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THE JOINT BIDIAGONALIZATION OF A MATRIX PAIR WITH
INACCURATE INNER ITERATIONS\ast 

HAIBO LI\dagger 

Abstract. The joint bidiagonalization (JBD) process iteratively reduces a matrix pair \{ A,L\} to
two bidiagonal forms simultaneously, which can be used for computing a partial generalized singular
value decomposition (GSVD) of \{ A,L\} . The process has a nested inner-outer iteration structure,
where the inner iteration usually cannot be computed exactly. In this paper, we study the inaccu-
rately computed inner iterations of JBD by first investigating the influence of computational error
of the inner iteration on the outer iteration, and then proposing a reorthogonalized JBD (rJBD)
process to keep orthogonality of a part of Lanczos vectors. An error analysis of the rJBD is carried
out to build up connections with Lanczos bidiagonalizations. The results are then used to investigate
convergence and accuracy of the rJBD based GSVD computation. It is shown that the accuracy of
computed GSVD components depends on the computing accuracy of inner iterations and the con-
dition number of (AT ,LT )T , while the convergence rate is not affected very much. For practical
JBD based GSVD computations, our results can provide a guideline for choosing a proper comput-
ing accuracy of inner iterations in order to obtain approximate GSVD components with a desired
accuracy. Numerical experiments are made to confirm our theoretical results.

Key words. joint bidiagonalization, GSVD, inner iteration, stopping tolerance, Lanczos bidiag-
onalization, convergence and accuracy
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1. Introduction. For many matrix computation algorithms, a basic routine is
reducing a matrix to a structured one using a series of orthogonal transformations. For
example, the first step of the QR algorithm for eigenvalue decomposition is reducing a
matrix to a Hessenberg form [33], while for singular value decomposition (SVD) com-
putation is reducing a matrix to a bidiagonal form [9]. For large-scale matrices, the
reduction via direct orthogonal transformations is very expensive; thus a Lanczos-
type iterative process is a common choice, e.g., the symmetric Lanczos process for
symmetric eigenvalue problem, the Lanczos bidiagonalization for SVD, and so on
[4, 7, 20, 21, 23]. When it comes to large-scale matrix pairs, one method is to implic-
itly transform the matrix pair problem to a stadand single matrix problem, such as
the shift-and-invert Lanczos method for generalized symmetric eigenvalue decompo-
sition [8, 13]. Another popular choice is the Jacobi--Davidson method for generalized
eigenvalue/singular value decomposition, where an inner correction equation needs to
be solved [2, 15, 28]. These algorithms often have the structure of nested inner-outer
iterations, and the inner iteration contains a large-scale matrix computation problem
that should be computed iteratively.

In this paper we focus on another inner-outer iterative algorithm that can re-
duce a matrix pair to two bidiagonal forms simultaneously, which is called the joint
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JBD WITH INACCURATE INNER ITERATION 233

bidiagonalization process. This algorithm was first proposed by Zha [35] for com-
puting a partial generalized singular value decomposition (GSVD) of a large-scale
matrix pair \{ A,L\} with A \in \BbbR m\times n and L \in \BbbR p\times n. It was later adapted in [19] to
solve large-scale linear ill-posed problems with general-form regularization [11, 12].
Let C = (AT ,LT )T . Consider the following compact QR factorization:

C =

\biggl( 
A
L

\biggr) 
=QR=

\biggl( 
QA

QL

\biggr) 
R,(1.1)

where Q \in \BbbR (m+p)\times n is column orthonormal with QA \in \BbbR m\times n, QL \in \BbbR p\times n, and
R \in \BbbR n\times n is upper triangular. Zha's method generates two upper bidiagonal matri-
ces by implicitly applying the upper Lanczos bidiagonalization to both QA and QL.
In contrast, the method proposed in [19] implicitly uses the lower and upper Lanc-
zos bidiagonalizations to reduce QA and QL to lower and upper bidiagonal matrices,
respectively. To keep the presentation short, we focus on Zha's joint bidiagonaliza-
tion from now on, since it is more convenient for GSVD computation using upper
bidiagonal matrices.

By choosing the same initial vectors v1 = \^v1, the two Lanczos bidiagonalizations
can reduce QA and QL to the following two bidiagonal matrices:

Bk =

\left(      
\alpha 1 \beta 1

\alpha 2
. . .

. . . \beta k - 1

\alpha k

\right)      \in \BbbR k\times k, \widehat Bk =

\left(      
\^\alpha 1

\^\beta 1

\^\alpha 2
. . .

. . . \^\beta k - 1

\^\alpha k

\right)      \in \BbbR k\times k.

Meanwhile they generate two groups of orthonormal vectors \{ u1, . . . , uk\} , \{ v1, . . . , vk\} 
corresponding to QA and two groups of orthonormal vectors \{ \^u1, . . . , \^uk\} , \{ \^v1, . . . , \^vk\} 
corresponding to QL. It is shown in [35] that the basic relation

\^vi = ( - 1)i - 1vi, \^\alpha i
\^\beta i = \alpha i\beta i

holds. Based on this property, the two Lanczos bidiagonalizations can be jointed
without an explicit QR factorization of C. Denote by \scrP Q the projection operator
onto the subspace spanned by columns of Q, which can be written in matrix form
as \scrP Q = QQT since Q has orthonormal columns. Then we have the following joint
bidiagonalization algorithm:

Zha's joint bidiagonalization of \{ \bfitA ,\bfitL \} 
Choose nonzero s\in \BbbR n, set \~v1 =Cs/\| Cs\| 
for i= 1,2, . . . , k

\alpha iui = \~vi(1 :m) - \beta i - 1ui - 1

\beta i\~vi+1 =\scrP Q

\biggl( 
ui

0p

\biggr) 
 - \alpha i\~vi

\^\alpha i\^ui = ( - 1)i - 1\~vi(m+ 1 :m+ p) - \^\beta i - 1\^ui - 1

\^\beta i = (\alpha i\beta i)/\^\alpha i

end

where \beta 0 = \^\beta 0 = 0 and \| ui\| = \| \^ui\| = \| \~vi\| = 1. In this paper, \| \cdot \| always means 2-norm
of a matrix or vector. Let \~ui = (uT

i ,0
T
p )

T , where 0p \in \BbbR p denotes the p-dimensional

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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234 HAIBO LI

zero vector. Note that \scrP Q\~ui can be computed iteratively by the relation \scrP Q\~ui =C\~zi
with

\~zi = argmin
\~z\in \BbbR n

\| C\~z  - \~ui\| ,(1.2)

where this least squares problem can be solved by an iterative method. The Lanczos
vectors vi and \^vi can be implicitly obtained from \~vi.

The joint bidiagonalization (JBD) of a matrix pair is a generalization of Lanczos
bidiagonalization of a single matrix. In exact arithmetic, the k-step JBD reduces
A and L to small-scale upper bidiagonal matrices Bk and \widehat Bk, and the reduction
processes of A and L are equivalent to the upper Lanczos bidiagonalizations of QA

and QL. Therefore, Bk and \widehat Bk are the Ritz--Galerkin projections of QA and QL on
proper Krylov subspaces. This makes the JBD process useful for designing efficient
algorithms for large sparse matrix pair problems. For example, some extreme gener-
alized singular values and vectors of \{ A,L\} can be approximated by using the SVD of
Bk or \widehat Bk [17, 35]; the linear ill-posed problems with general-form Tikhonov regular-
ization minx

\bigl\{ 
\| Ax - b\| 2 + \lambda 2\| Lx\| 2

\bigr\} 
can be solved iteratively by solving small-scale

problems containing Bk and \widehat Bk at each iteration [18, 19].
For a practical implementation of JBD, there are some issues that must be ad-

dressed. For example, as was pointed out by Zha at the end of [35], the computed
Lanczos vectors ui, \^ui, and \~vi in finite precision arithmetic quickly lose orthogonality,
which will cause a delay of convergence for approximating GSVD components and the
appearance of spurious copies of approximations [17]. Therefore, a proper reorthogo-
nalization strategy should be included in JBD to maintain some level of orthogonality
to preserve regular convergence for GSVD computations. This issue has been studied
by Jia and Li in [16, 17], where they investigate the semiorthogonalization strategy
for JBD and propose an efficient partial reorthogonalization technique that can keep
regular convergence behavior of computed quantities. Another issue is the increasing
computation and storage cost due to the gradually expanding Krylov subspaces, es-
pecially when reorthogonalization is exploited, since all Lanczos vectors must be kept
throughout the computation. Recently, Alvarruiz, Campos, and Roman [1] developed
a thick restart technique for JBD to compute a partial GSVD, which can keep the
size of the Krylov basis bounded, and thus the storage and computation cost can be
further saved.

However, it should be pointed out that the above researchers do not take into
consideration the inaccurate computation of \scrP \~ui. The JBD process has the structure
of nested inner-outer iterations, where the Lanczos bidiagonalization is the outer
iteration while an iterative solver for (1.2) plays the role of inner iteration. The overall
computational cost of the algorithm is proportional to the overall number of inner
iterations, and thus a bottleneck is that iteratively solving a large-scale least squares
problem at each outer iteration may be very costly, especially when the solution
accuracy is high. Numerical experiments have shown that the inaccuracy in forming
\scrP Q\~ui does limit the final accuracy of computed GSVD components [35]; thus this
issue is important for the JBD based GSVD computation. On the other hand, for the
JBD based regularization algorithms for discrete ill-posed problems with general-form
regularization, it is numerically shown that the inner least squares problem need not
be solved with very high accuracy [18, 19]; e.g., for the LSQR solver for (1.2), the
default stopping tolerance \ttt \tto \ttl = 10 - 6 for iteration is often enough to obtain a final
regularized solution without loss of accuracy. This means that for ill-posed problems

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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JBD WITH INACCURATE INNER ITERATION 235

the inner least squares problems may be solved with considerably relaxed accuracy,
and thus the overall efficiency can be improved.

In this paper, we study the influence of inaccuracy of inner iterations on the
behavior of the JBD algorithm, with an emphasis on the effect on the convergence and
accuracy of computed GSVD components. The main contributions are the following:

\bullet For a commonly used stopping criterion for iteratively solving (1.2), we inves-
tigate the influence of the computational error of the inner iteration on the
outer iteration. This reveals that when the inner iteration is inaccurately com-
puted, the outer iteration is not equivalent to the Lanczos bidiagonalization
of QA and QL any longer but has a perturbation of order \scrO (\kappa (C)\tau ), where
\kappa (C) is the condition number of C and \tau describes the solution accuracy of
(1.2). A couple of recursive relations that describe the loss of orthogonality
of the computed vectors are also established.

\bullet We propose a reorthogonalized JBD (rJBD) process which maintains the
orthogonality of \~vi. We perform an error analysis on the k-step rJBD to
establish connections between rJBD and the two Lanczos bidiagonalizations
of QA, where \kappa (C)\tau plays a crucial role for obtaining some useful upper
bounds.

\bullet The results of the above error analysis are used to investigate the conver-
gence and accuracy of the computed GSVD components by rJBD. We show
that the approximate generalized singular values can only reach an accuracy
of order \scrO (\kappa (C)\tau ) by the SVD of Bk or \widehat Bk, and the accuracy of approx-
imate right generalized singular vectors depends not only on the value of
\kappa (C)\tau but also on the gap between generalized singular values. In addition,
it can be shown that the regular convergence rate of approximate general-
ized singular values and right vectors can be kept for the rJBD based GSVD
computation.

Our results can theoretically explain some numerically observed phenomena of
JBD in [35]. For example, we theoretically demonstrate that when \scrP Q\~ui is computed
with lower accuracy and C is more ill-conditioned, the orthogonality is lost at an earlier
stage. We also give a theoretical explanation for the numerical conclusion in [35] that
convergence rates for the approximate GSVD components are not affected very much,
while the final accuracy does depend on \kappa (C) and the computing accuracy of inner
iterations. For practical JBD based GSVD computations, our results can provide a
guideline for choosing the computing accuracy of inner iterations in order to obtain
approximate GSVD components with a desired accuracy.

The paper is organized as follows. In section 2, we review some basic properties of
the joint bidiagonalization and GSVD of a matrix pair. In section 3, we investigate the
inaccurately computed inner iterations and propose a reorthogonalized JBD (rJBD)
process to keep orthogonality of \widetilde Vk. An error analysis is carried out in section 4 to
build up connections between the rJBD process and Lanczos bidiagonal reductions
of QA and QL. The convergence and accuracy of approximate GSVD components
computed by rJBD are investigated in section 5. Numerical experiment results for
indicating our theory are given in section 6, and some concluding remarks follow in
section 7.

Throughout the paper, we denote by 0k the k-dimensional zero column vector,
and by Ik and 0k\times l the identity matrix of order k and zero matrix of order k \times l,

respectively. The subscripts are omitted when there is no confusion. We use e
(k)
i to

denote the ith column of Ik and \scrR (M) to denote the range space of matrix M .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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236 HAIBO LI

2. Joint bidiagonalization and GSVD of a matrix pair. Although not
computing QA or QL explicitly, the joint bidiagonalization process proposed in [35] is
based on the application of upper Lanczos bidiagonalization processes to QA and QL,
respectively. In exact arithmetic, the k-step joint bidiagonalization reduces A and L
to two upper bidiagonal matrices Bk and \widehat Bk, and it generates three groups of column
orthonormal matrices Uk = (u1, . . . , uk), \widehat Uk = (\^u1, . . . , \^uk), and \widetilde Vk+1 = (\~v1, . . . , \~vk+1).
Meanwhile, it follows that \~vi is in \scrR (Q), and thus we can write it as \~vi = Qvi with
vi \in \BbbR n. The k-step JBD process can be written in matrix form as

(Im,0m\times p)\widetilde Vk =UkBk,(2.1)

QQT

\biggl( 
Uk

0p\times k

\biggr) 
= \widetilde VkB

T
k + \beta k\~vk+1(e

(k)
k )T ,(2.2)

(0p\times m, Ip)\widetilde VkP = \widehat Uk
\widehat Bk,(2.3)

where P =diag(1, - 1, . . . , ( - 1)k - 1)\in \BbbR k\times k. Let \^vi = ( - 1)i - 1vi. Using the relation

BT
k Bk + \=BT

k
\=Bk = Ik(2.4)

proved in [35], where \=Bk = \widehat BkP , one can deduce from (2.1)--(2.3) the following matrix-
form relations:

QAVk =UkBk, QT
AUk = VkB

T
k + \beta kvk+1(e

(k)
k )T ,(2.5)

QL
\widehat Vk = \widehat Uk

\widehat Bk, QT
L
\widehat Uk = \widehat Vk

\widehat BT
k + \^\beta k\^vk+1(e

(k)
k )T ,(2.6)

where Vk = (v1, . . . , vk) and \widehat Vk = (\^v1, . . . , \^vk) are column orthonormal. Therefore, the
process of computing Uk, Vk+1, and Bk is actually the upper Lanczos bidiagonaliza-
tion of QA, while the process of computing \widehat Uk, \widehat Vk+1, and \widehat Bk is the upper Lanczos
bidiagonalization of QL.

The generalized singular value decomposition (GSVD) of a matrix pair was in-
troduced by Van Loan [32], with subsequent additional developments by Paige and
Saunders [26]. The following description of GSVD is based on the CS decomposition
[10, section 2.5.4], where the compact QR factorization of C is defined as (1.1).

Theorem 2.1 (CS decomposition). Suppose Rank(C) = r. For the column or-
thonormal matrix Q, the CS decomposition of \{ QA,QL\} is\biggl( 

QA

QL

\biggr) 
=

\biggl( 
PA

PL

\biggr) \biggl( 
CA

SL

\biggr) 
WT ,

where

CA =
\Bigl( 
\Sigma A, 0 m

r n - r

\Bigr) 
, SL =

\Bigl( 
\Sigma L, 0 p

r n - r

\Bigr) 
with

\Sigma A =

\left(  Iq q

Cl l
O m - q  - l

q l r  - q  - l

\right)  , \Sigma B =

\left(  O p - r + q

Sl l
It r  - q  - l

q l r  - q  - l

\right)  

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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JBD WITH INACCURATE INNER ITERATION 237

satisfying CT
ACA + ST

LSL = In, and PA \in \BbbR m\times m, PL \in \BbbR p\times p, and W \in \BbbR n\times n are
orthogonal matrices.

If we write Cl = diag(cq+1, . . . , cq+l) with cq+1 \geq \cdot \cdot \cdot \geq cq+l > 0 and Sl =
diag(sq+1, . . . , sq+l) with 0 < sq+1 \leq \cdot \cdot \cdot \leq sq+l, then c2i + s2i = 1, i = q + 1, . . . , q + l,
and the generalized singular values of \{ A,L\} are

\infty , . . . ,\infty \underbrace{}  \underbrace{}  
q

, cq+1/sq+1, . . . , cq+l/sq+l\underbrace{}  \underbrace{}  
l

, 0, . . . ,0\underbrace{}  \underbrace{}  
t

,

where t= r - q - l. To ease the presentation, we always assume that \{ A,L\} is regular,
i.e., Rank(C) = n, which is called a Grassmann matrix pair [22, 30]. Discussions about
the GSVD of a nonregular matrix pair can be found in [24, 26, 31]. For the regular
\{ A,L\} , it follows that R is nonsingular and the GSVD is

A= PACAX
 - 1, L= PLSLX

 - 1(2.7)

with X = R - 1W \in \BbbR n\times n. The columns of PA, PL, and X are called generalized
singular vectors.

By (2.1) and (2.3), the k-step JBD process satisfies

AZk =UkBk, LZk = \widehat Uk
\=Bk,(2.8)

where Zk = R - 1Vk = (z1, . . . , zk). Therefore, Bk is the Ritz--Galerkin projection
of A on Krylov subspaces span(Uk) and span(Zk), while \=Bk is the Ritz--Galerkin
projection of L on Krylov subspaces span(\widehat Uk) and span(Zk). This makes it convenient
to approximate some extreme (largest or smallest) generalized singular values and
corresponding vectors of \{ A,L\} by the SVD of Bk and \=Bk, where the singular values
of Bk and \=Bk can be used to approximate ci and si, respectively. A more detailed
investigation on the JBD method for GSVD computation is found in section 5.

3. Inaccurate inner iterations and the reorthogonalized JBD process.
The JBD process has the structure of nested inner-outer iterations. The overall com-
putational cost of the algorithm is proportional to the overall number of inner iter-
ations. In some cases, using a sparse QR factorization for the inner least squares
problem is a good choice. For most large-scale sparse problems, however, the LSQR
solver is often much faster, and thus should be exploited for computing inner iterations
of the JBD process.

Suppose that (1.2) is solved iteratively with the following stopping criterion:

\| CT \=ri\| 
\| C\| \| \=ri\| 

\leq \tau ,(3.1)

where \=ri = \~ui - C\=zi is the residual with \=zi the approximate solution to (1.2). In (3.1),
\tau is called the stopping tolerance, which describes the accuracy of the computed
approximation. This stopping criterion is commonly used in iterative methods for
solving least squares problems such as the LSQR; see, e.g., [27]. In our analysis,
rounding errors in finite precision arithmetic are not taken into account. Denote
by \kappa (M) = \| M\| \| M\dagger \| the condition number of a matrix M . The following result
describes the influence of the computational error of the inner iteration on the outer
iteration.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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238 HAIBO LI

Theorem 3.1. For the k-step JBD, suppose the inner least squares problem (1.2)
is solved iteratively with stopping criterion (3.1). Then there exist vectors \~gi \in \scrR (Q)
such that

\beta i\~vi+1 =QQT

\biggl( 
ui

0p

\biggr) 
 - \alpha i\~vi  - \~gi(3.2)

for i= 1, . . . , k. If \kappa (C)\tau < 1, then \~gi satisfies

\| \~gi\| \leq 3\kappa (C)\tau +\scrO (\kappa (C)2\tau 2).(3.3)

Proof. Suppose that the exact solution of (1.2) is \~zi with residual \~ri = \~ui  - C\~zi.
Then QQT \~ui =C\~zi. Since the computed approximation to QQT \~ui is C\=zi, at the ith
iteration we have

\beta i\~vi+1 =C\=zi  - \alpha i\~vi

=C\~zi  - \alpha i\~vi  - (C\~zi  - C\=zi)

=QQT \~ui  - \alpha i\~vi  - \~gi,

where \~gi :=C\~zi  - C\=zi \in \scrR (Q).
Now we give the upper bound on \~gi. It is known from [27] that \=zi is the exact

solution to the perturbed problem

min
\~z
\| \~ui  - (C + \widetilde Ei)\~z\| (3.4)

with

\widetilde Ei = - \=rTi \=riC

\| \=ri\| 2
,

\| \widetilde Ei\| 
\| C\| 

=
\| CT \=ri\| 
\| C\| \| \=ri\| 

\leq \tau .

Suppose the residual of (3.4) is \=ri = \~ui  - (C + \widetilde Ei)\=zi. By the perturbation theory of
least squares problems [14, Theorem 20.1], we have

\| \~zi  - \=zi\| 
\| \~zi\| 

\leq \kappa (C)\tau 

1 - \kappa (C)\tau 

\biggl( 
1 +

\kappa (C)\| \~ri\| 
\| C\| \| \~zi\| 

\biggr) 
,(3.5)

\| \~ri  - \=ri\| \leq 2\kappa (C)\| \~ui\| \tau = 2\kappa (C)\tau .(3.6)

We mention that the right-hand terms of (3.5) and (3.6) are slightly different from
those in [14, Theorem 20.1], since \~ui in (3.4) is not perturbed.1 By the expressions of
\~ri and \=ri, we have

\| C\~zi  - C\=zi\| = \| \widetilde Ei\=zi  - (\~ri  - \=ri)\| \leq \| \widetilde Ei\| \| \=zi\| + \| \~ri  - \=ri\| 
\leq (\| C\| \| \=zi\| + 2\kappa (C))\tau .

Note that \| \~zi\| = \| C\dagger \~ui\| \leq \| C\dagger \| and \| \~ri\| \leq \| \~ui\| = 1. By (3.5) we have

\| C\| \| \=zi\| \tau \leq \| C\| \tau (\| \~zi\| + \| \~zi  - \=zi\| )

\leq \| C\| \| \~zi\| \tau +
\| C\| \| \~zi\| \tau \kappa (C)\tau 

1 - \kappa (C)\tau 
+

\kappa (C)2\tau 2\| \~ri\| 
1 - \kappa (C)\tau 

\leq \kappa (C)\tau +
\kappa (C)2\tau 2

1 - \kappa (C)\tau 
+

\kappa (C)2\tau 2

1 - \kappa (C)\tau 

= \kappa (C)\tau +\scrO (\kappa (C)2\tau 2),

1One can check the proof of Theorem 20.1 in [14, chapter 20.10] to verify the correctness of (3.5)
and (3.6).
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JBD WITH INACCURATE INNER ITERATION 239

which leads to

\| C\~zi  - C\=zi\| \leq 3\kappa (C)\tau +\scrO (\kappa (C)2\tau 2).

Thus the upper bound on \| \~gi\| is obtained.

Since \~v1 and \~gi are in \scrR (Q), by (3.2) we get \~vi \in \scrR (Q). However, due to the
appearance of nonzero \~gi, the computed matrices \widetilde Vk+1, Uk, and \widehat Uk do not have
orthonormal columns any longer. For example, by letting \~vi =Qvi we have from (3.2)

\beta 1\~v
T
1 \~v2 = \~vT1 (QQT \~u1  - \alpha 1\~v1  - \~g1)

= vT1 Q
T
Au1  - \alpha 1  - \~vT1 \~g1

= [(Im,0m\times p)\~v1]
Tu1  - \alpha 1  - \~vT1 \~g1

= - \~vT1 \~g1,

where we use \alpha 1u1 = (Im,0m\times p)\~v1. Therefore, \~v1 and \~v2 are not orthogonal to each
other. The following theorem describes the loss of orthogonality of ui and \~vi.

Theorem 3.2. Define \mu ji := uT
j ui and \nu ji := \~vTj \~vi. Let \beta 0\mu 0i = 0. Then \mu ji and

\nu ji satisfy the following coupled recursive relations:

\alpha i\mu ji = \beta j\nu j+1,i + \alpha j\nu ji  - \beta i - 1\mu j,i - 1 + \~vTi \~gj , 1\leq j \leq i - 1,(3.7)

\beta i\nu j,i+1 = \alpha i\mu ji + \beta j - 1\mu j - 1,i  - \alpha i\nu ji  - \~vTj \~gi, 1\leq j \leq i.(3.8)

Proof. Using relation (3.2) and \alpha iui = \~vi(1 :m) - \beta i - 1ui - 1, we have

\alpha iui =QAvi  - \beta i - 1ui - 1,(3.9)

\beta ivi+1 =QT
Aui  - \alpha ivi  - QT \~gi,(3.10)

where we have used \~vi =Qvi. Premultiplying (3.9) by uT
j , we have

\alpha i\mu ji = uT
j QAvi  - \beta i - 1\mu j,i - 1

= vTi (\alpha jvj + \beta jvj+1 +QT \~gj) - \beta i - 1\mu j,i - 1

= \alpha j\nu ji + \beta j\nu j+1,i  - \beta i - 1\mu j,i - 1 + \~vTi \~gj ,

where we have used vTj vi = \~vTj \~vi. The relation (3.8) can be proved similarly.

This result is a corresponding version of [21, Theorem 6] that describes the loss
of orthogonality of computed Lanczos vectors when rounding errors are considered.
Here, the loss of orthogonality occurs because a perturbation term QT \~gi is added to
the exact recursive relations of the Lanczos bidiagonalization at each iteration, which
is caused by the inaccurate inner iteration; this can be observed from the coupled
recursive relations (3.9) and (3.10). A similar recursive relation about the loss of
orthogonality of \^ui could also be established, but the expression is more complicated;
we omit it since it is not the main aim of this paper. Theorem 3.2 indicates that as the
inner iteration becomes more inaccurate and C becomes more ill-conditioned, the loss
of orthogonality of ui and \~vi occurs more rapidly. This phenomenon was numerically
observed and pointed out when the JBD was first proposed in [35].

For Lanczos-type methods, the loss of orthogonality leads to a delay of conver-
gence of Ritz values, making the JBD method for GSVD have an irregular convergence
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240 HAIBO LI

Algorithm 3.1 The reorthogonalized JBD (rJBD) process.
Input: A\in \BbbR m\times n, L\in \BbbR p\times n, nonzero s\in \BbbR n

1: Let \~v1 =Cs/\| Cs\|  \triangleleft C = (AT ,LT )T

2: for i= 1,2, . . . , k do
3: \alpha iui = \~vi(1 :m) - \beta i - 1ui - 1

4: Solve min\~z\in \BbbR n \| C\~z  - \~ui\| by LSQR with the stopping criterion (3.1), where
the approximated solution is denoted by \=zi  \triangleleft \~ui = (uT

i ,0
T
p )

T

5: si =C\=zi  - \alpha i\~vi
6: \beta i\~vi+1 = si - 

\sum i
j=1(s

T
i \~vj)\~vj  \triangleleft Reorthogonalize \~vi+1

7: \^\alpha i\^ui = ( - 1)i - 1\~vi(m+ 1 :m+ p) - \^\beta i - 1\^ui - 1

8: \^\beta i = (\alpha i\beta i)/\^\alpha i

9: end for

Output: \{ ui, \^ui\} ki=1, \{ \~vi\} 
k+1
i=1 , \{ \alpha i, \beta i, \^\alpha i, \^\beta i\} ki=1

behavior. To avoid this problem, we propose the following rJBD process. At each
step, we use the Gram--Schmidt orthogonalization to reorthogonalize \~vi such that \widetilde Vk+1

is column orthonormal, while vectors ui and \^ui do not need to be reorthogonalized.
This can save storage and computation costs compared to full reorthogonalization of
all \~vi, ui, and \^ui. This modified algorithm is described in Algorithm 3.1.

We mention that for the rJBD process, the computed quantities ui, \~vi, \^ui, \alpha i,
\^\alpha i, etc. are different from those obtained by the JBD process. Here we use the same
notations to avoid introducing too many tedious notations, and from now on, these
notations always denote quantities computed by rJBD. For the reorthogonalization of
\~vi+1, by steps 5 and 6, we can write it in a general form:

\beta i\~vi+1 =C\=zi  - \alpha i\~vi  - 
i\sum 

j=1

\xi ji\~vj ,

where \xi ji = sTi \~vj for the classical Gram--Schmidt reorthogonalization as is presented
in step 6. In practical computations, using the modified Gram--Schmidt reorthogo-
nalization is usually a better choice. By the above relation, we have

\beta i\~vi+1 =C\~zi  - \alpha i\~vi  - 
i\sum 

j=1

\xi ji\~vj  - (C\~zi  - C\=zi)

=QQT \~ui  - \alpha i\~vi  - 
i\sum 

j=1

\xi ji\~vj  - (C\~zi  - C\=zi).

Similarly to Theorem 3.1 and its proof, if we define \~gi :=C\~zi  - C\=zi, then we have

\beta i\~vi+1 =QQT

\biggl( 
ui

0p

\biggr) 
 - \alpha i\~vi  - 

i\sum 
j=1

\xi ji\~vj  - \~gi.(3.11)

In particular, the property \~gi \in \scrR (Q) and the upper bound in (3.3) still hold. Note
that (3.11) is applied to rJBD, and \~gi is different from that in (3.2) for JBD.

Let \widetilde Gk = (\~g1, . . . , \~gk). The k-step rJBD can be written in matrix form:
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JBD WITH INACCURATE INNER ITERATION 241

(Im,0m\times p)\widetilde Vk =UkBk,(3.12)

QQT

\biggl( 
Uk

0p\times k

\biggr) 
= \widetilde Vk(B

T
k +Dk) + \beta k\~vk+1

\Bigl( 
e
(k)
k

\Bigr) T
+ \widetilde Gk,(3.13)

(0p\times m, Ip)\widetilde VkP = \widehat Uk
\widehat Bk,(3.14)

where

Dk =

\left(     
\xi 11 \cdot \cdot \cdot \cdot \cdot \cdot \xi 1k

\xi 22 \cdot \cdot \cdot \xi 2k
. . .

...
\xi kk

\right)     \in \BbbR k\times k.

For the rJBD, the matrix \widetilde Vk+1 is column orthonormal, while Uk and \widehat Uk are not
column orthonormal.

4. Error analysis of the rJBD process. For the k-step rJBD, if one of \alpha i, \beta i,
\^\alpha i, and \^\beta i becomes zero, then the procedure terminates. It is usually called a ``lucky
terminate"" [9], since the procedure has found an invariant singular subspace. In our
analysis, we assume that \alpha i, \beta i, \^\alpha i, and \^\beta i never become zero or numerical negligible
after k steps.

Since \~v1 and \~gi are in \scrR (Q), by (3.11) we have \~vi \in \scrR (Q) for i= 1,2, . . . . Suppose
\~vi =Qvi, and let \^vi = ( - 1)i - 1vi. Then we obtain from (3.12)--(3.14) that

QAVk =UkBk,(4.1)

QT
AUk = Vk(B

T
k +Dk) + \beta kvk+1

\Bigl( 
e
(k)
k

\Bigr) T
+Gk,(4.2)

QL
\widehat Vk = \widehat Uk

\widehat Bk,(4.3)

where Vk = (v1, . . . , vk), \widehat Vk = (\^v1, . . . , \^vk), and Gk = QT \widetilde Gk = (g1, . . . , gk) with gi =
QT \~gi. By \~gi \in \scrR (Q) we have \| gi\| = \| \~gi\| . Based on these matrix-form relations, we
make an error analysis of the rJBD process, which builds up connections with the
bidiagonal reductions of QA and QL.

4.1. Bidiagonal reduction of \bfitQ \bfitA . Note that (4.1) and (4.2) imply that the
process of generating Bk is closely related to the Lanczos bidiagonalization of QA,
where the differences include the reorthogonalizations of vi and perturbation errors
gi. We develop methods inspired by [3] to establish a backward error bound about
the k-step bidiagonal reduction of QA. For the sake of simplicity, we only discuss the
case for m\geq n.

First we give a relation describing the generation of each column of Bk.

Theorem 4.1. For the k-step rJBD process, define

\widehat Pl+1 = P1 \cdot \cdot \cdot Pl+1, Pi = Im+n  - pip
T
i , pi =

\biggl( 
 - e

(n)
i

ui

\biggr) 
\in \BbbR m+n(4.4)

for 1\leq l\leq k - 1. There exist fl+1 \in \BbbR m+n such that

\widehat Pl+1

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
=

\biggl( 
0n

QAvl+1

\biggr) 
+ fl+1, \| fl+1\| =\scrO (l\kappa (C)\tau ),(4.5)

with s=m+ n - l.
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242 HAIBO LI

Proof. By (4.1) and the expression of Pi, we have

Pl+1

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
=

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
 - pTl+1

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
pl+1

=

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
+ \alpha l+1

\biggl( 
 - e

(n)
l+1

ul+1

\biggr) 
=

\biggl( 
\beta le

(n)
l

\alpha l+1ul+1

\biggr) 
=

\biggl( 
\beta le

(n)
l

QAvl+1  - \beta lul

\biggr) 
and

Pl

\biggl( 
\beta le

(n)
l

QAvl+1  - \beta lul

\biggr) 
= Pl

\biggl( 
0n

QAvl+1

\biggr) 
 - \beta lPl

\biggl( 
 - e

(n)
l

ul

\biggr) 
=

\biggl( 
0n

QAvl+1

\biggr) 
 - (uT

l QAvl+1)pl + \beta lpl.

By (4.2), we have

QT
Aui = \alpha ivi + \beta ivi+1 +

i\sum 
j=1

\xi jivj + gi(4.6)

for i= 1,2, . . . , l. By (4.6) and using the column orthogonality of Vl, we have

uT
l QAvl+1 = vTl+1(Q

T
Aul) = vTl+1

\left(  \alpha lvl + \beta lvl+1 +

l\sum 
j=1

\xi jlvj + gl

\right)  = \beta l + vTl+1gl,

which leads to

Pl

\biggl( 
\beta le

(n)
l

QAvl+1  - \beta lul

\biggr) 
=

\biggl( 
0n

QAvl+1

\biggr) 
 - (vTl+1gl)pl.

Using the same method as above, we have

Pi

\biggl( 
0n

QAvl+1

\biggr) 
=

\biggl( 
0n

QAvl+1

\biggr) 
 - (uT

i QAvl+1)pi

=

\biggl( 
0n

QAvl+1

\biggr) 
 - vTl+1

\left(  \alpha ivi + \beta ivi+1 +

i\sum 
j=1

\xi jivj + gi

\right)  pi

=

\biggl( 
0n

QAvl+1

\biggr) 
 - (vTl+1gi)pi

for i= 1,2, . . . , l - 1. Combining the above two equalities leads to

\widehat Pl+1

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
= P1 \cdot \cdot \cdot Pl - 1

\Biggl( \biggl( 
0n

QAvl+1

\biggr) 
 - (vTl+1gl)pl

\Biggr) 
=

\biggl( 
0n

QAvl+1

\biggr) 
+ fl+1,

with fl+1 =  - 
\sum l

i=1(P1 \cdot \cdot \cdot Pi - 1)(v
T
l+1gi)pi, where P0 = Im+n. Note that \| pi\| =

\surd 
2

and Pi are Householder matrices. By using the upper bound on \| gi\| = \| \~gi\| and
neglecting high order terms of \tau , we get \| fl+1\| =\scrO (l\kappa (C)\tau ).

This result will play an important role in the following analysis. Now we give
a backward error bound about the k-step bidiagonal reduction of QA, which is the
main result in this subsection.
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JBD WITH INACCURATE INNER ITERATION 243

Theorem 4.2. For the k-step rJBD process, there exist a column orthonormal
matrix \=Uk \in \BbbR m\times k and a matrix Ek \in \BbbR m\times n such that

(QA +Ek)Vk = \=UkBk,(4.7)

(QA +Ek)
T \=Uk = VkB

T
k + \beta kvk+1(e

(k)
k )T ,(4.8)

and

\| Ek\| =\scrO (
\surd 
nk\kappa (C)\tau ).(4.9)

Before proving Theorem 4.2, we first give some remarks. Notice that the re-
lations (4.7) and (4.8) are matrix-form recurrences of the k-step (upper) Lanczos
bidiagonalization of \=QA = QA +Ek. Thus the subspace span(Vk) is the Krylov sub-
space \scrK k( \=Q

T
A
\=QA, v1); see, e.g., [10, chapter 10.4.1]. Therefore, the singular values of

Bk will approximate the singular values of \=QA instead of those of QA. Clearly, the
accuracy of approximations to ci by the SVD of Bk is limited by the value of \kappa (C)\tau .

The proof of Theorem 4.2 depends on the following two lemmas. The first lemma
give a relation similar to that in Theorem 4.1, where some quantities are constructed
only for aiding subsequent proofs.

Lemma 4.3. For the k-step rJBD with k < n, there exist vectors \v uk+1, . . . , \v un and
\v vk+2, . . . , \v vn and nonnegative numbers \v \alpha k+1, . . . , \v \alpha n and \v \beta k+1, . . . , \v \beta n - 1 (define \v \beta n := 0
and \v vn+1 := 0), such that

(I) \v ui and \v vi are of unit-norm, and \v V = (Vk+1, \v vk+2, . . . , \v vn) is orthogonal;
(II) if we define for k\leq l\leq n - 1

\widetilde Pl+1 = \widehat Pk
\v Pk+1 \cdot \cdot \cdot \v Pl+1, \v Pi = Im+n  - \v pi\v p

T
i , \v pi =

\biggl( 
 - e

(n)
i

\v ui

\biggr) 
,

then there exist fk+1 \in \BbbR m+n such that

\widetilde Pl+1

\Biggl( 
\v \beta le

(l)
l

\v \alpha l+1e
(s)
1

\Biggr) 
=

\biggl( 
0n

QA\v vl+1

\biggr) 
+ fk+1, \| fk+1\| =\scrO (k\kappa (C)\tau ),(4.10)

where \v vk+1 := vk+1 and \v \beta k := \beta k.

Proof. First we construct vectors \v uk+1, . . . , \v un and \v vk+2, . . . , \v vn. For i \geq k + 1,
vectors \v ui and \v vi+1 are generated as

\v \alpha i\v ui =QA\v vi  - \v \beta i - 1\v ui - 1,

ri =QT
A\v ui  - \v \alpha ivi \v \beta i\v vi+1 = ri  - 

k+1\sum 
j=1

(vTj ri)vj  - 
i\sum 

j=k+2

(\v vTj ri)\v vj ,

such that \| \v ui\| = \| \v vi+1\| = 1, where for i = k + 1 we let \v uk = uk, \v vk+1 = vk+1, and
\v \beta k = \beta k. If the procedure terminates at some step, it can be continued by choosing a
new starting vector. Note that \v vi+1 are generated with full reorthogonalization. Thus
\v \beta n\v vn+1 = 0n and \v V is orthogonal.
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244 HAIBO LI

For l \geq k + 1, by using similar calculations as in the proof of Theorem 4.1, we
have

\v Pl
\v Pl+1

\Biggl( 
\v \beta le

(l)
l

\v \alpha l+1e
(s)
1

\Biggr) 
=

\biggl( 
0n

QA\v vl+1

\biggr) 
,

\v Pi

\biggl( 
0n

QA\v vl+1

\biggr) 
=

\biggl( 
0n

QA\v vl+1

\biggr) 
, i= k+ 1, . . . , l - 1,

Pi

\biggl( 
0n

QA\v vl+1

\biggr) 
=

\biggl( 
0n

QA\v vl+1

\biggr) 
 - (\v vTl+1gi)pi, i= 1, . . . , k.

Thus we obtain

\widehat Pk
\v Pk+1 \cdot \cdot \cdot \v Pl+1

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
= P1 \cdot \cdot \cdot Pk

\biggl( 
0n

QAvl+1

\biggr) 
=

\biggl( 
0n

QAvl+1

\biggr) 
+ fk+1

with fk+1 = - 
\sum k

i=1(P1 \cdot \cdot \cdot Pi - 1)(\v v
T
l+1gi)pi and \| fk+1\| =\scrO (k\kappa (C)\tau ).

For l = k, it can also be verified that (4.10) holds and we omit the similar
calculations.

Theorem 4.1 and Lemma 4.3 lead to the following result.

Lemma 4.4. For the k-step rJBD process, define the upper bidiagonal matrix as

\v B =

\left(              

\alpha 1 \beta 1

\alpha 2
. . .

. . . \beta k - 1

\alpha k \beta k

\v \alpha k+1
. . .

. . . \v \beta n - 1

\v \alpha n

\right)              
\in \BbbR n\times n.

If follows that \biggl( 
0n\times n

QA
\v Vn

\biggr) 
+ Fk = \widetilde Pn

\biggl( 
\v B

0m\times n

\biggr) 
(4.11)

with Fk = (0m+n, f2, . . . , fk\underbrace{}  \underbrace{}  
k

, fk+1, . . . , fk+1\underbrace{}  \underbrace{}  
n - k

)\in \BbbR (m+n)\times n, where fn+1 := 0 for k= n.

Proof. The proof can be completed by comparing each column of the right- and
left-hand sides of (4.11).

For the first column, we have

\widetilde Pn

\biggl( 
\alpha 1

0m+n - 1

\biggr) 
= P1

\biggl[ 
P2 \cdot \cdot \cdot Pk

\v Pk+1 \cdot \cdot \cdot \v Pn

\biggl( 
\alpha 1

0m+n - 1

\biggr) \biggr] 
= P1

\biggl( 
\alpha 1

0m+n - 1

\biggr) 
=

\biggl( 
\alpha 1

0m+n - 1

\biggr) 
+ \alpha 1

\biggl( 
 - e

(n)
1

u1

\biggr) 
=

\biggl( 
0n

\alpha 1u1

\biggr) 
=

\biggl( 
0n

QAv1

\biggr) 
.
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JBD WITH INACCURATE INNER ITERATION 245

For the (l+ 1)th column with 1\leq l\leq k - 1, by Theorem 4.1 we have

\widetilde Pn

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
= \widehat Pl+1

\Biggl[ 
Pl+2 \cdot \cdot \cdot \v Pn

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) \Biggr] 

= \widehat Pl+1

\Biggl( 
\beta le

(l)
l

\alpha l+1e
(s)
1

\Biggr) 
=

\biggl( 
0n

QAvl+1

\biggr) 
+ fl+1.

Similar calculations can be carried out for the (l+1)th column with k\leq l\leq n - 1 by
using Lemma 4.3. Therefore, the equality (4.11) holds.

With the aid of the above two lemmas, we can now give the proof of
Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.4, we have\biggl( 
0n\times n

QA
\v Vn

\biggr) 
+ Fk = \widetilde Pn

\biggl( 
\v B

0m\times n

\biggr) 
=

\Biggl( \widehat P11
\widehat P12\widehat P21
\widehat P22

\Biggr) \biggl( 
\v B

0m\times n

\biggr) 
=

\Biggl( \widehat P11\widehat P21

\Biggr) 
\v B,

where \widetilde Pn is partitioned as

\widetilde Pn =

n m\biggl( \biggr) \widehat P11
\widehat P12 n\widehat P21
\widehat P22 m

.

By [25, Theorem 4.1], there exist a column orthonormal matrix \=Un \in \BbbR m\times n and a
matrix M \in \BbbR m\times n satisfying 0.5\leq \| M\| \leq 1 such that

QA
\v Vn + \widehat Ek = \=Un

\v Bn,

where \widehat Ek = (M \widehat PT
11, Im)Fk. Therefore, we have

(QA +Ek) \v Vn = \=Un
\v Bn

with Ek = (M \widehat PT
11, Im)Fk

\v V T
n , which can also be written as

(QA +Ek)
T \=Un = \v Vn

\v BT
n .

By equating the first k columns of the above two equalities, respectively, we obtain
(4.7) and (4.8). Finally, we have the upper bound

\| Ek\| \leq 
\bigm\| \bigm\| \bigm\| \Bigl( M \widehat PT

11, Im

\Bigr) \bigm\| \bigm\| \bigm\| \| Fk\| \leq 
\surd 
2\| Fk\| =\scrO (

\surd 
nk\kappa (C)\tau ),

where we have used \| Fk\| \leq \| Fk\| F \leq 
\surd 
nmax1\leq l\leq k \| fl+1\| .

4.2. Bidiagonal reduction of \bfitQ \bfitL . For the rJBD process, a relation that is
similar to (2.4) holds, and the process of generating \widehat Bk is closely related to the
Lanczos bidiagonalization of QL.

Theorem 4.5. For the k-step rJBD process, we have

BT
k Bk + \=BT

k
\=Bk = Ik +Hk,(4.12)

where Hk is a diagonal matrix, and the ith diagonal of Hk is of order \scrO (\theta i - 1\kappa (C)\tau )
with \theta i =

\sum i - 1
j=0(

\^\beta i \cdot \cdot \cdot \^\beta i - j)/(\^\alpha i \cdot \cdot \cdot \^\alpha i - j) for i\geq 1 and \theta 0 = 0.
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246 HAIBO LI

Table 1
Properties of the test matrices.

Matrix pair m,p,n \kappa (C) Description

\{ illc1850, well1850\} 1850,1850,712 38.6 least squares problem
\{ dw2048, rdb2048\} 2048,2048,2048 261.0 electromagnetics problem

\{ swang1, 0.1L1d\} 3169,3168,3169 45.0 semiconductor device problem

\{ A1, L1\} 10000,10000,10000 100000.0 self-constructed

0 10 20 30 40 50 60

Iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 10 20 30 40 50 60

Iteration

0

2

4

6

8

10

12

Fig. 1. Variation of values \^\beta k/\^\alpha k and \theta k for rJBD of \{ illc1850, well1850\} , \tau = 10 - 12.

The growth speed of \theta i is moderate under the assumption that \^\beta i/\^\alpha i is a mod-
erate value for i = 1, . . . , k, which is reasonable since if the rJBD process does not
numerically terminate, then both \^\beta i and \^\alpha i are moderate values. We use the example
as shown in Figure 1 to illustrate the variation of values \^\beta k/\^\alpha k and \theta k with respect
to k. The property of the test matrix pair \{ \sansi \sansl \sansl \sansc \sansone \sanseight \sansfive \sanszero ,\sansw \sanse \sansl \sansl \sansone \sanseight \sansfive \sanszero \} is shown in Table 1.

Note that the only difference between relations (4.12) and (2.4) is the perturbation
term Hk, which comes from the inaccurate inner iteration. From Theorem 4.5, we
know that the singular values of \=Bk are determined by those of Bk within errors of
order \scrO (\kappa (C)\tau ), where we omit the moderate value max1\leq i\leq k - 1 \theta i. This ensures that
\=Bk can also be used to approximate generalized singular values of \{ A,L\} .

To prove this result, we need the following lemma.

Lemma 4.6. For any i\geq 1, we have

\^\beta iQ
T
L\^ui = \^\beta 2

i \^vi+1 + \widehat Vidi + qi

with a vector di \in \BbbR i, and \| qi\| =\scrO (\theta i\kappa (C)\tau ).

Proof. The proof can be completed by mathematical induction. For i = 1, we
obtain from \^\alpha 1\^u1 =QL\^v1 that

\^\alpha 1Q
T
L\^u1 = (In  - QT

AQA)\^v1 = \^v1  - QT
A(\alpha 1u1)

= \^v1  - \alpha 1(\beta 1v2 + \alpha 1v1 + \xi 11v1 + g1)

= \^\alpha 1
\^\beta 1\^v2 + (1 - \alpha 2

1  - \alpha 1\xi 11)\^v1  - \alpha 1g1.

Then we get

\^\beta 1Q
T
L\^u1 = \^\beta 2

1\^v2 + \widehat V1d1  - \^\beta 1/\^\alpha 1 \cdot \alpha 1g1 = \^\beta 2
1\^v1 + \widehat V1d1 + q1

with d1 = \^\beta 1/\^\alpha 1 \cdot (1 - \alpha 2
1  - \alpha 1\xi 11) and q1 =  - \^\beta 1/\^\alpha 1 \cdot \alpha 1g1, and \| q1\| = \scrO (\theta 1\kappa (C)\tau )

since \alpha 1 = \| \~v1(1 :m)\| \leq 1.
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JBD WITH INACCURATE INNER ITERATION 247

Suppose the relation is true for indices up to i - 1\geq 1. For index i, we have

\^\alpha iQ
T
L\^ui =QT

LQL\^vi  - \^\beta i - 1Q
T
L\^ui - 1

= (In  - QT
AQA)\^vi  - \^\beta i - 1Q

T
L\^ui - 1

= \^vi + ( - 1)iQT
A(\alpha iui + \beta i - 1ui - 1) - \^\beta i - 1Q

T
L\^ui - 1.

By (4.6) we have

( - 1)i\alpha iQ
T
Aui = \^\alpha i

\^\beta i\^vi+1 + ( - 1)i\alpha i

\left(  \alpha ivi +

i\sum 
j=1

\xi jivj + gi

\right)  
and

QT
Aui - 1 \in span\{ \^v1, . . . , \^vi\} + gi - 1.

Combining the above two relations with the induction hypothesis

\^\beta i - 1Q
T
L\^ui - 1 = \^\beta 2

i - 1\^vi + \widehat Vi - 1di - 1 + qi - 1

and \| qi - 1\| =\scrO (\theta i - 1\kappa (C)\tau ), we get

\^\alpha iQ
T
L\^ui = \^\alpha i

\^\beta i\^vi+1 + \widehat Vi
\~di + ( - 1)i(\alpha igi + \beta i - 1gi - 1) + qi - 1(4.13)

with a \~di \in \BbbR i. By Theorem 4.1 we have

(\alpha 2
i + \beta 2

i - 1)
1/2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 
\beta i - 1e

(i)
i

\alpha ie
(s)
1

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( 0n

QAvi

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| + \| fi\| \leq 1 +\scrO (i\kappa (C)\tau ).(4.14)

Thus we get

\| \alpha igi + \beta i - 1gi - 1\| \leq 
\surd 
2(\alpha 2

i + \beta 2
i - 1)

1/2max\{ \| gi\| ,\| gi - 1\| \} =\scrO (\kappa (C)\tau )

by neglecting higher orders of \tau . We finally obtain from (4.13)

\^\beta iQ
T
L\^ui = \^\beta 2

i \^vi+1 + \widehat Vidi + qi

with qi = \^\beta i/\^\alpha i[( - 1)i(\alpha igi + \beta i - 1gi - 1) + qi - 1], and

\| qi\| \leq \^\beta i/\^\alpha i\scrO (\kappa (C)\tau ) + \^\beta i/\^\alpha iqi - 1 =\scrO (\theta i\kappa (C)\tau )

since \^\beta i/\^\alpha i + \^\beta i/\^\alpha i \cdot \theta i - 1 = \theta i. This completes the proof of the induction step.

Now we can give the proof of Theorem 4.5.

Proof of Theorem 4.5. Using the bidiagonal structure of Bk and \=Bk, we know
that Hk is symmetric tridiagonal. Note that the subdiagonals of BT

k Bk and \=BT
k
\=Bk

are \alpha i\beta i and  - \^\alpha i
\^\beta i, respectively. Thus, the subdiagonals of Hk are zero and Hk is a

diagonal matrix. For the ith diagonal element, that is, \alpha 2
i + \beta 2

i - 1 + \^\alpha 2
i +

\^\beta 2
i - 1, we use

the relations

\alpha iui + \beta i - 1ui - 1 = \~vi(1 :m),

\^\alpha i\^ui + \^\beta i - 1\^ui - 1 = \~vi(m+ 1 :m+ p).
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248 HAIBO LI

Adding the squares of norms of the above two equalities leads to

\alpha 2
1 + \beta 2

i - 1 + \^\alpha 2
i +

\^\beta 2
i - 1 + 2(\alpha i\beta i - 1u

T
i - 1ui + \^\alpha i

\^\beta i - 1\^u
T
i - 1\^ui) = 1.

For i= 1, we have \alpha 2
1 + \^\alpha 2

i = 1 due to \beta 0 = \^\beta 0 = 0. For i > 1, since

\alpha iu
T
i - 1ui = uT

i - 1(QAvi  - \beta i - 1ui - 1) = uT
i - 1QAvi  - \beta i - 1

= vTi

\left(  \beta i - 1vi + \alpha i - 1vi - 1 +

i - 1\sum 
j=1

\xi jivj + gi - 1

\right)   - \beta i - 1

= vTi gi - 1,

by (4.14) we have

| \alpha i\beta i - 1u
T
i - 1ui| \leq \beta i - 1\| gi - 1\| \leq [1 +\scrO (i\kappa (C)\tau )]\| gi - 1\| =\scrO (\kappa (C)\tau ).

By Lemma 4.6 we have

| \^\alpha i
\^\beta i - 1\^u

T
i - 1\^ui| = | \^\beta i - 1\^u

T
i - 1(QL\^vi  - \^\beta i - 1\^ui - 1)| 

= | \^vTi ( \^\beta i - 1Q
T
L\^ui - 1) - \^\beta 2

i - 1| 
= | \^vTi ( \^\beta 2

i - 1\^vi +
\widehat Vi - 1li - 1 + qi - 1) - \^\beta 2

i - 1| 
=\scrO (\theta i - 1\kappa (C)\tau ).

Therefore we obtain

 - 2(\alpha i\beta i - 1u
T
i - 1ui + \^\alpha i

\^\beta i - 1\^u
T
i - 1\^ui) =\scrO (\theta i - 1\kappa (C)\tau ),

which is the ith diagonal of Hk.

Similarly to relations (4.1) and (4.2), there are a couple of recursive relations
describing the reduction process from QL to \widehat Bk.

Theorem 4.7. The following relations hold for the k-step rJBD process:

QL
\widehat Vk = \widehat Uk

\widehat Bk,(4.15)

QT
L
\widehat Uk = \widehat Vk

\Bigl( \widehat BT
k + \widehat Dk

\Bigr) 
+ \^\beta k\^vk+1

\Bigl( 
e
(k)
k

\Bigr) T
+ \widehat Gk,(4.16)

where \widehat Dk is upper triangular, and

\| \widehat Gk\| =\scrO (\| \widehat B - 1
k \| 

\surd 
n\kappa (C)\tau ).(4.17)

Proof. Relation (4.15) is just (4.3). Combining (4.1) and (4.2), we have

QT
AQAVk =QT

AUk(Bk) =

\biggl[ 
Vk(B

T
k +Dk) + \beta kvk+1

\Bigl( 
e
(k)
k

\Bigr) T
+Gk

\biggr] 
Bk

= VkB
T
k Bk + \alpha k\beta kvk+1

\Bigl( 
e
(k)
k

\Bigr) T
+ VkDkBk +GkBk.

Premultiplying (4.15) by QT
L, we have

QT
LQLVk =QT

L
\widehat Uk
\widehat BkP.
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JBD WITH INACCURATE INNER ITERATION 249

Adding the above two equalities and using Theorem 4.5, we obtain

Vk = (QT
AQA +QT

LQL)Vk

= Vk[Ik  - P \widehat BT
k
\widehat BkP +Hk] +QL

\widehat Uk
\widehat BkP + \alpha k\beta kvk+1

\Bigl( 
e
(k)
k

\Bigr) T
+ VkDkBk +GkBk.

Using \alpha k\beta k = \^\alpha k
\^\beta k and \^vk+1 = ( - 1)kvk+1, after some rearrangements we obtain

\widehat Vk
\widehat BT
k
\widehat Bk =QT

L
\widehat Uk
\widehat Bk  - \^\alpha k

\^\beta k\^vk+1

\Bigl( 
e
(k)
k

\Bigr) T
+ \widehat VkP (DkBk +Hk)P +GkBkP.

Therefore, we have

QT
L
\widehat Uk = \widehat Vk( \widehat BT

k + \widehat Dk) + \^\beta k\^vk+1

\Bigl( 
e
(k)
k

\Bigr) T
 - GkBkP \widehat B - 1

k ,

where \widehat Dk =  - P (DkBk +Hk)P \widehat B - 1
k is upper triangular. Relation (4.16) is obtained

by letting \widehat Gk = - GkBkP \widehat B - 1
k . By Theorem 4.2 we get

\| Bk\| = \| \=UT
k (QA +Ek)Vk\| \leq \| QA\| + \| Ek\| \leq 1 +\scrO (

\surd 
nk\kappa (C)\tau ).

By neglecting high order terms of \tau in \| GkBkP \widehat B - 1
k \| , we finally obtain the upper

bound on \| \widehat Gk\| .

Since \widehat Dk is upper triangular, if we write the matrix \widehat Dk as

\widehat Dk =

\left(     
\^\xi 11 \cdot \cdot \cdot \cdot \cdot \cdot \^\xi 1k

\^\xi 22 \cdot \cdot \cdot \^\xi 2k
. . .

...
\^\xi kk

\right)     \in \BbbR k\times k,

then Theorem 4.7 implies for each i= 1, . . . , k that

\^\beta i\^vi+1 =QT
L\^ui  - \^\alpha i\^vi  - 

i\sum 
j=1

\^\xi ji\^vj  - \^gi

with \| \^gi\| = \scrO (\| \widehat B - 1
k \| 

\surd 
n\kappa (C)\tau ), which corresponds to the reorthogonalization of \^vi

with error term \^gi, where \^\xi ji are coefficients appearing in the reorthogonalization.
Based on (4.15) and (4.16), a result similar to that in Theorem 4.2 about the bidiag-
onal reduction of QL can also be obtained.

5. Convergence and accuracy of the approximate GSVD components.
The results of section 4 can be used to investigate the convergence and accuracy
of GSVD components computed by rJBD. First we give a brief review on the JBD
based GSVD computation. For the GSVD (2.7) of \{ A,L\} , let X = (x1, . . . , xn),
PA = (pA,1, . . . , pA,m), and PL = (pL,1, . . . , pL,p). Then it can be written in the vector
form \left\{     

Axi = cipA,i,

Lxi = sipL,i,

siA
T pA,i = ciL

T pL,i

for i = 1, . . . , n, where the ith largest generalized singular value is ci/si, and the
corresponding generalized singular vectors are xi, pA,i, and pL,i, respectively. We
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250 HAIBO LI

also use pair \{ ci, si\} to denote a generalized singular value. Note that each xi satisfies
the normalization condition

xT
i (A

TA+LTL)xi = 1.(5.1)

In this paper, we only consider approximations to \{ ci, si\} and the corresponding
right generalized singular vector xi. In order to approximate left generalized singular
vectors pA,i and pL,i, a strategy extracting information from span(Uk) and span(\widehat Uk) is

needed since Uk and \widehat Uk are not column orthonormal. For a possibly worked method,
one can refer to [3, section 6].

Assume the compact SVD of Bk is computed as

Bk = Pk\Theta kY
T
k , \Theta k =diag

\Bigl( 
c
(k)
1 , . . . , c

(k)
k

\Bigr) 
, 1\geq c

(k)
1 > \cdot \cdot \cdot > c

(k)
k \geq 0,(5.2)

where Pk = (p
(k)
1 , . . . , p

(k)
k ) and Yk = (y

(k)
1 , . . . , y

(k)
k ) are k \times k orthogonal matrices.

Since c2i + s2i = 1, we only need to compute ci, and the approximate generalized

singular values are \{ c(k)i , s
(k)
i \} with s

(k)
i = (1  - (c

(k)
i )2)1/2. The approximate right

generalized singular vectors are x
(k)
i =R - 1Vky

(k)
i for i= 1, . . . , k. Recall from section

2 that R is invertible under the assumption that \{ A,L\} is a regular matrix pair. It is

shown in [35] that the explicit computation of R - 1 can be avoided to compute x
(k)
i

by solving \biggl( 
A
L

\biggr) 
x
(k)
i =QRR - 1Vky

(k)
i = \widetilde Vky

(k)
i(5.3)

iteratively. The above approximations can also be obtained by the SVD of \widehat Bk, which
is connected to that of Bk by (4.12). Detailed discussions about the SVD of Bk and\widehat Bk when Hk \not = 0 can be found in [17, section 4]. Here we do not discuss it any longer.

Now we investigate the final accuracy of computed GSVD components by the
SVD of Bk. Suppose that the algorithm is stopped at the k0th step, and the singular
values and right singular vectors of Bk0

are c
(k0)
i and w

(k0)
i for 1\leq i\leq k0. By Theorem

4.2, c
(k0)
i and Vk0w

(k0)
i will approximate the SVD components of \=QA =QA+Ek0 since

Bk0
is the Ritz--Galerkin projection of \=QA on subspaces span( \=Uk0

) and span(Vk0
). In

order to analyze the final accuracy, we use the following assumption.

Assumption 1. Denote the ith largest singular value of \=QA by \=ci with correspond-
ing right singular vector \=wi. We assume at the k0th step that

| \=ci  - c
(k0)
i | \ll \tau , \| \=wi  - Vk0

y
(k0)
i \| \ll \tau .(5.4)

This assumption can always be satisfied for a sufficiently large k0 \leq n, since Bk0
can

be used to approximate the SVD components of the m\times n matrix \=QA.

Theorem 5.1. For the rJBD based GSVD computation by the SVD of Bk which
stops at k0 such that Assumption 1 is satisfied, it follows for any 1\leq i\leq k0 that

| ci  - c
(k0)
i | =\scrO (

\surd 
nk0\kappa (C)\tau ).(5.5)

Suppose the multiplicity of \{ ci, si\} is 1 and (5.3) is solved exactly. Let \gamma i =min\{ ci - 1 - 
ci, ci  - ci+1\} for 1< i < k0 and \gamma 1 = c1  - c2, \gamma k0

= ck0 - 1  - ck0
. For any 1\leq i\leq k0, if

\| Ek0
\| <\gamma i, then

\| xi  - x
(k0)
i \| /\| R - 1\| =\scrO 

\biggl( \surd 
nk0\kappa (C)\tau 

\gamma i  - \| Ek0
\| 

\biggr) 
.(5.6)
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JBD WITH INACCURATE INNER ITERATION 251

Proof. Notice that the SVD of QA is QA = PACAW
T . By the perturbation theory

of singular values (see, e.g., [10, Corollary 8.6.2]), we have

| ci  - \=ci| \leq \| QA  - \=QA\| = \| Ek0
\| =\scrO (

\surd 
nk0\kappa (C)\tau ).

Therefore, under Assumption 1 we have

| ci  - c
(k0)
i | \leq | ci  - \=ci| + | \=ci  - c

(k0)
i | =\scrO (

\surd 
nk0\kappa (C)\tau ).

For ci that is a singular value of QA with multiplicity 1, by the perturbation
theorem of singular vectors [5, Theorem 1.2.8], we have the perturbation bound

| sin\theta (wi, \=wi)| \leq 
\| Ek0

\| 
\gamma i  - \| Ek0\| 

,

which leads to \| wi  - \=wi\| =\scrO 
\Bigl( \surd 

nk0\kappa (C)\tau 
\gamma i - \| Ek0

\| 

\Bigr) 
by neglecting high order terms of \tau . Note

that x
(k0)
i =R - 1Vk0

y
(k0)
i . Under Assumption 1 we have

\| xi  - x
(k0)
i \| \leq \| R - 1wi  - R - 1 \=wi\| + \| R - 1 \=wi  - R - 1Vk0

y
(k0)
i \| 

\leq \| R - 1\| \| wi  - \=wi\| + \| R - 1\| \| \=wi  - Vk0y
(k0)
i \| 

=\scrO 
\biggl( 
\| R - 1\| 

\surd 
nk0\kappa (C)\tau 

\gamma i  - \| Ek0
\| 

\biggr) 
.

Dividing both sides by \| R - 1\| , the upper bound is obtained.

We remark that the matrix-size/iteration-step dependent constant
\surd 
nk0 in \scrO (\cdot )

is nonessential, because it is introduced only for the end to estimate an upper bound
for \| Ek0

\| . Note that the convergence rate of c
(k)
i and w

(k)
i as k increases from 1 to

k0 mainly depends on the convergence rate of approximating the SVD of Bk. Thus
Theorem 5.1 implies that the final accuracy of approximate GSVD components is
limited by \kappa (C)\tau while the convergence rate is not affected too much. Combining
(5.2) with (4.12) we have \=BT

k
\=Bk  - Hk = Yk(Ik  - \Theta 2

k)Y
T
k , which implies that the

singular values of \=Bk are determined by those of Bk within errors of order \scrO (\kappa (C)\tau ).
Thus if we want to use the SVD of \=Bk to approximate si, the final accuracy is also
limited by the value of \kappa (C)\tau ; this will be illustrated by a numerical example in
section 6.

Note that the normalization condition (5.1) is xT
i R

TRxi = 1. The expression (5.6)
can be regarded as another form of relative error. It indicates that the final accuracy of
approximate right generalized singular vectors depends not only on the value of \kappa (C)\tau 
but also on the gap between generalized singular values. For singular values with
multiplicity bigger than 1, the computation of invariant singular subspaces instead of
single singular vectors is usually considered. Although in this case the mathematical
expression is a bit more complicated, the spirit is similar to the approach of obtaining
(5.6); interested readers can refer to [34] or [29, chapter 5.4].

Finally, we investigate the solution accuracy of (5.3) for getting the final x
(k0)
i .

Suppose (5.3) is solved iteratively using stopping criterion (3.1) with tolerance \=\tau and

the corresponding solution is \=x
(k0)
i . Using the same approach as that for establishing

(3.5), we have

\| x(k0)
i  - \=x

(k0)
i \| 

\| x(k0)
i \| 

\leq \kappa (C)\=\tau 

1 - \kappa (C)\=\tau 

\Biggl( 
1 +

\kappa (C)\| \~si\| 
\| C\| \| x(k0)

i \| 

\Biggr) 
=

\kappa (C)\=\tau 

1 - \kappa (C)\=\tau 
,(5.7)
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Fig. 2. Computational error \~gi and its upper bound for JBD. For \{ illc1850,well1850\} and
\{ swang1,0.1L1d\} , \tau 1 = 10 - 12, \tau 2 = 10 - 9; for \{ dw2048,rdb2048\} and \{ A1,L1\} , \tau 1 = 10 - 10, \tau 2 = 10 - 8.

where the residual \~si = \widetilde Vky
(k0)
i  - Cx

(k0)
i = 0 since (5.3) is consistent. Comparing

(5.6) and (5.7), the relative error \| x(k0)
i  - \=x

(k0)
i \| /\| x(k0)

i \| need not be much smaller
than \kappa (C)\tau /\gamma i. For a well-conditioned C, values \=\tau \in [0.1\tau ,10\tau ] are often feasible as
illustrated by experimental results.

6. Experimental results. We report some experimental results to justify the
theoretical results obtained. All numerical experiments are performed in MATLAB
R2019b, where all computations are carried out using double precision with roundoff
unit 2 - 53 \approx 1.11\times 10 - 16. The codes are available at https://github.com/Machealb/
gsvd iter.

The tested matrices are mainly taken from the SuiteSparse matrix collection [6]
with the same names. The matrix L1d \in \BbbR (n - 1)\times n is a bidiagonal matrix with one
more row than columns and values  - 1 and 1 on the subdiagonal and diagonal parts,
respectively. The matrix pair \{ A1,L1\} is constructed as follows. Set m = n = p =
10000. Let CA = diag(\{ ci\} ni=1) with ci = (n - i+ 1)/2n and SL = diag(\{ si\} ni=1) with
si = (1 - c2i )

1/2. Then let D be a diagonal matrix generated by the MATLAB built-in
function D = \ttd \tti \tta \ttg (\ttl \tti \ttn \tts \ttp \tta \ttc \tte (\ttone ,\ttone \tte \ttfive ,\ttn )). Finally let A1 = CAD and L1 = SLD. By
the construction, the QR factorization of C =

\bigl( 
A1

L1

\bigr) 
is
\bigl( 
A1

L1

\bigr) 
=
\bigl( 
CA

SL

\bigr) 
D with Q=

\bigl( 
CA

SL

\bigr) 
,

and \kappa (C) = \kappa (D) = 105. The properties of the matrices are described in Table 1.
Note the scaling factor 0.1 before L1d, which ensures a faster convergence of LSQR
for inner iterations. For each matrix pair, we use the random vector s= \ttr \tta \ttn \ttd \ttn (\ttn ,\ttone )

with random seed \ttr \ttn \ttg (\tttwo \ttzero \tttwo \tttwo ) as the starting vector for JBD and rJBD. The inner
least squares problem is iteratively solved by the LSQR with stopping criterion (3.1).

Experiments for JBD and rJBD. We first use some numerical experiments to
confirm the theoretical results about the JBD and rJBD processes. Figure 2 shows
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(d) \{ dw2048, rdb2048\} , rJBD, \tau = \tau 1

Fig. 3. Loss of orthogonality of \~vi for JBD and orthogonality level of \~vi, ui, and \^ui for rJBD.

the numerical behavior of JBD where inner iterations are computed using LSQR with
stopping tolerance \tau . The computational error \~gi and its upper bound (3.3) of the four
test matrix pairs are drawn. For each test matrix pair and each \tau = \tau 1 or \tau = \tau 2, we
find that \| \~gi\| varies slightly and 3\kappa (C)\tau is an upper bound, which confirms Theorem
3.1. Note that for \{ A1, L1\} the upper bound is more overestimated than others;
this is because the upper bound in (3.6) is more likely to be overestimated when the
condition number is very large. In addition, in the experiments we have found that for
(1.2) it takes extremely many iterations (even more than n) of LSQR to achieve the
desired accuracy described by (3.1). In this case, a proper preconditioner or a scaling
factor transforming \{ A,L\} to \{ A,\gamma L\} can be very useful in accelerating convergence.
Figure 3 depicts the orthogonality level of \~vi, ui, and \^ui measured by \| Ik  - \widetilde V T

k
\widetilde Vk\| 

and so on when inner iterations are computed inexactly. We can find that a large
\tau leads more quickly to a loss of orthogonality of \~vi. This phenomenon has already
been observed in [35], the reason for which is revealed by Theorem 3.2. For rJBD
that applies full reorthogonalization to \~vi, the orthogonality level of \~vi is kept around
a value close to the roundoff unit, but the orthogonality of ui and \^ui still decreases
gradually since reorthogonalization is not applied to them.

Figures 4 and 5 illustrate our error analysis results of rJBD. For the four test
examples, the norms of both fl+1 and Hk grow slightly with respect to iteration
number l or k, and they can be controlled by \kappa (C)\tau times a moderate constant for
the rJBD with not too many iterations. This confirms Theorems 4.1 and 4.5. The
relation (4.12) indicates that the singular values of \widehat Bk are determined by those of Bk

with a perturbation of order \| Hk\| = \scrO (\kappa (C)\tau ). Therefore, together with Theorem
4.2, we can expect that the absolute errors of approximate generalized singular values
computed by the SVD of Bk or \widehat Bk are both of order \scrO (\kappa (C)\tau ) and the convergence
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Fig. 4. The norms of error terms fl+1, Hk and their upper bounds for rJBD.
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Fig. 5. The norms of error terms \~vTk+1
\widehat Gk and their upper bound for rJBD.
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(c) JBD
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Fig. 6. Convergence of Ritz values. The top two use the SVD of Bk to approximate c1, c2, and
c3; the bottom two use the SVD of \widehat Bk to approximate s1, s2, and s3. \tau = 10 - 10.

behaviors of the two are very similar as long as the value of \kappa (C)\tau is small to a
certain extent, as will be shown in Figure 6. Since \widehat Gk cannot be computed explicitly,
we depict \| \~vTk+1

\widehat Gk\| with \~vTk+1
\widehat Gk = \~vTk+1Q

T
L
\widehat Uk  - \^\beta ke

(k)
k by (4.16). We observe that

\| \~vTk+1
\widehat Gk\| grows slightly with \| \widehat B - 1

k \kappa (C)\tau \| an upper bound, which confirms Theorem
4.7. For \{ A1, L1\} the upper bounds are more overestimated than others, the reason
for which is the same as in the case of \~gi.

Experiments for GSVD computations. Then we illustrate the numerical behavior
of the rJBD method for partial GSVD computations. The matrix pair \{ A2,L2\} 
used in the experiments is constructed as follows. Set m = n = p = 800. Let
CA = diag(\{ ci\} ni=1) with c(1) = 0.99, c(2) = 0.98, c(3) = 0.97, c(4 : n - 3) = \ttl \tti \ttn \tts \ttp \tta \ttc \tte 

(\ttzero .\ttnine \ttsix ,\ttzero .\ttzero \ttfour ,\ttn -\ttsix ) and c(n  - 2) = 0.03, c(n  - 1) = 0.02, c(n) = 0.01, and SB =
diag(\{ si\} ni=1) with si = (1  - c2i )

1/2. Then let W be an orthogonal matrix by let-
ting W = \ttg \tta \ttl \ttl \tte \ttr \tty (`\tto \ttr \ttt \tth \tto \ttg ',\ttn ,\tttwo ) and D = \ttd \tti \tta \ttg (\ttl \tti \ttn \tts \ttp \tta \ttc \tte (\ttone ,\ttone \ttzero ,\ttn )). Finally let
A2 = CAW

TD and L2 = SLW
TD. By the construction, the generalized singular

values of \{ A2,L2\} are ci/si with right generalized singular vectors the ith column of
D - 1W , and \kappa (C) = 10.

Figure 6 depicts the convergence of Ritz values, which are the first three largest
singular values of Bk or the first three smallest singular values of \widehat Bk. Both of them
are used to compute the first three largest generalized singular values of \{ A2,B2\} 
by approximating c1, c2, c3 or s1, s2, s3. The right vertical line indicates the values
of ci or si for i = 1, . . . , n, and the left and right panels exhibit the convergence
behaviors of JBD and rJBD for partial GSVD computations, respectively. For JBD we
observe from Figure 6(a) that the second largest Ritz value suddenly jumps up at some
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(b) \tau 1 = 10 - 10, \tau 2 = 10 - 12

Fig. 7. The approximate accuracy of c
(k)
1 by the SVD of Bk and of \^s

(k)
k by the SVD of \widehat Bk.

iteration to continue converging to c1, which is the so called ``ghost phenomenon"" due
to the loss of orthogonality of Lanczos vectors. This phenomenon can be observed
more clearly in Figure 6(c), which depicts the same convergence behavior as Figure
6(a), since they approximate the same generalized singular values. For the rJBD
method, the convergence of Ritz values becomes regular, which is in accordance with
the fact that in exact arithmetic a simple generalized singular value is approximated
by Ritz values without ghosts. This property can be explained by Theorem 4.2. The
convergence behaviors of approximations to the smallest generalized singular values
are similar and we do not show them.

Figure 7 shows the final accuracy of c
(k)
1 for approximating c1 and of \^s

(k)
k for

approximating s1, where the stopping tolerances for inner iterations are 10 - 10 and
10 - 12. By Theorem 4.2, c

(k)
1 will converge to c1 with absolute error | c(k)1  - c1| of

order \scrO (\kappa (C)\tau ), which can be clearly observed in Figure 7(a). Figure 7(b) shows the

convergence and absolute error | \^s(k)k  - s1| of \^s
(k)
k by the SVD of \widehat Bk, which is very

similar to that of c
(k)
1 but with a slight difference, due to the relation (4.12).

Finally we show the convergence and final accuracy of approximate generalized
singular vectors. The stopping tolerances for inner iterations are 10 - 10 and 10 - 12,
and the approximations to the right generalized singular vector x1 corresponding to
c1/s1 are obtained by the SVD of Bk, where x

(k)
1 is computed by explicitly using QR

factorization of C to solve (5.3), while \=x
(k)
1 and \~x

(k)
1 are computed by solving (5.3)

using LSQR with stopping tolerances \=\tau 1 = \tau and \=\tau 2 = 100\tau . The approximation errors
are also measured using

sin\angle 
\bigl( 
x1, x

(k)
1

\bigr) 
, sin\angle 

\bigl( 
x1, \=x

(k)
1

\bigr) 
, sin\angle 

\bigl( 
x1, \~x

(k)
1

\bigr) 
.

Since \gamma 1 \gg k\kappa (C)\tau for k = 1, . . . ,80, in this case (5.6) becomes \| x1  - x
(k)
1 \| /\| R - 1\| =

\scrO (
\surd 
nk\kappa (C)\tau /\gamma 1), and we use \kappa (C)\tau /\gamma 1 as an upper bound on final accuracy of

approximate vectors.
From Figure 8 we can find that x

(k)
1 can eventually approximate x1 with relative

errors bounded by \kappa (C)\tau /\gamma 1, and the convergence rate is not affected too much by

different values of \tau . The computed \=x
(k)
1 with \=\tau 1 = \tau has the same accuracy as x

(k)
1 ,

while the accuracy of \~x
(k)
1 computed with \=\tau 1 = 100\tau is slightly worse. Although we

do not show it here, using \=\tau = 10\tau to solve (5.3) can also get a vector with the same

accuracy as x
(k)
1 . All values of \=\tau \in [0.1\tau ,10\tau ] are feasible for computing x1.
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(d) \tau 1 = 10 - 12

Fig. 8. The accuracy of approximations to x1, where \=x
(k)
1 and \~x

(k)
1 are computed from (5.3) by

LSQR with stopping tolerance \=\tau 1 = \tau and \=\tau 2 = 100\tau .

7. Conclusion and outlook. For the joint bidiagonalization of a matrix pair
\{ A,L\} , we have studied the influence of inaccuracy of inner iterations on the behavior
of the algorithm. For a commonly used stopping criterion with tolerance \tau to describe
solution accuracy of inner least squares problems, we have shown that the orthogonal-
ity of Lanczos vectors will be lost where the loss rate depends on \tau and the condition
number of C = (AT ,LT )T . A reorthogonalized JBD process called rJBD is proposed
to keep orthogonality of \widetilde Vk, and an error analysis has been carried out to build up
connections between the rJBD process and Lanczos bidiagonalizations of QA and QL,
where a backward error bound about the bidiagonal reduction of QA is established.
The results of error analysis are used to investigate the convergence and accuracy of
the computed GSVD components of \{ A,L\} by rJBD, which shows that the approxi-
mate generalized singular values can only reach an accuracy of order \scrO (\kappa (C)\tau ) and
the accuracy of approximate right generalized singular vectors depends not only on
the value of \kappa (C)\tau but also on the gap between generalized singular values, while the
convergence rate is not affected very much. Some numerical experiments are made to
confirm the theoretical results.

For practical JBD based GSVD computations, our results can provide a guide-
line for choosing a proper computing accuracy of inner iterations in order to obtain
approximate GSVD components with a desired accuracy. In addition, there are still
some issues that need to be considered to make the JBD method a practical GSVD
algorithm. For example, an efficient procedure is needed to extract information from
span(Uk) and span(\widehat Uk) generated by rJBD to compute left generalized singular vec-
tors. Another issue is how to accelerate convergence of the inner iteration. A proper
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preconditioner may be very useful for iteratively solving inner least squares problems.
Numerical experiments show that an appropriate scaling factor transforming \{ A,L\} 
to \{ A,\gamma L\} has a positive effect on both the number of iterations needed by LSQR for
inner iterations and the number of outer Lanczos iterations; thus scaling strategies
are worth investigating. These issues constitute the subject of future research.
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