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Abstract

The singular value decomposition (SVD) of a matrix is a powerful tool for many matrix computa-
tion problems. In this paper, we consider generalizing the standard SVD to analyze and compute the
regularized solution of linear ill-posed problems that arise from discretizing the first kind Fredholm
integral equations. For the commonly used quadrature method for discretization, a regularizer of
the form ∥x∥2M := xTMx should be exploited, where M is symmetric positive definite. To handle
this regularizer, we give the weighted SVD (WSVD) of a matrix under the M -inner product. Sev-
eral important applications of WSVD, such as low-rank approximation and solving the least squares
problems with minimum ∥ · ∥M -norm, are studied. We propose the weighted Golub-Kahan bidiago-
nalization (WGKB) to compute several dominant WSVD components and a corresponding weighted
LSQR algorithm to iteratively solve the least squares problem. All the above tools and methods
are used to analyze and solve linear ill-posed problems with the regularizer ∥x∥2M . A WGKB-based
subspace projection regularization method is proposed to efficiently compute a good regularized solu-
tion, which can incorporate the prior information about x encoded by the regularizer ∥x∥2M . Several
numerical experiments are performed to illustrate the fruitfulness of our methods.

Keywords weighted singular value decomposition, ill-posed problems, subspace projection regulariza-
tion, weighted Golub-Kahan bidiagonalization, weighted LSQR
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1 Introduction

The singular value decomposition (SVD) is a well-known matrix factorization tool for diagonalizing a
matrix with arbitrary shape [30]. It generalizes the eigen-decomposition of a square normal matrix to
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any m× n matrix. Let A ∈ Rm×n, then there exist orthogonal matrices Û = (û1, . . . , ûm) ∈ Rm×m and
V̂ = (v̂1, . . . , v̂n) ∈ Rn×n, such that

Û⊤AV̂ = Σ̂ (1.1)

with

Σ̂ =

(
Σ̂q

0

)
, m ≥ n or Σ̂ =

(
Σ̂q 0

)
, m < n, (1.2)

where q = min{m,n} and Σ̂q = diag(σ̂1, . . . , σ̂q) ∈ Rq×q is a diagonal matrix. The real values σ̂1 ≥
· · · ≥ σ̂q ≥ 0 are called singular values, and the corresponding vectors ui and vi are called right and left
singular vectors, respectively.

The applications of SVD have many aspects. The mathematical applications include determining the
rank, range and null spaces of a matrix, computing the pseudoinverse of a matrix, determining a low-
rank approximation of a matrix, solving linear least squares problems, solving discrete linear ill-posed
problems, and many others [7, 14, 2, 11]. We will review a part of them in Section 2. Besides, SVD is
also extremely useful in all areas of science and engineering, such as signal processing, image processing,
principal component analysis, control theory, recommender systems and many others [29, 26, 15, 17].
For a large-scale matrix A, a partial SVD can be computed by using the Golub-Kahan bidiagonalization
(GKB), which generates two Krylov subspaces and projects A onto these two subspaces to get a small-
scale bidiagonal matrix [10]. The bidiagonal structure of the projected matrix makes it convenient to
develop efficient algorithms. For example, the dominant singular values and corresponding vectors of A
can be well approximated by the SVD of the projected bidiagonal matrix [4]. It is also shown in [28]
that a good low-rank approximation of A can be directly obtained from the GKB of A without directly
computing any SVD. For large sparse least squares problem of the form minx∈Rn ∥Ax − b∥2, the most
commonly used LSQR solver is also based on GKB [25].

In this paper, we focus on generalizing the SVD to analyze and compute the regularized solution of
the first kind Fredholm equation [21]

g(s) =

∫ t2

t1

K(s, t)f(t)dt+ σẆ (s) (1.3)

with t ∈ [t1, t2] and s ∈ [s1, s2], whereK(s, t) ∈ L2 ([t1, t2]× [s1, s2]) is a square-integrable kernel function,
Ẇ (s) is the Gaussian white noisy, more precisely, the generalized derivative of the standard Brown motion
W (s) with s ∈ [s1, s2] [19], σ is the scale of the noise, and g(s) is the observation. The aim is to recover the
unknown f(t) from the noisy observation. To solve this problem, the first step is to discretize the above
integral equation. Two commonly used discretization methods are the quadrature method and Galerkin
method [20], and we focus on the first one in this paper. In the quadrature method, a quadrature rule
with grid points {p1, . . . , pn} and corresponding weights {w1, . . . , wn} are chosen to approximate the
integral as ∫ t2

t1

K(s, t)f(t)dt ≈
n∑

i=1

wiK(s, pi) (1.4)

and the underlying unknown function we want to recover becomes the n-dimensional vector xtrue =
(f(p1), . . . , f(pn))

⊤. The observations are chosen from m grid points in [s1, s2] to get a m-dimensional
noisy vector b. After discretization, the above integral equation (1.3) becomes

b = Ax+ e, (1.5)

where e is a discrete Gaussian noise vector.

The above discrete linear system is usually ill-posed in the sense that A is extremely ill-conditioned
with singular values decreasing toward zero without a noticeable gap [14]. As a result, the naive solution
to the least squares problem minx∈Rn ∥Ax − b∥2 will deviate very far from the true solution. Tikhonov
regularization is usually used to handle the ill-posedness property of this problem [31]. For a Gaussian
white noise e, the standard-form Tikhonov regularization has the form

min
x∈Rn

∥Ax− b∥22 + λ∥x∥22. (1.6)

However, we emphasis that the regularization term ∥x∥22 arises from the discretized version of ∥f∥L2([t1,t2]);
here L2([t1, t2]) is the space of square-integrable functions define on [t1, t2] with Lebesgue measure. If
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all the weights in the quadrature rule for approximating the integral in (1.4) have the same value, then
the vector norm ∥x∥2 is a good approximation to ∥f∥L2([t1,t2]). If the weights have different values, a

good approximation to ∥f∥L2([t1,t2]) is ∥x∥M instead of ∥x∥2, where ∥x∥M = (x⊤Mx)1/2 with M =
diag(w1, . . . , wn). In this case, the standard-form Tikhonov regularization should be replaced by

min
x∈Rn

∥Ax− b∥22 + λ∥x∥2M . (1.7)

Using the standard SVD of A, we can analyze and compute the ill-posed problem (1.5) with the
regularizer ∥x∥22. For example, the naive solution to minx∈Rn ∥Ax − b∥2 can be expressed as the SVD

expansion form xLS = A†b =
∑r

i=1
û⊤
i b
σ̂i

v̂i, where r is the rank of A, motivating the so-called “truncated
SVD” (TSVD) regularization method, which truncates the first k dominant SVD expansion from xLS

to discard those highly amplified noisy components [12]. Moreover, the Tikhonov regularized solution to

(1.6) can be expressed as the filtered SVD expansion form xλ =
∑r

i=1
σ̂2
i

σ̂2
i+λ

û⊤
i b
σ̂i

v̂i, which tells us that

the regularization parameter λ should be chosen such that the filter factors fi :=
σ̂2
i

σ̂2
i+λ

≈ 1 for small

index i and fi ≈ 0 for large i to suppress noisy components. Correspondingly, the GKB process for
computing SVD can also be exploited to design iterative regularization algorithms [24, 1]. The LSQR
solver with early stopping rules is a standard algorithm to handle the regularizer ∥x∥22. Specifically, the
regularization property of LSQR with early stopping rules has been analyzed using the SVD of A, where
the k-th LSQR solution also has a filtered SVD expansion form [14].

To analyze the ill-posed problem (1.5) with the regularizer ∥x∥2M , in this paper, we generalize the
standard SVD of A to a new form under a non-standard inner product, which means that the 2-inner
product in Rn is replaced by the M -inner product ⟨z, z′⟩ := z⊤Mz′. The core idea is to treat the
matrix A ∈ Rm×n as a linear operator between the two finite-dimensional Hilbert spaces (Rn, ⟨·, ·⟩M ) and
(Rm, ⟨·, ·⟩2). The attempt to generalize SVD is not new, which can go back to Van Loan in 1976 [32], where
he proposed the generalized SVD (GSVD) for a matrix pair. The GSVD is a powerful tool to analyze the
general-form Tikhonov regularization term ∥Lx∥22, where L ∈ Rp×n with p ≤ n is a regularization matrix.
In recent years, there have been several other generalized forms of SVD, such as the weighted SVD of
different forms proposed in [27, 22, 18]. Specifically, in [18], the authors used the weighted SVD to solve
the discrete ill-posed problem arised from (1.3) when f(t) and g(s) are discretized on the same grid points
with [t1, t2] = [s1, s2] and m = n. In their paper, both the data fidelity term and regularization term use
the weighted M -norm. However, we emphasize that for the discrete observation vector b with Gaussian
white noise, the most appropriate form for the data fidelity term should be ∥Ax − b∥22. In this paper,
we generalize a new form of SVD, investigate its properties and propose numerical algorithms for its
computation. Then we use this generalized SVD to instigate the solution of linear least squares problems
with minimum ∥x∥M norm and propose an iterative algorithm for this problem. This iterative algorithm
with proper early stopping rules can be used to handle the discrete ill-posed problem with regularization
term ∥x∥2M .

The main contributions of this paper are listed as follows.

• For any symmetric positive definite matrix M ∈ Rn×n, we generalize a new form SVD of A ∈
Rm×n where the right singular vectors constitute an M -orthogonal basis of (Rn, ⟨·, ·⟩M ). This
new generalized SVD is also named the weighted SVD (WSVD), which shares many similar good
properties as the standard SVD.

• We study some basic properties of WSVD and several applications, including its relations with the
null space and range space of A, a new form of low-rank approximation of A based on WSVD, and
the WSVD form expression of the solution to minx∈Rn ∥Ax− b∥2 with minimum ∥x∥M norm.

• We propose a weighted Golub-Kahan bidiagonalization (WGKB) process, which can be used to
compute several dominant WSVD components. A WGKB-based iterative algorithm for solving the
least squares problems is also proposed. It is a weighted form corresponding to the standard LSQR
algorithms, thereby we name it weighted LSQR (WLSQR).

• Using WSVD, we analyze the solution of the Tikhonov regularization problem (1.7). In order to
utilize the information from the regularizer ∥x∥2M and avoid selecting λ in advance, we propose the
subspace projection regularization (SPR) method. We show that the WGKB-based SPR method
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is just the WLSQR with early stopping rules, which can efficiently compute a satisfied regularized
solution.

In the numerical experiments part, we use four test examples of the first kind Fredholm equations to test
our algorithm. With Simpson’s rule for discretizing the integral, we show that the proposed algorithm
has better performance than the standard LSQR solver for regularizing the original problem.

The paper is organized as follows. In Section 2 we review some basic properties and applications of
SVD. In Section 3, we propose the weighted SVD of A with weight matrixM and investigate its properties.
In Section 4, we propose the WGKB process to compute several dominant WSVD components and the
WLSQR algorithms for solving least squares problems. All the above methods are used in Section 5 to
analyze and develop iterative regularization methods for linear ill-posed problems with regularizer ∥x∥2M .
In Section 6, we use several numerical examples to illustrate the effectiveness of the new methods. Finally,
we conclude the paper in Section 7.

Throughout the paper, denote by R(C) and N (C) the range space and null space of a matrix C,
by Ik the k-by-k identity matrix. We denote by 0 a zero vector or matrix with its order clear from the
context.

2 Properties of SVD and its applications

In this section, we review several important properties of the SVD and its applications to linear ill-posed
problems. They motivate us to generalize the SVD to the non-standard inner product case, which can
be applied to handle the regularizer of the form (1.7).

Let us start from the connections between the SVD, Schatten p-norm [16, §7.4.7], and low-rank
approximation of a matrix [11, §2.4].

Theorem 2.1 (Schatten p-norm) Suppose the SVD of a matrix A is as in (1.1). For any integer
1 ≤ p ≤ ∞, define

∥A∥p =

min{m,n}∑
i=1

σ̂p
i

1/p

.

Then ∥ · ∥p is a matrix norm on Rm×n, called the Schatten p-norm.

The specific choice of p yields several commonly used matrix norms:

1. p = 1: gives the nuclear norm. It is commonly used in low-rank matrix completion algorithms.

2. p = 2: gives the Frobenius norm (often denoted by ∥ · ∥F ).

3. p = ∞: gives the spectral norm (often denoted by ∥ · ∥2).

All the Schatten norms are unitarily invariant, which means that ∥A∥p = ∥Ū⊤AV̄ ∥p = ∥A∥p for
any matrix A and all unitary matrices Ū and V̄ . In this paper, we focus on the spectral norm and use
the popular notation ∥ · ∥2 to denote it. From another definition of the spectral norm, we also have

∥A∥2 = maxx ̸=0
∥Ax∥2

∥x∥2
= σ̂1.

One of the reasons that SVD is so widely used is that it can be used to find the best low-rank
approximation to a matrix. The following low-rank approximation property is often used such as in data
compression, image compression and recommender systems.

Theorem 2.2 (Eckhart-Young-Mirsky) Suppose k < rank(A) = r and let

Âk = ÛkΣ̂kV̂
⊤
k =

k∑
i=1

σ̂iûiv̂
⊤
i , (2.1)

where Ûk and V̂k contain the first k columns of Û and V̂ , and Σ̂k is the first k-by-k part of Σ̂. Then

min
rank(X)≤k

∥A−X∥2 = ∥A− Âk∥2 = σ̂k+1. (2.2)
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The Moore-Penrose pseudoinverse of a matrix is the most widely known generalization of the inverse
matrix [11, 5.5.2]. Using the SVD of A, we can give its explicit form:

A† = V̂ Σ̂†Û⊤, Σ̂† =

(
Σ̂−1

r 0

0 0

)
. (2.3)

One application of the Moore-Penrose pseudoinverse is to solve the rank-deficient least squares problems
[11, §5.5.1].

Theorem 2.3 Let rank(A) = r (can be smaller than min{m,n}). Then the rank-deficient least squares
problem with a minimum 2-norm

min
x∈S

∥x∥2, S = {x : ∥Ax− b∥2 = min} (2.4)

has a unique solution

xLS = A†b =

r∑
i=1

û⊤
i b

σ̂i
v̂i. (2.5)

For linear ill-posed problem with Tikhonov regularization (1.6), the regularized solution has a similar
expression to (2.5) but with additional fiter factors [14, §4.2]:

xλ =

r∑
i=1

σ̂2
i

σ̂2
i + λ

û⊤
i b

σ̂i
v̂i, (2.6)

where the regularzation parameter λ should be chosen such that the filter factors fi :=
σ̂2
i

σ̂2
i+λ

≈ 1 for

those small index i corresponding to dominant information about xtrue and fi ≈ 0 for those large index
i to filter out noisy components.

For small-scale matrices, the SVD can be efficiently computed by a variant of QR algorithm [10] or
Jocobi rotation procedure [5, 6]. For large-scale matrices, one commonly used SVD algorithm is based
on the Golub-Kahan bidiagonalization (GKB), which applies a Lanczos-type iterative procedure to A to
generate two Krylov subspaces and project A to be a small-scale bidiagonal matrix. Then the SVD of the
reduced bidiagonal matrix is computed to approximate some dominant SVD components of A [9]. The
GKB process is also a standard procedure used in LSQR for iteratively solving large-scale least square
problems. At the k-th step, it solves the following problem:

xk = min
x∈Sk

∥Ax− b∥2, Sk = Kk(A
⊤A,A⊤b) := span{(A⊤A)i, A⊤b}k−1

i=0 .

For large-scale linear ill-posed problems, the above approach is very efficient and fruitful for handling the
∥x∥22 regularization term, where an early stopping rule should be used to avoid containing too much noise
in the iterative solution.

If the first kind Fredholm equation is discretized using weights {w1, . . . , wn} with different val-
ues in (1.4), then the corresponding approximation to ∥f∥L2 is ∥x∥M instead of ∥x∥2, where M =
diag(w1, . . . , wn). In this case, we need to consider the Tikhonov regularization problem (1.6) and the
corresponding iterative regularization methods. To analyze and solve this problem, in the following part,
we generalize the SVD to the M -inner product case and propose corresponding iterative algorithms.

3 Weighted SVD with non-standard inner-product

In this section, let M ∈ Rn×n be a symmetric positive definite matrix. It can be either diagonal or
non-diagonal. This matrix can introduce a new inner product in Rn.

Definition 3.1 For any A ∈ Rm×n, define the linear operator A : (Rn, ⟨·, ·⟩M ) → (Rm, ⟨·, ·⟩2) as A :
x 7→ Ax for x ∈ Rn under the canonical bases of Rn and Rm, where ⟨·, ·⟩2 is the standard 2-inner product
and ⟨x, x′⟩M := x⊤Mx′ is called the M -inner product.
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The operator A is bounded since (Rn, ⟨·, ·⟩M ) and (Rm, ⟨·, ·⟩2) are both finite dimensional Hilbert
spaces. Thus, we can definite the operator norm of A.

Definition 3.2 Define the M -weighted norm of A as

∥A∥M,2 := ∥A∥ := max
x ̸=0

∥Ax∥2
∥x∥M

. (3.1)

Similar to the unitarily invariant property of ∥A∥2, we have the following property for ∥A∥M,2.

Proposition 3.1 Let Ũ ∈ Rm×m and Ṽ ∈ Rn×n are 2- and M - orthogonal matrices, respectively, i.e.
Ũ⊤Ũ = Im and Ṽ ⊤MṼ = In. Then we have

∥Ũ⊤AṼ ∥2 = ∥A∥M,2 (3.2)

Proof. Since Ṽ ⊤MṼ = In and M is positive definite, it follows that Ṽ is invertible. Thus, we have

∥Ũ⊤AṼ ∥2 = max
x ̸=0

∥Ũ⊤AṼ x∥2
∥x∥2

= max
x ̸=0

∥Ũ⊤AṼ x∥2
∥Ṽ x∥M

= max
y ̸=0

∥Ũ⊤Ay∥2
∥y∥M

= max
y ̸=0

∥Ay∥2
∥y∥M

(let y = Ṽ x)

= ∥A∥M,2,

where we have used ∥Ṽ x∥2M = x⊤Ṽ ⊤MṼ x = x⊤x = ∥x∥22. The proof is completed. 2

The following result generates the SVD of a matrix A, which has a very similar form to (1.1).

Theorem 3.1 Let A ∈ Rm×n, and M ∈ Rn×n is symmetric positive definite. There exist 2-orthogonal
matrix U ∈ Rm×m and M -orthogonal matrix V ∈ Rn×n, and diagonal matrix Σr = diag(σ1, . . . , σr) with
σ1 ≥ · · · ≥ σr > 0, such that

U⊤AV = Σ :=

(
Σr 0

0 0

)
, Σ ∈ Rm×n. (3.3)

Proof. By the definition of ∥A∥M,2, there exist vectors v1 ∈ Rn and u1 ∈ Rm such that ∥v1∥M = ∥u1∥2 =
1 and Av1 = σ1u1 with σ1 = ∥A∥M,2. Let V2 ∈ Rn×(n−1) and U2 ∈ Rm×(m−1) such that V = (v1, V2)
and U = (u1, U2) are M - and 2-orthogonal, respectively. Then we get

U⊤AV =

(
u⊤
1 Av1 u⊤

1 AV2

U⊤
2 Av1 U⊤

2 AV2

)
=:

(
σ1 x⊤

0 B

)
=: A1,

where x ∈ Rn−1 and B ∈ R(m−1)×(n−1). By Lemma 3.1 we have ∥A1∥2 = ∥A∥M,2 = σ1. Let x̃ =
(σ1, x

⊤)⊤. It follows that

σ2
1 ≥ ∥A1x̃∥22

∥x̃∥22
=

∥∥∥∥∥
(
σ2
1 + x⊤x

Bx

)∥∥∥∥∥
2

2

/
∥x̃∥22 ≥ ∥x̃∥22 = σ2

1 + x⊤x,

which leads to x = 0. Therefore, we have U⊤AV =

(
σ1 0⊤

0 B

)
. Now (3.3) can be obtained by using

mathematical induction. Since U and V are invertible, it follows that rank(A) = r = rank(Σr). The
proof is completed. 2

The main difference between the two forms (1.1) and (3.3) is that the right vectors {vi} are M -
orthonormal. We call (3.3) the weighted SVD (WSVD) of A with weight matrix M . For M = In, it is
the same as the standard SVD. Similar to the standard SVD, the WSVD can be used to analyze and
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solve many problems with a non-standard 2-norm. Specifically, it can be used to analyze and develop
efficient algorithms for linear ill-posed problems with the ∥x∥2M regularization term.

Note that V ⊤MV = In implies that V V ⊤MV = V . Multiplying V −1 from the right-hand side, we
get V V ⊤ = M−1. Therefore, from (3.3) we get

A = U

(
Σr 0

0 0

)
V ⊤M, (3.4)

From (3.3) and (3.4) we have

Avi = σiui, (3.5)

A⊤ui = σiMvi. (3.6)

Also, we have the WSVD expansion form of A: A =
∑r

i=1 σiuiv
⊤
i M . Besides, the range space and null

space of Acan be explicitly written as

R(A) = span{u1, . . . , ur},
N (A) = span{vr+1, . . . , vn},

where {vr+1, . . . , vn} is an M -orthonormal basis of N (A).

Using WSVD, the Eckhart-Young-Mirsky theorem for low-rank approximation of a matrix under the
∥ · ∥M,2 norm has the following form.

Theorem 3.2 For any integer 1 ≤ k < r, we have

min
X≤k

∥A−X∥M,2 ≥ σk+1, (3.7)

where the minimum can be achieved if X = Ak :=
∑k

i=1 σiuiv
⊤
i M .

Proof. First, if X = Ak :=
∑k

i=1 σiuiv
⊤
i M , we have rank(X) = k, and by Proposition 3.1 we have

∥A−X∥M,2 = ∥U⊤(A−X)V ∥2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥
U⊤U



0

σk+1

. . .

σr

0


V ⊤MV

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= σk+1.

Thus, we only need to prove ∥A − X∥M,2 ≤ σk+1 for any X ∈ Rm×n with rank(X) = k. Fot such
X we have dim(N (X)) = n − k, thereby we can find M -orthonormal vectors {w1, . . . , wn−k} such that
N (X) = span{w1, . . . , wn−k}. Notice that N (X)∩ span{v1, . . . , vk+1} ≠ {0} since the sum of dimensions
of these two subspaces is n+ 1. Let z be a nonzero vector in the intersection of the above two subspaces
and ∥z∥M = 1. Using the WSVD of A, we get

Az =

r∑
i=1

σiui(v
⊤
i Mz) =

k+1∑
i=1

σiui(v
⊤
i Mz),

since z is M -orthogonal to vk+2, . . . , vn. It follows that

∥A−X∥2M,2 ≥ ∥(A−X)z∥22
∥z∥2M

= ∥Az∥22 =

k+1∑
i=1

σ2
i (v

⊤
i Mz)2 ≥ σ2

k+1

k+1∑
i=1

(v⊤i Mz)2.

Since ∥z∥2M = z⊤Mz = z⊤MV V ⊤Mz = ∥V ⊤Mz∥22, where we used V V ⊤ = M−1, we have

k+1∑
i=1

(v⊤i Mz)2 =

n∑
i=1

(v⊤i Mz)2 = ∥V ⊤Mz∥22 = ∥z∥2M = 1.

We finnaly obtain ∥A−X∥M,2 ≥ σk+1. 2
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For the rank-deficient least squares problem, we can write the solution set by using the WSVD, which
is convenient to find the unique minimum ∥ · ∥M solution.

Theorem 3.3 For the linear least squares problems minx∈Rn ∥Ax− b∥2, the set of all solutions is

X =

r∑
i=1

u⊤
i b

σi
vi + span{vr+1, . . . , vn}, (3.8)

and the unique solution to

min
x∈X

∥x∥M , X = {x ∈ Rn : ∥Ax− b∥2 = min} (3.9)

is

x∗ =

r∑
i=1

u⊤
i b

σi
vi (3.10)

Proof. Write U and V as U = (Ur, Ur,⊥) and V = (Vr, Vr,⊥). Using the WSVD of A, we have

∥Ax− b∥22 =

∥∥∥∥∥U
(
Σr 0

0 0

)(
V ⊤
r

V ⊤
r,⊥

)
Mx− b

∥∥∥∥∥
2

2

=

∥∥∥∥∥
(
ΣrV

⊤
r Mx

0

)
−

(
U⊤
r b

U⊤
r,⊥b

)∥∥∥∥∥
2

2

= ∥ΣrV
⊤
r Mx− U⊤

r b∥22 + ∥U⊤
r,⊥b∥22.

Therefore, the minimizers of minx∈Rn ∥Ax−b∥2 are the solutions to ΣrV
⊤
r Mx = U⊤

r b, which is equivalent

to V ⊤
r Mx = Σ−1

r U⊤
r b. An obvious solution to the above equation is x∗ = VrΣ

−1
r U⊤

r b =
∑r

i=1
u⊤
i b
σi

vi.

Since N (V ⊤
r M) = span{vr+1, . . . , vn}, we have the expression of X as (3.8)

On the other hand, for any x ∈ X sucht that x = x∗ +
∑n

r+1 γivi, since vi are mutual M -orthogonal,
we have

∥x∥2M = ∥x∗∥2M +

n∑
i=r+1

γ2
i ≥ ∥x∗∥2M ,

where “=” holds if and only if γr+1 = · · · = γn = 0. Therefore (3.9) has the unique solution x∗. 2

If we let A†M = V Σ†U⊤, where Σ† :=

(
Σ−1

r 0

0 0

)
∈ Rn×m. Then we can express x∗ as x∗ = A†M b.

This is a similar expression to the smallest 2-norm solution to minx∈Rn ∥Ax − b∥2. But unfortunately,
A†M is not a real pseudoinverse of a matrix since (AA†M )⊤ ̸= AA†M . Thus, we do not discuss it anymore.

4 Iterative algorithm for WSVD and applications

TheWSVD of A is actually the singular value expansion of the linear compact operatorA : (Rn, ⟨·, ·⟩M ) →
(Rm, ⟨·, ·⟩2) that has a finite rank. This motivates us to apply the GKB process to A to approximate
several dominant WSVD components of A; see [3] for the GKB process for compact linear operators.

Starting from a nonzero vector b ∈ Rm1, the GKB process proceeds based on the following recursive
relations:

β1p1 = b, (4.1)

αiqi = A∗pi − βiqi−1, (4.2)

βi+1pi+1 = Aqi − αipi, (4.3)

1For the GKB process used in LSQR, it usually uses the right-hand side b as the starting vector. However, for using the
GKB process to calculate SVD or WSVD, it can use any nonzero vector in Rm as a starting vector.
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where A is the adjoint of A. The iteration proceeds as i = 1, 2, . . . , and we set q0 := 0. From the
definition of A we have Aqi = Aqi. In order to compute A∗, we use the basic relation

⟨Ax, y⟩2 = ⟨x,A∗y⟩M

which is equivalent to (Ax)⊤y = x⊤A∗My for any vectors x ∈ Rn and y ∈ Rm. If follows that A∗ =
M−1AT . Therefore, we obtain the GKB process of A∗, as summarized in Algorithm 1. We name it as
the weighted GKB process with weight matrix M .

Algorithm 1 The k-step weighted GKB (WGKB)

Input: Matrix A ∈ Rm×n, positive definite M ∈ Rn×n, nonzero b ∈ Rm

Output: {αi, βi}k+1
i=1 , {pi, qi}

k+1
i=1

Let β1 = ∥b∥2, p1 = b/β1

Compute s̄ = A⊤p1, s = M−1s̄
Compute α1 = (s⊤s̄)1/2, q1 = s/α1

for i = 1, 2, . . . , k do
r = Aqi − αipi
βi+1 = ∥r∥, pi+1 = r/βi+1

s̄ = A⊤pi+1 − βi+1Mqi, s = M−1s̄
αi+1 = (s⊤s̄)1/2, qi+1 = s/αi+1

end for

Using the property of GKB for the compact operator A, before the WGKB reaches the termina-
tion step, that is, kt := maxi{αiβi > 0}, the k-step WGKB process generate two groups of vectors
{p1, . . . , pk+1} and {q1, . . . , qk+1} that are 2- and M -orthornormal, respectively. If we let Pk+1 =
(p1, . . . , pk+1), Qk = (p1, . . . , qk) and

Bk =



α1

β2 α2

β3
. . .

. . . αk

βk+1


∈ R(k+1)×k, (4.4)

then we have

AQk = Pk+1Bk, (4.5)

M−1A⊤Pk+1 = QkB
⊤
k + αk+1qke

⊤
k+1, (4.6)

where ek+1 is the (k + 1)-th column of Ik+1. Therefore, Bk is the projection of A onto subspaces
span{Pk+1} and span{Qk}.

We can expect to approximate several dominant WSVD components of A by the SVD of Bk. Let the
compact SVD of Bk be

Bk = YkΘkH
⊤
k , Θk = diag

(
θ
(k)
1 , . . . , θ

(k)
k

)
, θ

(k)
i > · · · > θ

(k)
k > 0, (4.7)

where Yk =
(
y
(k)
1 , . . . , y

(k)
k

)
∈ R(k+1)×k and Hk =

(
h
(k)
1 , . . . , h

(k)
k

)
∈ Rk×k are two orthornormal matri-

ces. Then the approximation to theWSVD triplet (σi, ui, vi) is
(
σ̄
(k)
i , ū

(k)
i , v̄

(k)
i

)
:=
(
θ
(k)
i , Pk+1y

(k)
i , Qkh

(k)
i

)
.

Proposition 4.1 The approximated WSVD triplet based on WGKB satisfies

Av̄
(k)
i − σ̄

(k)
i ū

(k)
i = 0, (4.8)

A⊤ū
(k)
i − σ̄

(k)
i Mv̄

(k)
i = αk+1Mqk+1e

⊤
k+1. (4.9)
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Proof. These two relations can be verified by directly using (4.5) and (4.6):

Av̄
(k)
i − σ̄

(k)
i ū

(k)
i = AQkh

(k)
i − θ

(k)
i Pk+1y

(k)
i = Pk+1

(
Bkh

(k)
i − θ

(k)
i y

(k)
i

)
= 0

and

A⊤ū
(k)
i − σ̄

(k)
i Mv̄

(k)
i = A⊤Pk+1y

(k)
i − θ

(k)
i MQkh

(k)
i = M

(
QkB

⊤
k + αk+1qke

⊤
k+1

)
y
(k)
i − θ

(k)
i MQkh

(k)
i

= MQk(B
⊤
k y

(k)
i − θ

(k)
i h

(k)
i ) + αk+1Mqke

⊤
k+1y

(k)
i

= αk+1Mqke
⊤
k+1y

(k)
i .

The proof is completed. 2

Therefore, the triplet
(
σ̄
(k)
i , ū

(k)
i , v̄

(k)
i

)
can be accepted as a satisfied WSVD triplet at the iteration

that
∣∣∣αk+1qke

⊤
k+1y

(k)
i

∣∣∣ is sufficiently small. This easily computed quantity can be used as a stopping

criterion for iteratively computing WSVD triplets.

To solve the large-scale least square problem (3.9), one method is to transform it to the standard one:

min
z∈Z

∥z∥2, Z = {z ∈ Rn : ∥AL−1
M z − b∥2}

by the substitution z = LMx, where LM is the Cholesky factor of M , i.e. M = L⊤
MLM , and then use the

LSQR algorithm to solve it. However, this transformation needs to compute the Cholesky factorization
of M in advance, which can be very costly for large-scale M . Noticing that the least square problem
(3.9) can be obtained by WSVD, that is x∗ = A†M b, we can expect to iteratively compute x∗ based on
the WGKB process of A with starting vector b. Note from (4.1) that βPk+1e1 = b, where e1 is the first
column of Ik+1. If the WGKB process does not terminate until the k-th step, i.e. k < kt, then Bk has
full column rank. In this case, we seek a solution to (3.9) in the subspace span{Qk}. By letting x = Qky
with y ∈ Rk, we have

min
x∈span{Qk}

∥Ax− b∥2 = min
y∈Rn

∥AQky − b∥2 = min
y∈Rn

∥Pk+1Bky − βPk+1e1∥2 = min
y∈Rn

∥Bky − βe1∥2

and ∥x∥M = ∥Qky∥M = ∥y∥2. Therefore, the problem (3.9) with x ∈ span{Qk} becomes

min
y∈Yk

∥y∥2, Yk = {y ∈ Rk : ∥Bky − βe1∥2 = min} (4.10)

This is a standard linear least squares problem with minimum 2-norm, which has the unique solution
yk = B†

kβe1. Therefore, at the k-th iteration, we compute the iterative approximation to (3.9):

xk = Qkyk, yk = B†
kβe1. (4.11)

The above procedure is similar to the LSQR algorithm for standard 2-norm least squares problems.
Moreover, the bidiagonal structure of Bk allows us to design a recursive relation to update xk step by
step without explicitly computing B†

kβe1 at each iteration; see [25, Section 4.1] for the similar recursive
relation in LSQR. We summarized the iterative algorithm for iteratively solving (3.9) in Algorithm 2,
which is named the weighted LSQR (WLSQR) algorithm.

The following result shows that the WLSQR algorithm approaches the exact solution to (3.9) as the
algorithm proceeds.

Theorem 4.1 If the WGKB process terminates at step kt = maxi{αiβi > 0}, then the iterative solution
xkt is the exact solution to (3.9).

Proof. By Theorem 3.3, a vector x ∈ Rn is the unique solution to (3.9) if and only if

Ax− b ⊥ R(A), x ⊥M span{vr+1, . . . , vn}.

Using the property of the GKB process of A, the subspace span{Qk} can be expressed as the Krylov
subspace

span{Qk} = Kk(A∗A,A∗b) = span{(A∗A)iA∗b}k−1
i=0 = span{(M−1A⊤A)iM−1A⊤b}k−1

i=0 .
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Algorithm 2 Weighted LSQR (WLSQR)

Input: Matrix A ∈ Rm×n, positive definite M ∈ Rn×n, vector b ∈ Rm

Output: Approximate solution to (3.9): xk

Compute β1p1 = b, α1q1 = M−1AT q1,
Set x0 = 0, w1 = q1, ϕ̄1 = β1, ρ̄1 = α1

for i = 1, 2, . . . until convergence, do
(Applying the WGKB process)
βi+1pi+1 = Aqi − αipi
αi+1qi+1 = M−1A⊤pi+1 − βi+1qi
(Applying the Givens QR factorization to Bk)
ρi = (ρ̄2i + β2

i+1)
1/2

ci = ρ̄i/ρi
si = βi+1/ρi
θi+1 = siαi+1

ρ̄i+1 = −ciαi+1

ϕi = ciϕ̄i

ϕ̄i+1 = siϕ̄i

(Updating the solution)
xi = xi−1 + (ϕi/ρi)wi

wi+1 = vi+1 − (θi+1/ρi)wi

end for

For any k ≤ kt, since xk = Qkyk, it follows

xk ∈ span{(M−1A⊤A)iM−1A⊤b}k−1
i=0 ⊆ R(M−1A⊤) = M−1N (A)⊥.

Using the WSVD of A, we have N (A) = span{vr+1, . . . , vn}. For any v ∈ Rn, it follows that

v ∈ M−1N (A)⊥ ⇔ Mv ∈ N (A)⊥ ⇔ v⊤Mvi = 0, i = r + 1, . . . , n,

which leads to M−1N (A)⊥ = span{v1, . . . , vr}. Therefore, we get xk ∈ span{v1, . . . , vr} and thereby
xk ⊥M span{vr+1, . . . , vn}.

To prove Axkt
− b ⊥ R(A), we only need to show A⊤(Axkt

− b) = 0. By (4.2) and (4.3), we have

A⊤(Axkt
− b) = A⊤(AQkt

ykt
− Pkt+1β1e1)

= A⊤Pkt+1(Bkt
ykt

− β1e1)

= M(QktB
⊤
kt

+ αkt+1qkt+1e
⊤
k+1)(Bktykt − β1e1)

= M
[
Qkt(B

⊤
kt
Bktykt −B⊤

kt
β1e1) + αkt+1βkt+1qk+1e

⊤
kt
ykt

]
= αkt+1βkt+1Mqkt+1e

⊤
kt
ykt

,

where we used B⊤
kt
Bkt

ykt
= B⊤

kt
β1e1 since ykt

satisfies the normal equation of miny ∥Bkt
y−β1e1∥2. Since

WGKB terminates at kt, which means that αkt+1βkt+1 = 0, we have A⊤(Axkt − b) = 0. 2

5 Using WSVD to analyze and solve linear ill-posed problems

For the Tikhonov regularization (1.7) with the ∥x∥2M regularization term, if we have the Cholesky factor-
ization M = L⊤

MLM , this problem can be transformed into the standard-form Tikhonov regularization
problems minx̄∈Rn{∥AL−1

M x̄ − b∥22 + λ∥x̄∥22} by letting x̄ = LMx. To avoid computing the Cholesky
factorization of M , we can write its solution explicitly using the WSVD of A.

Theorem 5.1 The solution to the Tikhonov regularization (1.7) can be written as

xλ =

r∑
i=1

σ2
i

σ2
i + λ

u⊤
i b

σi
vi. (5.1)
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Proof. Since V is an M -orthogonal matrix, we can let x = V y for any x ∈ Rn where y ∈ Rn. Using
relations AV = UΣ and V ⊤MV = In in the WSVD of A, (1.7) becomes

min
y∈Rn

{∥UΣy − b∥22 + λ∥y∥22}.

The normal equation of this problem is[
(UΣ)⊤(UΣ) + λIn

]
y = (UΣ)⊤b ⇔ (Σ⊤Σ+ λIn)y = Σ⊤U⊤b,

which leads to the unique solution to (1.7) as (5.1).

xλ = V (Σ⊤Σ+ λIn)
−1Σ⊤U⊤b =

r∑
i=1

σ2
i

σ2
i + λ

u⊤
i b

σi
vi.

The proof is completed. 2

The above expression of xλ is similar to (2.6), where λ should be chosen properly to filter out the
noisy components.

To avoid computing the Cholesky factorization of M and choosing a proper regularization parameter
in advance, we consider the subspace projection regularization (SPR) method following the idea in [8,
§3.3], which can be formed as

min
x∈X̄k

∥x∥M , X̄k = {x : min
x∈Sk

∥Ax− b∥2}. (5.2)

Remark 5.1 The above SPR method is a generalization of the iterative regularization method corre-
sponding to the ∥x∥22 regularization term. For example, the LSQR method with early stopping can be
written as

min
x∈X̄k

∥x∥2, X̄k = {x : min
x∈Sk

∥Ax− b∥2}, Sk = Kk(A
⊤A,A⊤b).

The success of the SPR method highly depends on the choice of solution subspaces Sk, which should be
elaborately constructed to incorporate the prior information about the desired solution encoded by the
regularizer ∥x∥2M . For the LSQR method, the solution subspaces Kk(A

⊤A,A⊤b) can only deal with the
∥x∥22 regularization term. This motivates us to develop a new iterative process to construct solution
subspaces to incorporate prior information encoded by ∥x∥2M .

Remark 5.2 For any choice of a k-dimensional Sk, there exists a unique solution to (5.2). To see it,
let x = Wky with y ∈ Rk be any vector in Sk, where Wk ∈ Rn×k whose columns are M -orthonormal and
span Sk. Then the solution to (5.2) satisfies xk = Wkyk, where yk is the solution to

min
y∈Yk

∥y∥2, Yk = {y : min
y∈Rk

∥AWky − b∥2}.

This problem has a unique solution yk = (AWk)
†b. Therefore, there exists a unique solution to (5.2).

Using the WSVD of A, if we choose the k-th solution subspace in (5.2) as Sk = span{v1, . . . , vk}, then
the solution to (5.2) is xk = Vkyk, where yk is the solution to

min
y∈Yk

∥y∥2, Yk = {y : min
y∈Rk

∥UkΣky − b∥2}.

Note that UkΣk has full column rank for 1 ≤ k ≤ r. Therefore, Yk has only one element, which is
yk = Σ−1

k U⊤
k b, thereby

xk = VkΣ
−1
k U⊤

k b =

k∑
i=1

u⊤
i b

σi
vi.

Comparing this result with Theorem 3.3, we find that xk can be obtained by truncating the first k
components of x∗. Thus, we name this form of xk as the truncated WSVD (TWSVD) solution. By
truncating the above solution at a proper k, the TWSVD solution can capture the main information
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corresponding to the dominant right weighted singular vectors vi while discarding the highly amplified
noisy vectors corresponding to others.

From the above investigation, those dominant vi play an important role in the regularized solution,
since they contain the desirable information about x encoded by the regularizer ∥x∥2M . As has been shown
that WGKB can be used to approximate the WSVD triplets of A, this motivates us to design iterative
regularization algorithms based on WGKB. This can be achieved by setting the k-th solution subspace
as Sk = span{Qk}. Following the same procedure for deriving WLSQR, the problem (5.2) becomes

min
y∈Yk

∥y∥2, Yk = {y : min
y∈Rk

∥Bky − β1e1∥2},

which has the solution given by (4.11). Therefore, the SPR method with Sk = span{Qk} is actually
the WLSQR method. One important difference from solving the ordinary least squares problem is that
here the iteration should be early stopped. This can be seen from Theorem 4.1 since the algorithm
eventually converges to the naive solution to (3.9). This is the typical semi-convergence behavior for
SPR methods: as the iteration proceeds, the iterative solution first gradually approximate to xtrue, then
the solution will deviate far from xtrue and eventually converges to A†M b [8, §3.3]. This is because the
solution subspace will contain more and more noisy components as it gradually expands. The iteration
at which the corresponding solution has the smallest error is called the semi-convergence point. Note
that the iteration number k in SPR plays a similar role as the regularization parameter in Tikhonov
regularization. Here we adapt two criteria for choosing regularization parameters to estimate the semi-
convergence point.

Two early stopping rules

1. For the Gaussian white noise e, if an estimate of ∥e∥2 is known, one criterion for determining
the early stopping iteration is the discrepancy principle (DP), which states that the discrepancy
between the data and predicted output, which is ∥Axk − b∥2, should be of the order of ∥e∥2 [23].
Following the derivation of the procedure for updating xk in [25], we have

∥Axk − b∥2 = ∥Bkyk − β1e1∥ = ϕ̄k+1.

Note that ∥Axk − b∥2 decreases monotonically since xk minimizes ∥Axk − b∥2 in the gradually
expanding subspace Sk. Therefore, following DP, we should stop the iteration at the first k that
satisfies

ϕ̄k+1 ≤ τ∥e∥2 < ϕ̄k (5.3)

with τ > 1 slightly, such as τ = 1.01. Typically, the early stopping iteration determined by DP
is slightly smaller than the semi-convergence point, thereby the corresponding solution is slightly
over-smoothed.

2. The L-curve (LC) criterion is another early stopping rule that does not need an estimate on ∥e∥2
[13]. In this method, the log-log scale the curve

(log ∥Axk − b∥2, log ∥xk∥M ) =
(
log ϕ̄k+1, log(∥xk∥M )

)
, (5.4)

is plotted, which usually has a characteristic ‘L’ shape. The iteration corresponding to the corner
of the L-curve, which is defined as the point of maximum curvature of the L-curve in a log-log plot,
is usually a good early stopping iteration.

The whole process of the WGKB-based SPR iterative algorithm is summarized in Algorithm 3.

To show the effectiveness of WLSQR for regularizing (1.5) with regularizer ∥x∥2M , we give the following
result.

Theorem 5.2 Let the Cholesky factorization of M be M = L⊤
MLM . Then the k-th iterative solution of

WLSQR for (5.2) is xk = L−1
M x̄k, where x̄k is the k-th LSQR solution of minx̄∈Rn ∥AL−1

M x̄− b∥2.

Proof. The k-th LSQR solution of minx̄∈Rn ∥AL−1
M x̄ − b∥2 is the solution of the subspace constrained

least squares problem

min
x̄∈S̄k

∥AL−1
M x̄− b∥2, S̄k = Kk

(
(AL−1

M )⊤(AL−1
M ), (AL−1

M )⊤b
)
,
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Algorithm 3 WLSQR with early stopping

Input: Matrix A ∈ Rm×n, positive definite M ∈ Rn×n, vector b ∈ Rm

Output: Final regularized solution corresponding to (5.2)
1: for k = 1, 2, . . . , do
2: Compute αk, βk, pk, qk by WGKB
3: Update xk from xk−1

4: Compute the ∥Axk − b∥2 and ∥x∥M
5: if Early stopping criterion is satisfied then ▷ DP or LC
6: Estimate the semi-convergence point as k1
7: Terminate the iteration to get xk1

8: end if
9: end for

where

Kk

(
(AL−1

M )⊤(AL−1
M ), (AL−1

M )⊤b
)
= span

{
(L−⊤

M A⊤AL−1
M )iL−⊤

M A⊤b
}k−1

i=0
= L−⊤

M span
{
(A⊤AM−1)iA⊤b

}k−1

i=0
.

Therefore, xk = L−1
M x̄k is the solution of the problem minx∈L−1

M S̄k
∥Ax−b∥2. From the proof of Proposition

4.1, we have

L−1
M S̄k = M−1span

{
(A⊤AM−1)iA⊤b

}k−1

i=0
= span{(M−1A⊤A)iM−1A⊤b}k−1

i=0 = Kk(A∗A,A∗b),

which is the k-th solution subspace Sk generated by WGKB. By writting any vector in Sk as x = Qky
with y ∈ Rk, it is easy to verify that minx∈Sk

∥Ax− b∥2 has the unqie solution. It follows that xk is the
k-th WLSQR solution of (5.2). 2

From this theorem, we find that WLSQR has the same effect as first transforming the original problem
to minx̄ ∥AL−1

M x̄−b∥2 and then regularizing it. Therefore, this approach makes full use of the information
encoded by the regularizer ∥x∥2M , due to the elaborately constructed solution subspaces by the WGKB
process.

6 Numerical experiments

We consider the Fredholm integral equation of the first kind as (1.3). The aim is to recover the unknown
f(t) from the noisy observation g(s). We chose the following four examples to perform the numerical
experiments.

Example 1. This example is chosen from [14] with the name shaw. It models a one-dimensional image
restoration problem using the Fredholm integral equation (1.3), where the kernel K and solution f are
given by

K(s, t) = (cos s+ cos t)2
(
sinu

u

)2

, u = π(sin s+ sin t),

f(t) = 2 exp
(
−6(t− 0.8)2

)
+ exp

(
−2(t+ 0.5)2

)
.

where t ∈ [−π/2, π/2] and s ∈ [−π/2, π/2].

Example 2. This example is Phillips’ famous test problem [?]. Define the function

ϕ(x) =

1 + cos(πx3 ), |x| < 3

0, |x| ≥ 3
.

Then the kernel K, the solution f and the exact observation are given by

K(s, t) = ϕ(s− t),

f(t) = ϕ(t),

where t ∈ [−6, 6] and s ∈ [−6, 6].
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Example 3. This test problem is constructed by ourselves. Define the kernel function and true solution
as

K(s, t) = est,

f(t) = et cos t

where t ∈ [0, 1] and s ∈ [0, 1].

Example 4. This test problem is constructed by ourselves. Define the kernel function and true solution
as

K(s, t) =

s(1− t), s < t

t(1− s), s ≥ t
,

f(t) = t− 2t2 + t3.

where t ∈ [0, 1] and s ∈ [0, 1].

To discretize the Fredholm integral equation (1.3), we partition the interval [t1, t2] into 2l uniform
subintervals to get n = 2l + 1 grid points t1 = p1 < p2 < · · · < pn−1 < pn = t2. The whole integral is
partitioned as ∫ t2

t1

K(s, t)f(t)dt =

l∑
i=1

∫ p2i+1

p2i−1

K(s, t)f(t)dt,

where each integral is approximated by Simpson’s rule∫ p2i+1

p2i−1

K(s, t)f(t)dt ≈ p2i+1 − p2i−1

6
[K(s, p2i−1) + 4K(s, p2i) +K(s, p2i+1)] .

Therefore, the whole integral is approximated as∫ t2

t1

K(s, t)f(t)dt ≈
n∑

i=1

wiK(s, pi),

with weights
h

3
{1, 4, 2, 4, 2, 4, . . . , 2, 4, 1}, h = (t2 − t1)/n.

The observations are selected from m uniform points in [s1, s2] to get an m-dimensional vector. The
task is to recover the true vector xtrue = (f(p1), . . . , f(pn))

⊤ from the noisy observation b constructed as
follows:

b = Ax+ e, (6.1)

where e ∈ Rm is a discrete Gaussian white noise vector, and A is the discretized kernel:

A =


K(s1, t1)w1 K(s1, t2)w2 · · · K(s1, tn)wn

K(s2, t1)w1 K(s2, t2)w2 · · · K(s2, tn)wn

...
...

. . .
...

K(sm, t1)w1 K(sm, t2)w2 · · · K(sm, tn)wn

 ∈ Rm×n. (6.2)

The scale of the noise is controlled by the noise level ε := ∥e∥2/∥Axtrue∥2, which may vary for different
test examples. The properties of the test examples are shown in Table 6.1. The discretized true solutions
and noisy observations with ε = 10−2 are shown in Figure 6.1.

From the above discretization, the data fidelity term and regularization term for the discrete ill-posed
linear system (6.1) should be ∥Ax− b∥22 and ∥x∥2M , respectively, where M is the weight matrix

M =
h

3
diag(1, 4, 2, 4, 2, 4, . . . , 2, 4, 1). (6.3)
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Table 6.1: Properties of the four test examples

Problem Example 1 Example 2 Example 3 Example 4

m× n 2500× 2001 3000× 2501 3500× 3001 4000× 3501

Condition number 5.89× 1018 2.14× 109 5.98× 1018 1.27× 107
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Figure 6.1: The true solutions and corresponding noisy observations. The noise level for all four test
examples is ε = 10−2. From left to right are: (a),(e) Example 1; (b),(f) Example 2; (c),(g) Example 3;
(d),(h) Example 4.
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We demonstrate the performance of WLSQR for regularizing the four linear ill-posed problems. The
standard LSQR method is used as a comparison, where the convergence behaviors of the two methods are
shown by plotting the variation of relative reconstruction error ∥xk − xtrue∥2/∥xtrue∥2 with respect to k.
To further show the effectiveness of WLSQR, we also use xtrue to find the optimal Tikhonov regularization
parameter λopt for (1.7) and the corresponding solution xλopt , that is λopt = minλ>0 ∥xλ − xtrue∥2. We
use this optimal solution as a baseline for comparing the two methods. All the experiments are performed
using MATLAB R2023b.
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Figure 6.2: Semi-convergence curves of LSQR and WLSQR for the four test examples. Figures from the
top to bottom correspond to Example 1 – Example 4; figures from left to right correspond to noise levels
ε = 10−3, 10−2, 10−1.
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The convergence behaviors of WLSRQ and LSQR are shown in Figure 6.2 using the relative error
curves, where the noise levels are set as ε = 10−3, 10−2, 10−1 for the four test examples. For each example,
we find that both the two methods exhibit semi-convergence property, but the relative error of LSQR
does not decrease obviously. In contrast, the relative error for WLSQR at the semi-convergence point
is much smaller, and it is usually a bit smaller than the best Tikhonov regularization solution. This
confirms the regularization effect of WLSQR, which can incorporate the prior information encoded by
∥x∥2M into the solution subspaces.

Table 6.2: Relative errors of the final regularized solutions and corresponding early stopping iterations
(in parentheses), where ε = 10−3

Problem Example 1 Example 2 Example 3 Example 4

Tikh-opt 0.0361 0.0060 0.0062 0.0038

WLSQR-opt 0.031 (9) 0.0057 (11) 0.0037 (3) 0.0029 (7)

WLSQR-DP 0.0474 (7) 0.0089 (8) 0.0538 (2) 0.0066 (5)

WLSQR-LC 0.0451 (8) 0.0186 (14) 0.0037 (3) 0.0233 (12)

LSQR-opt 0.3178 (9) 0.3163 (11) 0.3166 (3) 0.3162 (7)

LSQR-DP 0.3194 (7) 0.3163 (8) 0.3206 (2) 0.3163 (5)

LSQR-LC 0.3191 (8) 0.3164 (14) 0.3166 (3) 0.3170 (12)

To see that WLSQR with early stopping can compute a regularized solution of good accuracy, we
list the estimated stopping iterations and corresponding relative errors for both WLSQR and LSQR in
Table 6.2. We can find that DP always under-estimate the optimal early stopping iteration for both
WLSQR and LSQR, while LC can either under-estimate or over-estimate the optimal early stopping
iteration. For WLSQR, the DP method for Example 3 and the LC method for Example 2 and 4 get a
regularized solution with a slightly high error, but they are much more accurate than the corresponding
LSQR solutions.

We depict the reconstructed solutions computed by WLSQR with DP as an early stopping rule in
Figure 6.3, where the optimal Tikhonov regularized solutions are used as a comparison. The reconstructed
solutions for Example 1, 2 and 4 by WLSQR are all of high quantity, very close to the optimal Tikhonov
solutions and true solutions. For Example 3, the DP solution by WLSQR is over-smoothed, with a
slightly poor accuracy. Although we do not depict it, the optimal solution at the semi-convergence point
of WLSQR for Example 3 is very close to the true solution. However, in practice, we can not use xtrue

to find the semi-convergence point, and DP or LC is one of the only several choices we can use to find a
solution with not-so-bad accuracy.

To further demonstrate the regularization effect of WLSQR, we compare the convergence rates
of WLSQR with LSQR as the noise level approaches zero, where the noise level decreases as ε =
3.2 × 10−2, 1.6 × 10−2, 8 × 10−3, 4 × 10−3, 2 × 10−3, 1 × 10−3. The top four subfigures in Figure 6.4
depict variations of relative error for the optimal regularized solutions computed by WLSQR, LSQR and
Tikhonov regularization. We can find that both WLSQR and Tikhonov regularization obtain a conver-
gent regularized solution as the noise decreases to zero, and the WLSQR solution usually has better
accuracy. But for LSQR, the relative error remains almost the same even if the noise level approaches
zero, this is because LSQR does not make use of the prior information encoded by ∥x∥2M . The bottom
four subfigures depict variations of relative error when using DP as early stopping rules. Similar to the
above tests, DP does not work very well for Example 3, but it is very fruitful for the other three examples.

To summarize, the aforementioned experiments have confirmed that the WLSQR algorithm combined
with a proper early stopping rule can obtain a good regularized solution for the regularizer ∥x∥2M . This is
because WGKB can approximate dominant WSVD components of A, which contains main information
about the true solution, as is revealed by the Tikhonov solution to (1.7) and the TWSVD solution.
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Figure 6.3: The reconstructed solutions computed by the WLSQR algorithm with DP as the early
stopping rule and the Tikhonov regularization (1.7) with optimal regularization parameter. The noise
levels are ε = 10−2 for all four test examples: (a) Example 1; (b) Example 2; (c) Example 3; (d) Example
4.

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

0.05

0.1

0.15

0.2

0.25

0.3

R
e
la

ti
v
e
 e

rr
o
r

WLSQR-opt

LSQR-opt

Tikh-opt

(a)

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

10 -2

10 -1

R
e
la

ti
v
e
 e

rr
o
r

WLSQR-opt

LSQR-opt

Tikh-opt

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

10 -2

10 -1

R
e
la

ti
v
e
 e

rr
o
r

WLSQR-opt

LSQR-opt

Tikh-opt

(c)

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

10 -3

10 -2

10 -1

100

R
e
la

ti
v
e
 e

rr
o
r

WLSQR-opt

LSQR-opt

Tikh-opt

(d)

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
e
la

ti
v
e
 e

rr
o
r

WLSQR-DP

LSQR-DP

Tikh-opt

(e)

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

10 -2

10 -1

R
e

la
ti
v
e

 e
rr

o
r

WLSQR-DP

LSQR-DP

Tikh-opt

(f)

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

10 -2

10 -1

R
e

la
ti
v
e

 e
rr

o
r

WLSQR-DP

LSQR-DP

Tikh-opt

(g)

0 0.005 0.01 0.015 0.02 0.025 0.03

Noise level

10 -2

10 -1

R
e
la

ti
v
e
 e

rr
o
r

WLSQR-DP

LSQR-DP

Tikh-opt

(h)

Figure 6.4: Convergence rate of the regularized methods WLSQR, LSQR and Tikhonov regularization
as the noise level decreases as ε = 3.2× 10−2, 1.6× 10−2, 8× 10−3, 4× 10−3, 2× 10−3, 1× 10−3. Figures
on the top and bottom correspond to the relative errors at the early stopping iterations that are optimal
and estimated by DP, respectively. Figures from left to right correspond to Example 1 – Example 4.
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7 Conclusions

We have generalized a new form of SVD under a non-standard inner product, named the weighted SVD
(WSVD). The WSVD shares several similar properties and applications as the standard SVD, such as the
low-rank approximation property and solving the least squares problems. Meanwhile, it is very convenient
to handle the matrix computation problems with ∥x∥M norm. We have proposed a weighted Golub-Kahan
bidiagonalization (WGKB) for computing several dominant WSVD components, and a WGKB-based
algorithm, called the weighted LSQR (WLSQR) to solve iteratively least squares problems with minimum
∥x∥M norm. Using WSVD, we have analyzed the Tikhonov regularization of the linear ill-posed problem
with regularizer ∥x∥2M and given the truncated WSVD solution. We have proposed the WGKB-based
subspace projection regularization method, which is equivalent to WLQR with early stopping rules to
efficiently compute the regularized solution. This regularization method avoids computing the Cholesky
factorization of M and can efficiently incorporate the prior information encoded by the regularizer ∥x∥2M .
Several numerical experiments are performed to illustrate the fruitfulness of our methods.
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