1(AV k) 0

)
.

Using relations (3.5) and Proposition 3.1, we have AV ky − b = Uk+1(Bk − β1e1),
leading to

(AV k)>M−1(AV ky − b) = (Uk+1Bk)>M−1Uk+1(Bk − β1e1) = B>k (Bk − β1e1),

and
‖AV ky − b‖2M−1 = ‖Uk+1(Bk − β1e1)‖2M−1 = ‖Bk − β1e1‖22.

If βkt+1 = 0, then for k ≥ kt, the relation AV ky − b = Uk+1(Bk − β1e1) is replaced
by AV kty − b = Ukt(Bkt

− β1e1). Therefore, the above identity is also applied to
the case k ≥ kt. Now we have proved (3.10). The expression (3.11) can be proved
similarly. �

In order to prove Lemma 3.5, we first give the following result.

Lemma 3.7. Let N̂ =

(
N

1

)
. Then we have the following identity:

(3.18) ‖F (xk−1, λk−1)‖
N̂

= ‖F (k)(ȳk−1, λk−1)‖2.

Proof. First notice that

‖F (xk−1, λk−1)‖2
N̂

= ‖λk−1A
>M−1(Axk−1−b)+N−1x‖2N+(

1

2
‖Axk−1−b‖2M−1−

τm

2
)2.

For the first term of the above summation, we have

‖λk−1A
>M−1(Axk−1 − b) +N−1xk−1‖2N

= (λk−1A
>M−1(Axk−1 − b) +N−1xk−1)>N(λk−1A

>M−1(Axk−1 − b) +N−1xk−1),
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and

N(λk−1A
>M−1(Axk−1 − b) +N−1xk−1)

= λk−1NA
>M−1Uk+1(Bkȳk−1 − β1e1) + V kȳk−1

= λk−1(V kB
>
k + αk+1vk+1e

>
k+1)(Bkȳk−1 − β1e1) + V kȳk−1

= V k(λk−1B
>
k (Bkȳk−1 − β1e1) + ȳk−1),

where we have used

αk+1vk+1e
>
k+1(Bkȳk−1 − β1e1) = αk+1βk+1vk+1e

>
k ȳk−1 = 0,

because e>k ȳk−1 = 0 for k ≤ kt and αk+1βk+1 = 0 for k > kt. Similarly, we have

λk−1A
>M−1(Axk−1− b) +N−1xk−1 = N−1V k(λk−1B

>
k (Bkȳk−1−β1e1) + ȳk−1).

We also have

‖λk−1A
>M−1(Axk−1 − b) +N−1xk−1‖N = ‖λk−1B

>
k (Bkȳk−1 − β1e1) + ȳk−1‖2

and
1

2
‖Axk−1 − b‖2M−1 −

τm

2
=

1

2
‖Bkȳk−1 − β1e1‖22 −

τm

2
.

The desired result immediately follows by using (3.10).

Proof of Lemma 3.5. First notice that h(x, λ) = 1
2‖F (x, λ)‖2

N̂
. Combining the

above relation with Lemma 3.7 we obtain the first identity of (3.17). Also, for k < kt
we have h(xk, λk) = 1

2‖F
(k+1)(ȳk, λk)‖22 with

F (k+1)(ȳk, λk) =

(
λB>k+1(Bk+1ȳk − β1e1) + ȳk

1
2‖Bk+1ȳk − β1e1‖22 − τm

2

)
.

Since the last element of β1e1 and ȳk is zero, it is easy to verify that

Bk+1ȳk − β1e1 =

(
B̄kȳk − β1e1

0

)
, B>k+1(Bk+1ȳk − β1e1) = B̄

>
k (B̄kȳk − β1e1).

For k ≥ kt, we have F (k)(y, λ) = F (k+1)(y, λ) = F̄ (k)(y, λ). Therefore, we prove the
second identity of (3.17). �

In order to prove Theorem 3.4, we need Lemma 3.7 and the following result.

Lemma 3.8. For any k ≥ 1, we have the following identity:(
V >k

1

)
J(xk−1, λk−1)N̂F (xk−1, λk−1) = J (k)(ȳk−1, λk−1)F (k)(ȳk−1, λk−1).

Proof. First notice from (2.8) that(
V >k

1

)
J(xk−1, λk−1)N̂ =

(
λk−1(AV k)>M−1AN + V >k (AV k)>M−1(Axk−1 − b)

(Axk−1 − b)>M−1AN 0

)
.

Using (3.5c) and similar derivations to the proof of Lemma 3.7, we get

(Axk−1 − b)>M−1AN = (Bkȳk−1 − β1e1)>U>k+1M
−1AN

= (Bkȳk−1 − β1e1)>(BkV
>
k + αk+1ek+1v

>
k+1)

= (Bkȳk−1 − β1e1)>BkV
>
k .(3.19)
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Also, we can get

(AV k)>M−1AN = (Uk+1Bk)>M−1AN = B>k (BkV
>
k + αk+1ek+1v

>
k+1)

= B>kBkV
>
k + αk+1βk+1ekv

>
k+1,

and

(AV k)>M−1(Axk−1 − b) = (BkUk+1)>M−1Uk+1(Bkȳk−1 − β1e1)

= B>k (Bkȳk−1 − β1e1).

Using (3.11), we get(
V >k

1

)
J(xk−1, λk−1)N̂

=

(
(λk−1B

>
kBk + I)V >k B>k (Bkȳk−1 − β1e1)(

Bkȳk−1 − β1e1

)>
BkV

>
k 0

)
+

(
αk+1βk+1ek+1v

>
k+1

0

)
= J (k)(ȳk−1, λk−1)

(
V >k

1

)
+

(
αk+1βk+1ekv

>
k+1

0

)
.

Using similar derivations to the proof of Lemma 3.7, we get

F (xk−1, λk−1) =

(
N−1

1

)(
λk−1NA

>M−1(Axk−1 − b) + xk−1
1
2‖Axk−1 − b‖2M−1 − τm

2

)
=

(
N−1

1

)(
V k

1

)(
λk−1B

>
k (Bkȳk−1 − β1e1) + ȳk−1

1
2‖Bkȳk−1 − β1e1‖22 − τm

2

)
=

(
N−1

1

)(
V k

1

)
F (k)(ȳk−1, λk−1).

Using the relations(
V >k

1

)(
N−1

1

)(
V k

1

)
= I,

(
αk+1βk+1ekv

>
k+1

0

)(
N−1

1

)(
V k

1

)
= 0,

we finally obtain the desired result.

Proof of Theorem 3.4. Notice J(x, λ) is the Jacobian of F (x, λ). Using h(x, λ) =
1
2‖F (x, λ)‖2

N̂
we get ∇h(x, λ) = J(x, λ)N̂F (x, λ), leading to

∇h(xk−1, λk−1)>
(

∆xk
∆λk

)
=

(
∆yk
∆λk

)>(
V >k

1

)
J(xk−1, λk−1)N̂F (xk−1, λk−1)

=

(
∆yk
∆λk

)>
J (k)(ȳk−1, λk−1)F (k)(ȳk−1, λk−1)

= −‖F (k)(ȳk−1, λk−1)‖22 = −‖F (xk−1, λk−1)‖2
N̂

= −2h(xk−1, λk−1) ≤ 0,

where we have used Lemma 3.7 and Lemma 3.8. �
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4. Convergence analysis. The objective of this section is to prove the conver-
gence of PNT, which is stated in the following result and Corollary 4.8.

Theorem 4.1. Suppose the PNT algorithm is initialized with ȳ0 = 0, x0 = 0 and
λ0 > 0. Then we either have

(4.1) h(xk, λk) = 0

for some k <∞, or have

(4.2) lim
k→∞

h(xk, λk) = 0.

Notice that (x∗, λ∗) is the unique minimizer of h(x, λ) and h(x∗, λ∗) = 0. There-
fore, (4.1) implies that the algorithm finds the exact solution to (2.2) and (2.3) at
the k-th iteration. In the following part, we prove (4.2) under the assumption that
h(xk, λk) > 0 for any k ≥ 1. We need a series of lemmas, which are Lemma 4.2–
Lemma 4.7. All these lemmas follow the same assumption of Theorem 4.1.

Lemma 4.2. For any matrix C ∈ Rm×n with full column rank and d ∈ Rm,
if the vector sequence {wk} ∈ Rn satisfies limk→∞ ‖C>(Cwk − d)‖2 = 0, then
limk→∞wk = w∗ := argminw∈Rn ‖Cw − d‖2.

Proof. First notice that w∗ is well-defined, since argminw∈Rn ‖Cw − d‖2 has a
unique solution for the full column rank matrix C. For any wk, let wk = w∗ + w̄k.
Then we have

lim
k→∞

‖C>(Cwk −d)‖2 = lim
k→∞

‖C>(Cw∗−d) +C>Cw̄k‖2 = lim
k→∞

‖C>Cw̄k‖2 = 0,

since C>(Cw∗−d) = 0. Now we have ‖w̄k‖2 → 0 since C>C is positive definite and
all norms of Rn are equivalent. Therefore, we have ‖wk−w∗‖2 → 0 or the equivalent
form limk→∞wk = w∗.

Lemma 4.3. If the unique solution to miny∈Rkt ‖Bkty − β1e1‖2 is ymin, then
xmin := V ktymin is the unique solution to

(4.3) min
x∈Rn

‖x‖N−1 s.t. ‖Ax− b‖M−1 = min.

Proof. It is easy to verify that both miny∈Rkt ‖Bkty − β1e1‖2 and (4.3) have a
unique solution. A vector x is the unique solution to (4.3) if and only if

A>M−1(Ax− b) = 0, x ⊥N−1 N (A),

where ⊥N−1 means the orthogonality relation under the N−1-inner product. Now we
verify the above two conditions for xmin. For the first condition, using the relations
Axmin = AV ktymin = Ukt+1Bktymin and (3.5c), we get

A>M−1(Axmin − b) = A>M−1Ukt+1(Bktymin − β1e1)

= N−1(V ktB
>
kt + αkt+1vkt+1e

>
kt+1) (Bktymin − β1e1)

= N−1[V ktB
>
kt(Bktymin − β1e1) + αkt+1βkt+1vkt+1e

>
ktymin]

= 0,
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since B>kt(Bktymin − β1e1) = 0 and αkt+1βkt+1 = 0. For the second condition, by
Proposition 3.1 we have

xmin ∈ span{V kt} = span{(NA>M−1A)iNA>M−1b}kt−1
i=0

⊆ R(NA>) = NN (A)⊥.

Write xmin = Nx̄min with x̄min ∈ N (A)⊥. For any w ∈ N (A), we have

〈xmin,w〉N−1 = 〈Nx̄min,w〉N−1 = 〈x̄min,w〉2 = 0.

Therefore, it holds that xmin ⊥N−1 N (A).

Lemma 4.4. There exist a positive constant C1 such that for any k ≥ 1,

(4.4) ‖A>M−1(Axk−1 − b)‖N = ‖B>k (Bkȳk−1 − β1e1)‖2 ≥ C1 > 0

Proof. First, we get from (3.19) the first identity:

‖A>M−1(Axk−1 − b)‖2N
= (Axk−1 − b)>M−1ANN−1

(
(Axk−1 − b)>M−1AN

)>
=
(
Bkȳk−1 − β1e1

)>
BkV

>
kN

−1V >kB
>
k

(
Bkȳk−1 − β1e1

)
= ‖B>k

(
Bkȳk−1 − β1e1

)
‖22.

Then, we prove

(4.5) ‖Axk−1 − b‖M−1 = ‖Bkȳk−1 − β1e1‖2 ≥
√
τm

by mathematical induction. For k = 1, we have ‖Ax0 − b‖M−1 = ‖b‖M−1 >
√
τm

since x0 = 0. Suppose ‖Axk−1 − b‖M−1 ≥
√
τm for k ≥ 1. We have

‖Axk − b‖2M−1 = ‖AV k(ȳk−1 + γk∆yk)− b‖2M−1

= ‖Axk−1 − b‖2M−1 + γ2
k‖AV k∆yk‖2M−1 + 2γk(Axk−1 − b)>M−1AV k∆yk

= ‖Bkȳk−1 − β1e1‖22 + γ2
k‖AV k∆yk‖2M−1 + 2γk(Bkȳk−1 − β1e1)>Bk∆y,

since

(Axk−1 − b)>M−1AV k = (Bkȳk−1 − β1e1)>U>k+1M
−1Uk+1Bk

= (Bkȳk−1 − β1e1)>Bk.

Writing J (k)(ȳk−1, λk−1)

(
∆yk
∆λk

)
= −F (k)(ȳk−1, λk−1) in the matrix form and using

‖Bkȳk−1 − β1e1‖2 ≥
√
τm, we get from the second equality of the above equation

that (Bkȳk−1 − β1e1)>Bk∆y = − 1
2

(
‖Bkȳk−1 − β1e1‖22 − τm

)
≤ 0. Since γk ≤ 1,

we get

‖Axk − b‖2M−1

≥ ‖Bkȳk−1 − β1e1‖22 + γ2
k‖AV k∆yk‖2M−1 −

(
‖Bkȳk−1 − β1e1‖22 − τm

)
= τm+ γ2

k‖AV k∆yk‖2M−1 ≥ τm.

Therefore, we prove (4.5).



18 H. LI

To obtain the lower bound in (4.4), we investigate two cases: k < kt and k ≥ kt.
Case 1: k < kt. For this case, we have

‖B>k
(
Bkȳk−1 − β1e1

)
‖2 ≥ σmin(Bk)‖Bkȳk−1 − β1e1‖2 ≥ σmin(Bkt

)
√
τm > 0,

where σmin(·) is the smallest singular value of a matrix, and Bkt
is the first kt × kt

part of Bkt .
Case 2: k ≥ kt. For this case, we can write xk−1 as xk−1 = V kt ȳk−1. Remember

that ȳk−1 = yk−1 if k > kt. We first prove ‖B>kt(Bkt ȳk−1 − β1e1)‖2 6= 0. If it
is not true, then ȳk−1 = argminy ‖Bkty − β1e1‖2. By Lemma 4.3, xk−1 is the
solution to (4.3). Thus, it must hold that ‖Axk−1−b‖M−1 <

√
τm by Assumption 1,

which contradicts (4.5). Now suppose the lower bound in (4.4) is not true. Then
there exists a subsequence {ȳkj−1} with kj ≥ kt such that limj→∞ ‖B>kt(Bkt ȳkj−1 −
β1e1)‖2 = 0. By Lemma 4.2, we have limj→∞ ȳkj−1 = ymin := argminy ‖Bkty −
β1e1‖2, leading to limj→∞ xkj−1 = limkj→∞ V kt ȳkj−1 = V ktymin. It follows from
Lemma 4.3 that V ktymin = xmin, which is the solution to (4.3). Therefore, it must
hold limj→∞ ‖Axkj−1− b‖M−1 = ‖Axmin− b‖M−1 <

√
τm by Assumption 1, which

contradicts (4.5). Summarizing both the two cases, the desired result is proved.

Lemma 4.5. The points {(xk, λk)}∞i=0 generated by the PNT algorithm lie in a
bounded set of Rn × R+.

Proof. First notice that h(x0, λ0) ≥ h(x1, λ1) ≥ · · · . We only need to prove
{(xk, λk)}k≥kt is bounded above. In this case, notice that xk = V ktyk and

h(xk, λk) =
1

2
[‖λkA>M−1(Axk − b) +N−1xk‖2N + (

1

2
‖Bktyk − β1e1‖22 −

τm

2
)2].

If the points do not lie in a bounded set, there exists a subsequence {(xkj , λkj )}
with kj ≥ kt such that (xkj , λkj ) → ∞. If ‖xkj‖2 → ∞, then ‖ykj‖2 → ∞, since
xkj = V ktykj and V kt has full column rank. This leads to ‖Bktykj‖2 →∞ since Bkt

has full column rank. It follows that the second term of h(xkj , λkj ) tends to infinity
and h(xkj , λkj )→∞, a contradiction. Therefore, it must hold that ‖xkj‖2 is bounded

above and λkj → ∞. By Lemma 4.4, we have ‖λkjA
>M−1(Axkj − b)‖N ≥ λkjC1.

Notice that {N−1xkj} lie in a bounded set. It follows that ‖λkjA
>M−1(Axkj −b)+

N−1xkj‖N →∞ and h(xkj , λkj )→∞, also a contradiction.

Lemma 4.6. There exist a positive constant C2 < +∞ such that for any k ≥ 1,

(4.6) ‖J (k)(ȳk−1, λk−1)−1‖2 ≤ C2.

Proof. First, we prove that J (k)(ȳk−1, λk−1) is always nonsingular. Write it as

J (k)(ȳk−1, λk−1) =

(
λk−1B

>
ktBk + I B>k (Bkt ȳk−1 − β1e1)

(Bkȳk−1 − β1e1)>Bk 0

)
=:

(
Ck dk
d>k 0

)
and notice that(

Ck dk
d>k 0

)
=

(
I 0

−d>k C
−1
k 1

)−1(
Ck 0

0 −d>k C
−1
k dk

)(
I −C−1

k dk
0 1

)−1

.

It follows that

(4.7)

(
Ck dk
d>k 0

)−1

=

(
I −C−1

k dk
0 1

)(
C−1
k 0

0 −(d>k C
−1
k dk)−1

)(
I 0

−d>k C
−1
k 1

)
,
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Since Ck is positive definite and ‖dk‖2 ≥ C1 > 0.
To give an upper bound on ‖J (k)(ȳk−1, λk−1)−1‖2, we only need to consider k ≥

kt, where Bk = Bkt in J (k)(ȳk−1, λk−1). Since σmin(Ck) = σmin(λk−1B
>
ktBkt +I) ≥

1, we have ‖C−1
k ‖2 ≤ 1. By Lemma 4.5, there exist a positive constant C3 < +∞

such that λk ≤ C3, thereby

σmax(Ck) ≤ σmax(λk−1B
>
ktBkt) + σmax(I) ≤ C3σmax(B>ktBkt) + 1 =: C̄3.

By Lemma 4.4 we have ‖dk‖2 = ‖B>kt(Bkt ȳk−1 − β1e1)‖2 ≥ C1. On the other hand,
by Lemma 4.5 we know that ‖xk−1‖2 = ‖V kt ȳk−1‖2 is bounded above, thereby
‖ȳk−1‖2 is bounded above since V kt has full column rank. Thus, there exists a
positive constant C̄1 such that ‖dk‖2 ≤ C̄1, leading to

‖C−1
k dk‖2 ≤ ‖C

−1
k ‖2‖dk‖2 ≤ C̄1σmin(Ck)−1 ≤ C̄1,

and
d>k C

−1
k dk ≥ σmin(C−1

k )‖dk‖22 = σmax(Ck)−1‖dk‖22 ≥ C2
1/C̄3 > 0.

Therefore, we have∥∥∥∥(0 −C−1
k dk

0 0

)∥∥∥∥2

2

=

∥∥∥∥∥
(

0 −C−1
k dk

0 0

)>(
0 −C−1

k dk
0 0

)∥∥∥∥∥
2

=

∥∥∥∥(0

‖C−1
k dk‖22

)∥∥∥∥
2

≤ C̄2
1

and ∥∥∥∥(I −C−1
k dk

0 1

)∥∥∥∥
2

≤
∥∥∥∥(I 1

)∥∥∥∥
2

+

∥∥∥∥(0 −C−1
k dk

0 0

)∥∥∥∥
2

≤ 1 + C̄1.

Similarly, we have∥∥∥∥(C−1
k 0

0 −(d>k C
−1
k dk)−1

)∥∥∥∥
2

≤ max{1, C̄3/C
2
1}.

Using the expression of J (k)(ȳk−1, λk−1) in (4.7), we finally obtain the desired result.

Lemma 4.7. There exists a positive constant C4 such that for any k ≥ 1,

(4.8) γk ≥ C4 > 0.

Proof. By Theorem 3.6 and Theorem 3.4, at each iteration the Armijo backtrack-
ing line search must terminate in finite steps with a γk satisfying

γk ≥ min

{
1,

4(1− c)ηh(xk−1, λk−1)

ζ(xk−1, λk−1)‖(∆x>k ,∆λk)‖22

}
,

where ζ(xk−1, λk−1) is the Lipschitz constant of ∇h at (xk−1, λk−1); see also [4, pp.
122, Corollary 2.1]. Now we prove ζ(xk−1, λk−1) are bounded above. Notice that

∇h(x, λ) = J(x, λ)N̂F (x, λ). Thus, all the elements in the Jacobian of ∇h(x, λ) are
polynomials of (x, λ) with degrees not bigger than 4. Since {(xk−1, λk−1)} lie in a
bounded set, the norms of the Jacobians of ∇h(x, λ) at the points {(xk−1, λk−1)} are
bounded above. Therefore, the Lipschitz constants ζ(xk−1, λk−1) are bounded above.
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Let ζ(xk−1, λk−1) ≤ ζ0 with 0 < ζ0 < +∞ for any k ≥ 1. Then by Lemma 4.6
and Lemma 3.7, we have∥∥∥∥(∆xk

∆λk

)∥∥∥∥
2

≤
∥∥∥∥(V k

1

)∥∥∥∥
2

∥∥∥∥(∆yk
∆λk

)∥∥∥∥
2

≤ (‖V kt‖2 + 1)‖J (k)(ȳk−1, λk−1)−1‖2‖F (k)(ȳk−1, λk−1)‖2
≤ C2(‖V kt‖2 + 1)(2h(xk−1, λk−1))1/2.

Then we obtain

γk ≥ min

{
1,

4(1− c)ηh(xk−1, λk−1)

ζ0‖(∆x>k ,∆λk)>‖22

}
≥ min

{
1,

2(1− c)η
ζ0C2

2 (‖V kt‖2 + 1)2

}
=: C4.

The desired result is obtained.

Proof of Theorem 4.1. By Lemma 4.5, the sequence {(xk, λk)}∞k=1 is contained in
a bounded set, thereby there exists a convergent subsequence {(xkj , λkj )}∞j=1. Sup-

pose (xkj , λkj )→ (x̂, λ̂). It follows that h(xkj , λkj )→ h(x̂, λ̂) since h(x, λ) is contin-

uous. Note that h(xkj , λkj ) is nonincreasing, thereby h(x̂, λ̂) ≤ h(xkj , λkj ) for any kj .

Thus, for any ε > 0, there exist a k? ∈ N such that h(xkj , λkj ) < h(x̂, λ̂)+ε, kj > k?.
Select one kj that satisfies kj > k?. For any k ≥ kj , we have h(xk, λk) ≤ h(xkj , λkj ) <

h(x̂, λ̂) + ε, which means that limk→∞ h(xk, λk) = h(x̂, λ̂). The Armijo condition and
Theorem 3.4 lead to h(xk+1, λk+1) − h(xk, λk) ≤ cγk

(
∆x>k ,∆λk

)
∇h(xk, λk) ≤ 0.

Taking the limit on both sides leads to limk→∞ cγk
(
∆x>k ,∆λk

)
∇h(xk, λk) = 0. By

Lemma 4.7 we get limk→∞
(
∆x>k ,∆λk

)
∇h(xk, λk) = 0. Noticing by Theorem 3.4

that −2h(xk, λk) =
(
∆x>k ,∆λk

)
∇h(xk, λk), we get h(x̂, λ̂) = limk→∞ h(xk, λk) = 0.

This proves the desired result. �
Now we can give the convergence result of (xk, λk).

Corollary 4.8. The sequence {(xk, λk)}∞k=0 generated by the PNT algorithm
eventually converges to (x∗, λ∗), i.e. the solution of (2.2) and the corresponding
Lagrange multiplier.

Proof. Using the same notations as the proof of Theorem 4.1, we obtain that
(x̂, λ̂) = (x∗, λ∗), since h(x, λ) has the unique zero point (x∗, λ∗). Therefore, the
subsequence {(xkj , λkj )}∞j=1 defined in the proof of Theorem 4.1 converges to (x∗, λ∗).
Now we need to prove the whole sequence {(xk, λk)}∞k=1 converges to (x∗, λ∗). Assume
that there is a subsequence {(xlj , λlj )}∞j=1 that does not converge to (x∗, λ∗). We can

select a subsequence from {(xlj , λlj )}∞j=1 that converges to a point (x̄, λ̄) 6= (x∗, λ∗).
Since h(xlj , λlj ) is nonincreasing with respect to j, using the same procedure as the
proof of Theorem 4.1, we can obtain again that h(x̄, λ̄) = 0, leading to (x̄, λ̄) =
(x∗, λ∗), a contradiction. Therefore, any subsequence of {(xk, λk)}∞k=0 converges to
(x∗, λ∗), thereby {(xk, λk)}∞k=0 converges to (x∗, λ∗).

5. Experimental results. We test the PNT method and compare it with the
standard Newton method, which refers to the method in [31] but (2.9) is solved using
direct matrix inversions. These two methods use the same initialization and back-
tracking line search strategy. The setting of hyperparameters follows Algorithm 3.2,
and we set τ = 1.001 and λ0 = 0.1 in all the experiments. We also implement
the generalized hybrid iterative method proposed in [12] (denoted by genHyb), which
is also based on gen-GKB. The genHyb iteratively computes approximations to µopt
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and xopt = x(µopt), where µopt is the optimal Tikhonov regularization parameter,
that is µopt = minµ>0 ‖x(µ)−xtrue‖2; the k-th approximate Lagrangian multiplier is
λk = 1/µk. All the experiments are performed on MATLAB R2023b. The codes are
available at https://github.com/Machealb/InverProb IterSolver.

All the inverse problems in the experiments are ill-posed and satisfy Assumption 1.
We use three types of ill-posed inverse problems to test the proposed method. The
characteristics of these problems are summarized in Table 5.1.

Table 5.1
Properties of the inverse problems in the experiments.

Problem m× n Ill-posedness Description

heat 2000× 2000 moderate inverse heat equation
shaw 3000× 3000 severe 1D image restoration

PRblurshake 1282 × 1282 mild 2D image deblurring
PRblurspeckle 1282 × 1282 mild 2D image deblurring
PRspherical 23168× 1282 mild computed tomography

5.1. Small-scale problems. We choose two small-scale 1D inverse problems
from [24]. The first problem is heat, an inverse heat equation described by the Volterra
integral equation of the first kind on [0, 1]. The second problem is shaw, a one-
dimensional image restoration model described by the Fredholm integral equation of
the first kind on [−π/2, π/2]. We use the code in [24] to discretize the two problems to
generateA, xtrue and btrue = Axtrue, where m = n = 2000 and m = n = 3000 for heat
and shaw, respectively. We set the noisy observation vector b as b = btrue + ε, where
ε is a Gaussian noise. For heat, we set ε as a white noise (i.e. M is a scalar matrix)
with noise level ε := ‖ε‖2/‖btrue‖2 = 5 × 10−2; for shaw, we set ε as a uncorrelated
non-white noise (i.e. M is a diagonal matrix) with noise level ε = 10−2. The true
solutions and noisy observed data for these two problems are shown in Figure 5.1.
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Fig. 5.1. True solution and noisy observed data. The first two: heat. The last two: shaw.

For heat, we assume a Gaussian prior x ∼ N (0, µ−1N) with N coming from
the Gaussian kernel κG, i.e. the ij element of N is [N ]ij = KG(rij), KG(r) :=
exp

(
−r2/(2l2)

)
, where rij = ‖pi − pj‖2 and {pi}ni=1 are discretized points of the

domain of the true solution; the parameter l is set as l = 0.1. For shaw, we construct
N using the exponential kernel Kexp(r) := exp (−(r/l)ν) , where the parameters l
and ν are set as l = 0.1 and ν = 1. We set τ = 1.001 for both the two problems.
We factorize M−1 and N−1 to form (1.3) and solve it directly to find µopt and xopt;
the corresponding Lagrangian multiplier is λopt = 1/µopt. We also compute the µ of
(2.1) and the corresponding regularized solution, which is denoted by µDP and xDP ,
respectively. Therefore, the solution to (2.2) and (2.3) is (x∗, λ∗) = (xDP , 1/µDP ).

https://github.com/Machealb/InverProb_IterSolver
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We use the optimal Tikhonov solution and the DP solution as the baseline for the
subsequent tests.

For these two small-scale problems, we also implement the projected Newton
method in [13] based on the transformation (1.3) as a comparison. This means that
we solve

min
x̄∈Rn

{‖(LMALN )x̄−LMb‖22 + µ‖x̄‖22},

using the method in [13] and then compute the regularized solution xk = L−1
N x̄k.

This Cholesky factorization based method is abbreviated as Ch-PNT.
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Fig. 5.2. Relative errors of iterative solutions, convergence of λk, and convergence of merit
functions. Top: heat. Bottom: shaw.

We compare the convergence behaviors of PNT, Ch-PNT, Newton and genHyb
methods by plotting the relative error curve of xk with respect to xtrue and the conver-
gence curves of λk and merit functions. The solutions (xDP , 1/µDP ) and (xopt, 1/µopt)
are used as baselines. From Figure 5.2 we find that both PNT and Newton methods
converge very fast to xDP and λDP := 1/µDP with very few iterations, and PNT
converges only slightly slower than Newton. We also find that the convergence be-
haviors of PNT and Ch-PNT are almost identical. This is not surprising, as both
methods utilize the same subspaces for projecting the large-scale system and employ
the same hyperparameters and update procedures. For heat, the error of the DP
solution is slightly higher than the optimal Tikhonov solution, because DP slightly
under-estimates λ. The merit functions of both PNT and Newton decrease monoton-
ically, and h(xk, λk) of PNT eventually decreases to an extremely small value for the
two problems. We remark that we set w = 1 for hw(x, λ) in all the tests. For Newton
method for heat, we stop the iterate at k = 34 because the step-length γk is too
small. In comparison, genHyb converges much slower than the previous two methods,
especially for heat.

Figure 5.3 plots the recovered solutions computed by PNT and genHyb methods at
the final iterations; the solution by Newton is almost the same as that by PNT, thereby
we omit it. We also plot the optimal Tikhonov regularized solution as a comparison,
where the DP solution is very similar and omitted. Both PNT and genHyb can recover
good regularized solutions, and PNT is slightly better for heat.
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Fig. 5.3. Comparison of reconstructed solutions at the final iterations with the optimal Tikhonov
regularized solution. Top: heat. Bottom: shaw.
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Fig. 5.4. Variation of the condition number of J(k)(ȳk−1, λk−1) during the iteration of PNT.
Left: heat. Right: shaw.

To further demonstrate the performance of PNT, we present the variation of the
condition number of J (k)(ȳk−1, λk−1) during the iteration of PNT in Figure 5.4. This

condition number is denoted by κ(J (k)) in the two pictures. We observe that the
condition number does not increase significantly during the iteration. This ensures
that the small-scale linear system (3.12a) can be solved directly via matrix inversions
without any issues.

To show the advantage of the computational efficiency of PNT over Ch-PNT and
Newton, we gradually increase the scale of the test problems and measure the running
time of the three methods, where all of them stop at the first iteration such that∣∣‖Axk − b‖2M−1 − τm

∣∣ ≤ 10−8. The time data are listed in Table 5.2. We also
compute the ratio of the running time, i.e. the value of Ch-PNT-time/PNT-time and
Newton-time/PNT-time. For shaw, we find that all three methods stop with similar
iteration numbers, and the computational speed of PNT is much faster than Newton,
with the speedup ratio varying from 41 to 157. For heat, we find that Newton stops
with only about half iteration numbers of PNT’s. However, the total running time of
PNT is still much smaller than Newton’s, with the speedup ratio varying from 8 to
43. To compare the scalability of PNT, Ch-PNT and Newton more clearly, we use the
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Table 5.2
Running time (measured in seconds) of PNT, Ch-PNT and Newton methods as the scale of the

problems increasing from n = 1000 to n = 5000. Both the two methods stop at the first k (in

parentheses) such that
∣∣∣‖Axk − b‖2

M−1 − τm
∣∣∣ ≤ 10−8. The ratio of the running time between PNT

and Ch-PNT is denoted as ratio-1, while the ratio of the running time between PNT and Newton is
denoted as ratio-2.

n 1000 2000 3000 4000 5000

heat

PNT 0.021 (18) 0.114 (21) 0.164 (19) 0.347 (19) 0.492 (19)
Ch-PNT 0.032 (18) 0.280 (21) 0.375 (19) 0.764 (19) 1.314 (19)
Newton 0.249 (10) 2.568 (11) 6.062 (10) 13.914 (10) 26.127 (11)
ratio-1 1.5 2.5 2.3 2.2 2.7
ratio-2 11.9 22.5 37.0 40.1 53.1

shaw

PNT 0.014 (17) 0.051 (16) 0.158 (17) 0.293 (18) 0.479 (19)
Ch-PNT 0.051 (17) 0.170 (16) 0.438 (19) 0.873 (18) 1.819 (19)
Newton 0.455 (16) 3.675 (15) 8.904 (14) 26.835 (16) 52.768 (16)
ratio-1 3.6 3.3 2.8 3.0 3.8
ratio-2 32.5 72.1 56.4 91.6 110.2
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Fig. 5.5. Comparison of scalability of PNT, Ch-PNT and Newton methods as the scale of the
problems increasing from n = 1000 to n = 5000. Left: heat. Right: shaw.

data in Table 5.2 to plot the curve of time growth with respect to n. Clearly, PNT
saves much more time compared to Newton while obtaining solutions with the same
accuracy. Although the advantage of PNT over Ch-PNT is not significant for small-
scale problems, Ch-PNT is not feasible for large-scale problems due to the prohibitive
cost of Cholesky factorization.

5.2. Large-scale problems. We choose three 2D image deblurring and com-
puted tomography inverse problems from [18]. The first problem is PRblurshake, which
simulates a spatially invariant motion blur caused by the shaking of a camera. The
second problem is PRblurspeckle, which simulates a spatially invariant blur caused
by atmospheric turbulence. The third problem is PRspherical that models spherical
means tomography. The true images and noisy observed data are shown in Figure 5.6,
where all the images have 128×128 pixels, and ε are uncorrelated non-white Gaussian
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noises with ε = 10−3, 5 × 10−3 and 10−2, respectively. We have m = n = 1282 for
the first two problems, and m = 23168, n = 1282 for the third problem.
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Fig. 5.6. True solution and noisy observed data for deblurring and tomography problems. From
the leftmost column to the rightmost column are PRblurshake, PRblurspeckle and PRspherical.

For PRblurshake and PRblurspeckle, we construct N using the Gaussian kernel
with l = 10 and l = 1, respectively. For PRspherical, we construct N using the
Matérn kernel

KM (r) :=
21−ν

Γ(ν)

(√
2νr

l

)ν
Bν

(√
2νr

l

)
,

where Γ(·) is the gamma function, Bν(·) is the modified Bessel function of the second
kind, and l and ν are two positive parameters of the covariance; we set l = 100 and ν =
1.5. For the three large-scale problems, it is almost impossible to get (µopt,x(µopt))
and (µDP ,x(µDP )) by solving (1.3). The standard Newton method and the methods
in [13,14] can not be applied because these methods have to deal with N−1. To test
the performance of PNT, here we only compare it with genHyb. Additionally, we also
implement PNT-md to demonstrate that it can save some computation compared to
PNT.

The relative error curves of the three methods, the convergence curves of λk and
h(xk, λk) are plotted in Figure 5.7. For PNT-md, we set k0 = 150, 80, 50 for the
three problems, respectively. It can be observed that PNT for the last two problems
converges very fast: the variations of relative error and λk become quickly stabilized
after 50 to 150 iterations, although for the second problem h(xk, λk) are still de-
creasing significantly after 200 iterations. The genHyb method for PRblurshake and
PRspherical converges slower, and it obtains two solutions with larger relative errors
than that of PNT. This is because genHyb under-estimates λ more than PNT. For
all three problems, PNT-md converges very quickly from k0, achieving solutions with
the same accuracy as PNT while requiring nearly the same total number of iterations.
The reconstructed images are shown in Figure 5.8, which reveals the effectiveness of
PNT and genHyb. The variation of the condition number of J (k)(ȳk−1, λk−1) is shown
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Fig. 5.7. Relative errors of iterative solutions, convergence of λk, and convergence of merit
functions. Top: PRblurshake. Middle: PRblurspeckle. Bottom: PRspherical.
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Fig. 5.8. Reconstructed solutions at the final iterations by PNT and genHyb. From the leftmost
column to the rightmost column are PRblurshake, PRblurspeckle and PRspherical.
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in Figure 5.9. The condition number does not grow very large during the iteration,
allowing the small-scale linear system (3.12a) to be solved directly without issues.
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Fig. 5.9. Variation of the condition number of J(k)(ȳk−1, λk−1) during the iteration of PNT.
Left: PRblurshake. Middle: PRblurspeckle Right: PRspherical.
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Fig. 5.10. Relative errors of iterative solutions by PNT and genHyb, and the decrease of
h(xk, λk). The test problem is PRblurspeckle. From the leftmost column to the rightmost column,
the noise levels are ε = 5× 10−2, 10−1, 5× 10−1.

To further test the robustness of PNT and genHyb as the noise level gradually
increases, we set the noise level of PRblurspeckle to be ε = 5× 10−2, 10−1, 5× 10−1.
Figure 5.10 shows the corresponding relative error curves and the curves of h(xk, λk).
We can find that, when the noise is not very big, both PNT and genHyb converge
stably with almost the same accuracy. However, when the noise gradually increases,
the situations are very different. First, we find that as the noise increases, PNT still
converges stably, and faster. Second, h(xk, λk) can always decrease to an extremely
small value, which is promised by Theorem 4.1. The iterate of PNT stops when the
step-length γk becomes too small (less than 10−16), which happens more early if the
noise is bigger. In comparison, the convergence of genHyb becomes unstable as the
noise increases. For ε = 10−1, it can be observed that the relative error for genHyb in-
creases slightly after a certain iteration, while for ε = 5×10−1, the increase of relative
error appears earlier and more clearly. This is a typical potential weakness of hybrid
regularization methods, a challenge that the PNT method successfully addresses.
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6. Conclusion. For large-scale Bayesian linear inverse problems, we have pro-
posed the projected Newton (PNT) method as a novel iterative approach for simulta-
neously updating both the regularization parameter and solution without any com-
putationally expensive matrix inversions or decompositions. By reformulating the
Tikhonov regularization as a corresponding constrained minimization problem and
leveraging its Lagrangian function, the regularized solution and the corresponding
Lagrangian multiplier can be obtained from the unconstrained Lagrangian function
using a Newton-type method. To reduce the computational overhead of the New-
ton method, the generalized Golub-Kahan bidiagonalization is applied to project the
original large-scale problem to become small-scale ones, where the projected Newton
direction is obtained by solving the small-scale linear system at each iteration. We
have proved that the projected Newton direction is a descent direction of a merit func-
tion, and the points generated by PNT eventually converge to the unique minimizer
of this merit function, which is just the regularized solution and the corresponding
Lagrangian multiplier.

Experimental tests on both small and large-scale Bayesian inverse problems have
demonstrated the excellent convergence property, robustness and efficiency of PNT.
The most demanding computational tasks in PNT are primarily matrix-vector prod-
ucts, making it particularly well-suited for large-scale problems.

An important remaining question is the convergence rate of PNT, i.e., how fast
the three quantities ‖xk − xDP ‖2, |λk − λDP | and h(xk, λk) converge to zero? The
convergence rate may depend on several factors, including the ill-posedness of (1.1),
the smoothness of the true solution, the noise level, and the properties of {A,M ,N}.
We will conduct theoretical investigations into this issue in future work.

Acknowledgments. The author thanks Dr. Felipe Atenas for helpful discus-
sions.
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