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Abstract
The joint bidiagonalization (JBD) process is a useful algorithm for the computation
of the generalized singular value decomposition (GSVD) of a matrix pair. How-
ever, it always suffers from rounding errors, which causes the Lanczos vectors to
lose their mutual orthogonality. In order to maintain some level of orthogonality,
we present a semiorthogonalization strategy. Our rounding error analysis shows that
the JBD process with the semiorthogonalization strategy can ensure that the con-
vergence of the computed quantities is not affected by rounding errors and the final
accuracy is high enough. Based on the semiorthogonalization strategy, we develop
the joint bidiagonalization process with partial reorthogonalization (JBDPRO). In the
JBDPRO algorithm, reorthogonalizations occur only when necessary, which saves a
big amount of reorthogonalization work, compared with the full reorthogonalization
strategy. Numerical experiments illustrate our theory and algorithm.

Keywords Joint bidiagonalization · GSVD · Lanczos bidiagonalization ·
Orthogonality level · Semiorthogonalization · Partial reorthogonalization · JBDPRO
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1 Introduction

The joint bidiagonalization (JBD) process is a useful algorithm for computing some
extreme generalized singular values and vectors for a large sparse or structured
matrix pair {A, L} [20, 28] where A ∈ R

m×n and L ∈ R
p×n, as well as solving
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large-scale discrete ill-posed problems with general-form Tikhonov regularization
[6–8]. First proposed by Zha [30], it iteratively reduces the matrix pair {A, L} to
an upper or lower bidiagonal form. It was later adapted by Kilmer [12] to jointly
diagonalize {A, L} to lower and upper bidiagonal forms.

Consider the compact QR factorization of the stacked matrix:(
A

L

)
= QR =

(
QA

QL

)
R, (1.1)

where Q ∈ R
(m+p)×n is column orthonormal and R ∈ R

n×n. We partition Q such
that QA ∈ R

m×n and QL ∈ R
p×n, so that A = QAR and L = QLR. Applying the

BIDIAG-1 procedure and BIDIAG-2 procedure [21], which correspond to the lower
and upper Lanczos bidiagonalization processes [4], to QA and QL, respectively,
we can reduce QA and QL to the following lower and upper bidiagonal matrices,
respectively:

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1
β2 α2

β3
. . .
. . . αk

βk+1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
(k+1)×k, B̂k =

⎛
⎜⎜⎜⎜⎝

α̂1 β̂1

α̂2
. . .
. . . β̂k−1

α̂k

⎞
⎟⎟⎟⎟⎠ ∈ R

k×k . (1.2)

The two processes produce four column orthonormal matrices, that is

Uk+1 = (u1, . . . , uk+1) ∈ R
m×(k+1), Vk = (ν1, . . . , νk) ∈ R

n×k (1.3)

computed by the BIDIAG-1 algorithm, and

Ûk = (û1, . . . , ûk) ∈ R
p×k, V̂k = (ν̂1, . . . , ν̂k) ∈ R

n×k (1.4)

computed by the BIDIAG-2 algorithm.
In order to combine BIDIAG-1 and BIDIAG-2, the starting vector of BIDIAG-2

is chosen to be ν̂1 = ν1 and the upper bidiagonalization of QL continues. It is proved
in [12, 30] that the Lanczos vector ν̂i and the element β̂i of B̂k can be computed by
using the following relations:

ν̂i+1 = (−1)iνi+1, β̂i = αi+1βi+1/α̂i . (1.5)

For the large-scale matrices A and L, the explicit QR factorization (1.1) can be
avoided by solving a least squares problem with (AT , LT )T as the coefficient matrix
iteratively at each iteration [2, 21]. Through the above modifications, we obtain
the JBD process which can efficiently reduce a large-scale matrix pair {A, L} to
a bidiagonal matrix pair {Bk, B̂k}. For details of the derivation of the algorithm,
see [12, 30]. In exact arithmetic, the k-step JBD process explicitly computes three-
column orthonormal matrices Uk+1, Ṽk , Ûk , a lower bidiagonal matrix Bk and an
upper bidiagonal matrix B̂k . The two-column orthonormal matrices Vk and V̂k can
be obtained from Ṽk implicitly by letting Vk = QT V̂k and V̂k = VkP , where
P = diag(1, −1, . . . , (−1)k−1).
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The JBD process can be used to approximate a few largest or smallest generalized
singular values and corresponding vectors of {A, L} by projecting the original large-
scale problem to the reduced small-scale problem {Bk, B̂k}. Furthermore, Kilmer
et al. [12] present an iterative method based on the JBD process to solve ill-posed
problems with general-form Tikhonov regularization. The main idea is to use the
projection method to solve a sequence of small-scale general-form Tikhonov regular-
ization problems which lies in lower dimensional subspaces. Jia and Yang [11] have
analyzed this iterative regularized method and they present a new iterative regularized
algorithm.

In exact arithmetic, the k-step JBD algorithm is equivalent to the combination
of the lower and upper Lanczos bidiagonalization processes. The lower Lanczos
bidiagonalization process computes two-column orthonormal matrices Uk+1 and νk ,
while the upper Lanczos bidiagonalization process computes two-column orthonor-
mal matrices Ûk and V̂k . In finite precision arithmetic, however, the orthogonality of
Lanczos vectors computed by the JBD process is gradually lost, which is due to the
influence of rounding errors. For the GSVD computation, the loss of orthogonality of
Lanczos vectors will lead to a delay of the convergence of Ritz values and it causes
the appearance of spurious generalized singular values, which are called ghosts [10,
30]. In order to preserve the convergence of the approximate generalized singular
values, we need to perform the JBD process with a reorthogonalization strategy to
maintain some level of orthogonality of the Lanczos vectors.

The loss of orthogonality of Lanczos vectors is a typical phenomenon appearing in
the Lanczos-type algorithms, which is first observed in the symmetric Lanczos pro-
cess [13]. It will lead to a delay of convergence in the computation of some extreme
eigenvalues of a symmetric matrix [15–17, 19], and sometimes it is also difficult to
determine whether some computed approximations are additional copies or genuine
close eigenvalues [16–19]. In order to preserve the convergence, a few reorthog-
onalization strategies have been proposed to maintain some level of orthogonality
[22–26]. Especially, Simon [26] proves that semiorthogonality of Lanczos vectors
is enough to guarantee the accuracy of the computed quantities and avoid spurious
eigenvalues. The above results of the symmetric Lanczos process have been adapted
by Larsen to handle the Lanczos bidiagonalization process, and he proposes the Lanc-
zos bidiagonalization with partial reorthogonalization algorithm [14], which can save
a big amount of reorthogoanlization work, compared with the full reorthogonaliza-
tion strategy. In [27], Simon and Zha propose a one-sided reorthogonalization strategy
for the Lanczos bidiagonalization process. Later in [1], the Lanczos bidiagonalization
process with the one-sided reorthogonalization has been analyzed in detail by Barlow.

In this paper, we propose a semiorthogonalization strategy for the k-step JBD
process to keep the orthogonality levels of ui , ν̃i , and ûi below

√
ε/(2k + 1), where

ε is the roundoff unit. We make a rounding error analysis of the JBD process with
the semiorthogonalization strategy, which establishes connections between the JBD
process with the semiorthogonalization strategy and the Lanczos bidiagonalization
process in finite precision arithmetic. The approximate generalized singular values of
{A, L} can be computed by using the singular value decomposition (SVD) of either
Bk or B̂k [10, 30]. We will prove that semiorthogonality of the Lanczos vectors is
enough to preserve convergence of the Ritz values computed from either Bk or B̂k ,
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and the generalized singular values can be approximated with high accuracy by using
the SVD of Bk , while the accuracy of the approximated generalized singular values
computed from B̂k is high enough as long as ‖B̂−1

k ‖ does not become too large.
Based on the semiorthogonalization strategy, we develop a practical algorithm

called the joint bidiagonalization process with partial reorthogonalization (JBDPRO).
The central idea in partial reorthogonalization is that the levels of orthogonality among
the Lanczos vectors satisfy a coupled recurrence relations [14, 26], which can be used
as a practical tool for computing estimates of the levels of orthogonality in an efficient
way and to decide when to reorthogonalize, and which Lanczos vectors are necessary
to be included in the reorthogonalization step. Numerical experiments show that our
JBDPRO algorithm is more efficient than the joint bidiagonalization process with
full reorthogonalization (JBDFRO), but can prevent “ghosts” from appearing.

This paper is organized as follows. In Section 2, we review the JBD process with
some properties, and we review the GSVD computation based on the JBD process. In
Section 3, we propose a semiorthogonalization strategy, and make a detailed analysis
of the JBD process with the semiorthogonalization strategy. Based on the semiorthog-
onalization strategy, in Section 4, we develop the JBDPRO algorithm. In Section 5,
we use some numerical examples to illustrate our theory and algorithm. Finally, we
conclude the paper in Section 6.

Throughout the paper, we denote by Ik the identity matrix of order k, by 0k and
0k×l the zero vector of dimension k and the zero matrix of k × l, respectively. The
subscripts are omitted when there is no confusion. We denote by span(C) the sub-
space spanned by columns of a matrix C. The transpose of a matrix C is denoted by
CT . The roundoff unit is denoted by ε. The norm ‖ · ‖ always means the spectral or
2-norm of a matrix or vector.

2 Joint bidiagonalization process and GSVD computation

In this section, we review the joint bidiagonalization process and its basic properties
in both exact and finite precision arithmetic. We also describe the GSVD computation
of {A, L} based on the JBD process.

The joint bidiagonalization process is described in Algorithm 1. Notice that for
the large-scale matrices A and L, the explicit QR factorization (1.1) is impractical
due to efficiency and storage. At each iteration i = 1, 2, . . . , k + 1, Algorithm 1

needs to compute QQT

(
ui

0p

)
, which is not accessible since Q is not available. Let

ũi =
(

ui

0p

)
. Notice that QQT ũi is nothing but the orthogonal projection of ũi onto

the column space of

(
A

L

)
, which means that QQT ũi =

(
A

L

)
x̃i , where

x̃i = arg min
x̃∈Rn

∥∥∥∥
(

A

L

)
x̃ − ũi

∥∥∥∥ . (2.1)

The large-scale least squares problem (2.1) can be solved by an iterative solver, e.g.,
the most commonly used LSQR algorithm [21].
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Algorithm 1 is actually a procedure that can be used to compute the CS decom-
position of QA, QL when it is run to completion, where all we have access to is an
approximation to the projection QQT , which can be accessed by solving (2.1) itera-
tively. In exact arithmetic, the k-step JBD process produces two bidiagonal matrices
Bk , B̂k and three-column orthonormal matrices Uk+1, Ûk and

Ṽk = (ν̃1, . . . , ν̃k) ∈ R
(m+p)×k (2.2)

satisfying ν̃i = Qνi . We have νi = QT ν̃i and ν̂i = (−1)i−1νi , which can be obtained
implicitly from ν̃i . The first k steps of the recurrences from Algorithm 1 are captured
in matrix form as:

(Im, 0m×p)Ṽk = Uk+1Bk, (2.3)

QQT

(
Uk+1

0p×(k+1)

)
= ṼkB

T
k + αk+1ṽk+1e

T
k+1, (2.4)

(0p×m, Ip)ṼkP = ÛkB̂k, (2.5)

where P = diag(1, −1, 1, . . . , (−1)k−1), and ek+1 is the (k + 1)-th column of the
identity matrix of order k + 1. In exact arithmetic, one can verify that

QAVk = Uk+1Bk, QT
AUk+1 = VkB

T
k + αk+1νk+1e

T
k+1, (2.6)

QLV̂k = ÛkB̂k, QT
LÛk = V̂kB̂

T
k + β̂kv̂k+1e

T
k , (2.7)

where ek the k-th column of the identity matrix of order k. Therefore, the JBD pro-
cess of {A, L} is equivalent to the combination of the lower and upper Lanczos
bidiagonalizations of QA and QL.

The JBD process can be used to approximate some extreme generalized singular
values and vectors of a large sparse or structured matrix pair {A, L}. We first describe
the GSVD of {A, L}. Let

QA = PACAWT , QL = PLSLWT (2.8)
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be the CS decomposition of the matrix pair {QA, QL} [29], where PA =
(pA

1 , . . . , pA
m) ∈ R

m×m, PL = (pL
1 , . . . , pL

p ) ∈ R
p×p and W = (w1, . . . , wn) ∈

R
n×n are orthogonal matrices, and CA ∈ R

m×n and SL ∈ R
p×n are diagonal matrices

(not necessarily square) satisfying CT
ACA + ST

LSL = In. Assume that the diagonals
ci of CA are labeled in decreasing order. If we add the assumption that (AT , LT )T

has full column rank, the GSVD of {A, L} is

A = PACAG−1, L = PLSLG−1 (2.9)

with G = R−1W ∈ R
n×n. Assume that the ci are labeled in decreasing order. Then

the i-th generalized singular value of {A, L} is ci/si , and the i-th corresponding gen-
eralized singular vectors are gi = R−1wi , pA

i , and pL
i . We call gi the i-th right

generalized singular vector, pA
i and pL

i the i-th left generalized singular vectors cor-
responding to A and L, respectively. Since ci/si = ∞ when si = 0, we use the
number pair {ci, si} to denote ci/si .

After the k-step JBD process of {A, L}, we have computed Bk and B̂k . Let us
assume that we have computed the compact SVD of Bk:

Bk = PkΘkW
T
k , Θk = diag(c

(k)
1 , . . . , c

(k)
k ), 1 ≥ c

(k)
1 > · · · > c

(k)
k ≥ 0 , (2.10)

where Pk = (p
(k)
1 , . . . , p

(k)
k ) ∈ R

(k+1)×k and Wk = (w
(k)
1 , . . . , w

(k)
k ) ∈ R

k×k are
column orthonormal, and Θk ∈ R

k×k . The decomposition (2.10) can be achieved by
a variety of methods since Bk is a bidiagonal matrix of relatively small dimension.
The approximate generalized singular value of {A, L} is {c(k)

i , (1−(c
(k)
i )2)1/2}, while

the approximate right vector is x
(k)
i = R−1Vkw

(k)
i and the approximate left vector

corresponding to A is y
(k)
i = Uk+1p

(k)
i . For large-scale matrices A and L, the explicit

computation of R−1 can be avoided. Notice that

(
A

L

)
x

(k)
i = QRR−1Vkw

(k)
i = Ṽkw

(k)
i .

Hence by solving a least squares problem, we can obtain x
(k)
i from Ṽkw

(k)
i . If we also

want to compute the approximate left generalized singular vectors corresponding to
L, we need to compute the SVD of B̂k . The approximate generalized singular values
and corresponding right vectors can also be computed from the SVD of B̂k . The
procedure is similar to the above and we omit it; for details, see [10, 30].

In finite precision arithmetic, due to rounding errors, the behavior of the JBD
process will deviate far from the ideal case in exact arithmetic, and the convergence
and accuracy of the approximate generalized singular values and vectors computed
by using the JBD process will be affected. The rounding error analysis of the JBD
process in finite precision arithmetic is based on a set of assumptions and properties
of the behavior of the rounding errors occurring, which constitutes a rational model
for the actual computation. We state them here, following [10].
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First, we always assume that (2.1) is solved accurately at each iteration. Thus, the

computed

(
A

L

)
x̃i is equal to the value of QQT

(
ui

0p

)
computed by explicitly using

the strictly column orthonormal matrix Q. Second, the rounding errors appearing in
the computation at each step are assumed to be of order O(ε). Third, the property of
local orthogonality of ui and ν̂i holds, that is, locally the orthogonality levels of ui

and ν̂i satisfy the following relations respectively:

βi+1|uT
i+1ui | = O(c1(m, n)ε), (2.11)

α̂i+1|ûT
i+1ûi | = O(c2(p, n)ε), (2.12)

where c1(m, n) and c2(p, n) are two modestly growing functions of m, n, and p.
Finally, we assume that

no αi, βi+1, α̂i and β̂i ever become negligible, (2.13)

which is almost always true in practice, and the rare cases where αi , βi+1, α̂i , or
β̂i do become small are actually the lucky ones, since then the algorithm should be
terminated, having found an approximate invariant singular subspace. Besides, we
always assume that the computed Lanczos vectors are of unit length.

Under the above assumptions, it has been shown in [10] that

‖Ṽk − QVk‖= O(‖B−1
k ‖ε) (2.14)

with Bk =
(

BT
k−1

αke
T
k

)
∈ R

k×k , which implies that Ṽk gradually deviates from the col-

umn space of Q as the iterations progress. Furthermore, the following four relations
hold:

QAVk = Uk+1Bk + Fk, QT
AUk+1 = VkB

T
k + αk+1vk+1e

T
k+1 + Gk+1, (2.15)

QLV̂k = ÛkB̂k + F̂k, QT
LÛk = V̂kB̂

T
k + β̂kv̂k+1e

T
k + Ĝk, (2.16)

where

‖Fk‖ = O(‖B−1
k ‖ε), ‖Gk+1‖ = O(ε), (2.17)

‖F̂k‖ = O(‖B−1
k ‖ε), ‖Ĝk‖ = O((‖B−1

k ‖ + ‖B̂−1
k ‖)ε). (2.18)

Remark 2.1 The growth speed of ‖B−1
k ‖ can be controlled. In the GSVD computa-

tion problems, usually at least one matrix of {A, L} is well conditioned, which means
that at least one of {QA, QL} is well conditioned. If QA is the well-conditioned one,
we implement the JBD process of {A, L}, while if QL is the well-conditioned one, we
implement the JBD process of {L, A}. By this modification, we could always make
sure that Bk is a well-conditioned matrix and ‖B−1

k ‖ does not become too large.

Following Remark 2.1, we can always assume that ‖B−1
k ‖ = O(1). Thus, we

can make sure that Ṽk is approximately in the subspace spanned by the columns of
Q within error O(ε), and ‖Fk‖, ‖F̂k‖ are about O(ε). Therefore, (2.15) indicates
that the process of computing Uk+1, Vk , and Bk can be treated as the lower Lanczos
bidiagonalization of QA within error O(ε). However, if ‖B̂−1

k ‖ becomes too large,
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the process of computing Ûk , V̂k , and B̂k will deviate far from the upper Lanczos
bidiagonalization of QL.

In finite precision arithmetic, the Lanczos vectors computed by the JBD pro-
cess gradually lose their mutual orthogonality as the iteration number k increases.
Following [10], we give the definition of the orthogonality level of a group of vectors.

Definition 2.1 For a rectangular matrix Wk = (w1, . . . , wk) ∈ R
r×k with ‖wj‖= 1,

j = 1, . . . , k, two measures of the orthogonality level of {w1, . . . , wk} or Wk are:

κ(Wk) = max
1≤i �=j≤k

|wT
i wj |, ξ(Wk) = ‖Ik − WT

k Wk‖.

In the following analysis, we often use terminology “the orthogonality level of
wi” for simplicity, which means the orthogonality level of {w1, . . . , wk}. Notice that
κ(Wk) ≤ ξ(Wk) ≤ kκ(Wk). In most occasions, the two quantities can be used
interchangeably to measure the orthogonality level of Lanczos vectors. We call wi

“semiorthogonal” if its orthogonality level is about
√

ε. Using the method in [1], we
can obtain ‖Wk‖ ≤ √

1 + ξ(Wk). This upper bound will be used later.
If we use the JBD process to approximate some generalized singular values and

vectors of {A, L}, the loss of orthogonality of Lanczos vectors will lead to a delay
of the convergence of approximate generalized singular values and the appearance of
“ghosts.” To preserve the convergence, one can use the full reorthogonalization for
ui, ûi , and ν̃i at each iteration, to make sure that the orthogonality levels of ui, ûi ,
and ν̃i are about O(ε). The disadvantage of full reorthogonalization strategy is that
it will cost too much extra computation. It has been shown in [10] that semiorthog-
onality of Lanczos vectors is enough to guarantee the accuracy of the approximate
generalized singular values and prevent ghosts from appearing. In the next section,
we will propose a semiorthogonalization strategy, and make a detailed analysis of the
JBD process equipped with the semiorthogonalization strategy.

3 A semiorthogonalization strategy for the JBD process

Now we introduce a semiorthogonalization strategy for the JBD process. The
semiorthogonalization strategy is similar to that proposed by Simon for the symmet-
ric Lanczos process [26]. We use the reorthogonalization of ui+1 to describe it. Let
ω0 = √

ε/(2k + 1). At the i-th step, suppose that

β ′
i+1u

′
i+1 = ν̃i (1 : m) − αiui − f ′

i .

If |u′T
i+1uj | > ω0 for some j < i, then we choose i − 1 real numbers ξ1i , . . . , ξi−1,i ,

and form

βi+1ui+1 = β ′
i+1u

′
i+1 −

i−1∑
j=1

ξjiuj − f ′′
i .

In the above equations, f ′
i and f ′′

i are rounding error terms in the computation. The
algorithm will be continued with ui+1 instead of u′

i+1.
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Definition 3.1 The above modification of the JBD process will be called a
semiorthogonalization stategy for ui+1 if the following conditions are satisfied:

1. The numbers ξ1i , . . . , ξi−1,i are chosen such that∣∣∣uT
i+1uj

∣∣∣ ≤ ω0 , j = 1, . . . , i. (3.1)

2. The computation of ui+1 can be written as

βi+1ui+1 = ν̃i (1 : m) − αiui −
i−1∑
j=1

ξjiuj − fi, (3.2)

where fi = f ′
i + f ′′

i is the rounding error term and satisfies ‖fi‖ =
O(q1(m, n)ε) with q1(m, n) a modestly growing function of m and n.

The semiorthogonalization stategies for ν̃i+1 and ûi+1 are similar, and the
corresponding i-th step recurrences are

αi+1ν̃i+1 = QQT

(
ui+1
0p

)
− βi+1ν̃i −

i−1∑
j=1

ηji+1ν̃j − gi+1, (3.3)

α̂i+1ûi+1 = (−1)i ν̃i+1(m + 1 : m + p) − β̂i ûi −
i−1∑
j=1

ξ̂j i+1ûj − f̂i+1, (3.4)

where ‖gi+1‖ = O(q2(m, p)ε) and ‖f̂i+1‖ = O(q3(p, n)ε) with q2(m, p) and
q3(p, n) two modestly growing functions of m, n, and p.

Notice that the reorthogonalization of ui+1 does not use the vector ui , due to the
property of local orthogonality among ui and ui+1. The reasons are similar for the
reorthogonalizations of ν̃i+1 and ûi+1. After the semiorthogonalization step, relations
(2.11) and (2.12) will still hold.

After k steps, we have computed three groups of Lanczos vectors {u1, . . . , uk+1},
{ν̃1, . . . , ν̃k} and {û1, . . . , ûk}, whose orthogonality levels are below ω0. The first k

steps of the recurrences are captured in matrix form as

(Im, 0m×p)Ṽk = Uk+1(Bk + Ck) + F̂k, (3.5)

QQT

(
Uk+1

0p×(k+1)

)
= Ṽk(B

T
k + Dk) + αk+1ṽk+1e

T
k+1 + Ĝk+1, (3.6)

(0p×m, Ip)ṼkP = Ûk(B̂k + Ĉk) + F̄k, (3.7)

where F̃k = (f1, . . . , fk), G̃k+1 = (g1, . . . , gk+1), F̄k = (f̂1, . . . , f̂k), and

Ck =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ξ12 . . . ξ1k

0 0 · · · ξ2k

0
. . .

...
. . . 0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
(k+1)×k, Ĉk =

⎛
⎜⎜⎜⎜⎜⎝

0 0 ξ̂13 · · · ξ̂1k

0 0 · · · ξ̂2k

. . .
. . .

...
0 0

0

⎞
⎟⎟⎟⎟⎟⎠

∈ R
k×k,
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Dk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 η13 · · · η1k η1k+1
0 0 η24 · · · η2k+1

. . .
. . .

. . .
...

. . . 0 ηk−1,k+1
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
k×(k+1).

Notice that the columns ṽi of Ṽk are approximately in the subspace spanned by
the columns of Q within error O(ε) for i = 1, . . . , k. If we let νi = QT ν̃i and
ν̂i = (−1)i−1νi , then Ṽk = QVk + O(ε), and {ν1, . . . , νk} and {ν̂1, . . . , ν̂k} are also
kept semiorthogonal. From (3.5)–(3.7), we can obtain

QAVk = Uk+1(Bk + Ck) + Fk, (3.8)

QT
AUk+1 = Vk(B

T
k + Dk) + αk+1vk+1e

T
k+1 + Gk+1, (3.9)

QLV̂k = Ûk(B̂k + Ĉk) + F̂k, (3.10)

where ‖Fk‖ = O(q1(m, n)ε), ‖Gk+1‖ = O(q2(m, p)ε), and ‖F̂k‖ = O(q3(p, n)ε).
We point out that the rounding error terms Fk , Gk+1, and F̂k here are different from
those in relations (2.15)–(2.18), and we use the same notations just for simplicity.

The following two lemmas describe some basic properties of the JBD process with
the semiorthogonalization strategy. The proofs are given in Appendix 1.

Lemma 3.1 For the k-step JBD process with the semiorthogonalization strategy, the
relation

QT
Lûi ∈ span{ν̂1, . . . , v̂i+1} + O(q̄(m, n, p)ε). (3.11)

holds for all i = 1, 2, . . . , k where q̄(m, n, p) = q1(m, n) + q2(m, p) + q3(p, n).

Lemma 3.2 For the k-step JBD process with the semiorthogonalization strategy, we
have

Ck = O(
√

ε), Dk = O(
√

ε), Ĉk = O(
√

ε), (3.12)

where X = O(
√

ε) for a matrix X means that all the elements of X are of O(
√

ε).

Now, we give a relation between the two computed quantities Bk and B̂k .

Theorem 3.1 Given the k-step JBD process with the semiorthogonalization strategy,
we have

BT
k Bk + P B̂T

k B̂kP = Ik + Hk, (3.13)

where Hk is a symmetric tridiagonal matrix the “symmetric tridiagonal matrix”
has already meant that its bandwidth is 1, and the nonzero elements of Hk are of
O(c3(m, n, p)ε) with c3(m, n, p) = c1(m, n) + c2(p, n) + q1(m, n) + q3(p, n).
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Proof Since

BT
k Bk =

⎛
⎜⎜⎜⎜⎝

α2
1 + β2

2 α2β2

α2β2 α2
2 + β2

3
. . .

. . .
. . . αkβk

αkβk α2
k + β2

k+1

⎞
⎟⎟⎟⎟⎠ ,

B̂T
k B̂k =

⎛
⎜⎜⎜⎜⎝

α̂2
1 α̂1β̂1

α̂1β̂1 α̂2
2 + β̂2

1
. . .

. . .
. . . α̂k−1β̂k−1

α̂k−1β̂k−1 α̂2
k + β̂2

k−1

⎞
⎟⎟⎟⎟⎠ ,

nonzero elements in Hk are contained only in the diagonal and subdiagonal parts.
For their diagonal parts, from (3.2) we have

‖ũi (1 : m)‖2 = ‖αiui + βi+1ui+1 +
i−1∑
j=1

ξjiuj + fi‖2

= α2
i + β2

i+1 + 2αiβi+1u
T
i ui+1 + 2αiu

T
i fi + 2βi+1u

T
i+1fi + ‖fi‖2

+‖
i−1∑
j=1

ξjiuj‖2 + 2αi

i−1∑
j=1

ξjiu
T
i uj + 2βi+1

i−1∑
j=1

ξjiu
T
i+1uj

+2
i−1∑
j=1

ξjif
T
i uj .

Since ξji = O(
√

ε) and
∣∣uT

l uj

∣∣ ≤ √
ε/(2k + 1) for 1 ≤ l �= j ≤ i + 1, we obtain

‖
i−1∑
j=1

ξjiuj‖2 + 2αi

i−1∑
j=1

ξjiu
T
i uj + 2βi+1

i−1∑
j=1

ξjiu
T
i+1uj + 2

i−1∑
j=1

ξjif
T
i uj

= 2
∑

1≤j<l≤i−1

ξjiξliu
T
j ul +

i−1∑
j=1

ξ2
ji‖uj‖2 + 2αi

i−1∑
j=1

O(ε) + 2βi+1

i−1∑
j=1

O(ε)

+2
i−1∑
j=1

O(ε
√

ε)

= O(iε
√

ε) + O(iε) + O[i(αi + βi+1)ε] + O(iε
√

ε)

= O(iε).

Using the property of local orthogonality of ui , we have

2αiβi+1u
T
i ui+1 + 2αiu

T
i fi + 2βi+1u

T
i+1fi + ‖fi‖2 = O(c̄1(m, n)ε)

with c̄1(m, n) = c1(m, n) + q1(m, n). Thus

‖ν̃i (1 : m)‖2 = α2
i + β2

i+1 + O(c̄1(m, n)ε).
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Similarly, from (3.4), we can obtain

‖ν̃i (m + 1 : m + p)‖2 = α̂2
i + β̂2

i−1 + O(c̄2(p, n)ε)

with c̄2(p, n) = c2(p, n) + q3(p, n). Since

1 = ‖ν̃i‖2 = ‖ν̃i (1 : m)‖2 + ‖ũi (m + 1 : m + p)‖2,

we get

α2
i + β2

i+1 + α̂2
i + β̂2

i−1 = 1 + O(c3(m, n, p)ε). (3.14)

For the subdiagonal parts, in finite precision arithmetic, we have β̂i =
(αi+1βi+1/α̂i) (1 + τ), where |τ | ≤ ε [9, §2.2], showing that

αi+1βi+1 = α̂i β̂i − αi+1βi+1τ .

From (3.14), we have

αi+1βi+1 ≤ α2
i+1 + β2

i+1

2
≤ 2[1 + O(c3(m, n, p)ε)]

2
= 1 + O(c3(m, n, p)ε).

Therefore, we obtain

αi+1βi+1 = α̂i β̂i + γi, (3.15)

where |γi | ≤ [1 + O(c3(m, n, p)ε)]ε = O(ε).
Combining (3.14) and (3.15), we finally obtain (3.13).

We now show the connection between the process of computing Ûk , V̂k , B̂k , and
the upper Lanczos bidiagonalization of QL in finite precision arithmetic.

Theorem 3.2 For the k-step JBD process with the semiorthogonalization strategy,
the following relation holds:

QT
LÛk = V̂k(B̂

T
k + D̂k) + β̂kv̂k+1e

T
k + Ĝk, (3.16)

where D̂k is upper triangular with zero diagonals, and

‖Ĝk‖ = O(c4(m, n, p)‖B̂−1
k ‖ε), (3.17)

with c4(m, n, p) = c1(m, n) + c2(p, n) + q̄(m, n, p).

Proof Combining (3.8) and (3.9), we have

QT
AQAVk = QT

AUk+1(Bk + Ck) + QT
AFk

= [Vk(B
T
k + Dk) + αk+1νk+1e

T
k+1 + Gk+1](Bk + Ck) + QT

AFk

= VkB
T
k Bk + αk+1βk+1νk+1e

T
k + Vk(B

T
k + Dk)Ck + VkDkBk +

Gk+1(Bk + Ck) + QT
AFk .

Premultiplying (3.10) by QT
L , we have

QT
LQLVk = [QT

LÛk(B̂k + Ĉk) + QT
LF̂k]P .
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Adding the above two equalities, we obtain

(QT
AQA + QT

LQL)Vk

= Vk[Ik − P B̂T
k B̂kP + Hk] + QLÛkB̂

T
k P + (α̂kβ̂k + γk)νk+1e

T
k + VkDkBk

+Vk(B
T
k + Dk)Ck + QT

LÛkĈkP + Gk+1(Bk + Ck) + QT
AFk + QT

LF̂kP .

Since (QT
AQA + QT

LQL)Vk = Vk , after some rearrangement we obtain

V̂kB̂
T
k B̂k = QT

LÛkB̂k − α̂kβ̂kv̂k+1e
T
k + Ē1 + Ē2,

where

Ē1 = V̂kP [DkBk + (BT
k + Dk)Ck]P + QT

LÛkĈk,

and

Ē2 = [Gk+1(Bk + Ck) + QT
AFk + QT

LF̂kP + VkHk]P − γkv̂k+1e
T
k .

According to the structure of matrices Ck and Dk , by a simple calculation, we
can verify that P [DkBk + (BT

k + Dk)Ck]P is an upper triangular matrix with zero
diagonals, which is denoted by Yk . Notice that the i-th column of QT

LÛkĈk is∑i−2
j=1 ξ̂j iQ

T
Lûj . By Lemma 3.1, there exist coefficients ρ1i , . . . , ρi−1,i such that

i−2∑
j=1

ξ̂j iQ
T
Lûj =

i−1∑
j=1

ρji v̂j + O(q̄(m, n, p)ε).

Therefore, we have

QT
LÛkCk = V̂kWk + O(q̄(m, n, p)ε),

where

Wk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ρ12 ρ13 · · · ρ1k

0 ρ23 · · · ρ2k

. . .
. . .

...
. . . ρk−1,k

0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
k×k

is upper triangular with zero diagonals.
Notice that ‖Vk‖ ≤ √

1 + ξ(Vk) = 1 + O(
√

ε). From (3.14), we can get1

‖Bk‖ ≤ √
2 max

1≤i≤k
(α2

i + β2
i+1)

1/2 ≤ √
2 + O(c3(m, n, p)ε).

By Theorem 3.1, we can get

‖Hk‖ = O(c3(m, n, p)). (3.18)

Using these upper bounds, by a simple but tedious calculation, we can prove that

‖Ē2‖ = O(c4(m, n, p)ε).

1Here, we use the result of an exercise from Higham’s book [9, Chapter 6, Problems 6.14], which gives
the upper bound of the p-norm of a row/column sparse matrix.
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From the above, we obtain

QT
LÛk − V̂kB̂

T
k − β̂kv̂k+1e

T
k = −V̂k(Wk + Yk)B̂

−1
k − [Ē2 + O(q̄(m, n, p)ε)]B̂−1

k .

Noticing that −(Wk + Yk)B̂
−1
k is upper triangular with zero diagonals, which is

denoted by D̂k , we finally obtain

QT
LÛk = V̂k(B̂

T
k + D̂k) + β̂kv̂k+1e

T
k + Ĝk,

where Ĝk = −[Ē2+O(q̄(m, n, p)ε)]B̂−1
k and ‖Ĝk‖ = O(c4(m, n, p)‖B̂−1

k ‖ε).
If we write the matrix D̂k as

D̂k =

⎛
⎜⎜⎜⎜⎜⎝

0 η̂12 η̂13 · · · η̂1k

0 η̂23 · · · η̂2k

. . .
. . .

...
0 η̂k−1,k

0

⎞
⎟⎟⎟⎟⎟⎠

∈ R
k×k,

then for each i = 1, . . . , k, from (3.16) we have

β̂i ν̂i+1 = QT
Lûi − α̂i ν̂i −

i−1∑
j=1

η̂j i v̂j − ĝi ,

where ‖ĝi‖ = O(c4(m, n, p)‖B̂−1
k ‖ε), which corresponds to the reorthogonalization

of ν̂i with the error term ĝi . Therefore, combining (3.10) and (3.16), we can treat the
process of computing Ûk , V̂k , and B̂k as the upper Lanczos bidiagonalization of QL

with the semiorthogonalization strategy within error δ = O(c4(m, n, p)‖B̂−1
k ‖ε).

By (3.8) and (3.9), we can treat the process of computing Uk+1, Vk , and Bk as
the lower Lanczos bidiagonalization of QA with the semiorthogonalization strategy.
Therefore, the computed Bk is, up to roundoff, the Ritz-Galerkin projection of QA

on the subspace span(Uk+1) and span(Vk), i.e., we have the following result.

Theorem 3.3 For the k-step JBD process with the semiorthogonalization strategy,
suppose that the compact QR factorizations of Uk and Vk are Uk = MkRk and
Vk = NkSk , where the diagonals of the upper triangular matrices Rk and Sk are
nonnegative. Then

MT
k QANk = Bk + Ek, (3.19)

where the elements of Ek are of O(q̃(m, n, p)ε) with q̃(m, n, p) = q1(m, n) +
q2(p, n).

Since the k-step Lanczos bidiagonalization is equivalent to the (2k + 1)-step sym-
metric Lanczos process [2, Sect. 7.6.1], using the method in [2, Sect. 7.6.1], we
can deduce Theorem 3.3 from [26, Theorem 5]. By the Wielandt-Hoffman theorem
[5, Theorem 8.6.4], the singular values of Bk are, up to error O(q̃(m, n, p)ε), the
singular values of MT

k QANk . Therefore, Theorem 3.3 means that if we use the SVD
of Bk to approximate some generalized singular values of {A, L}, the singular val-
ues of Bk are identical to those ones of the true projection matrix within the level of
machine precision.
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In [30], the author suggests that one can also use the SVD of B̂k to approximate
some generalized singular values and vectors of {A, L}. Similar to the above theorem,
combining (3.10) and (3.16), we can obtain the following result.

Theorem 3.4 For the k-step JBD process with the semiorthogonalization strategy,
suppose that the compact QR factorizations of Ûk and V̂k are Ûk = M̂kR̂k and
V̂k = N̂kŜk , where the diagonals of the upper triangular matrices R̂k and Ŝk are
nonnegative. Then

M̂T
k QLN̂k = B̂k + Êk, (3.20)

where the elements of Êk are of δ = O(c4(m, n, p)‖B̂−1
k ‖ε).

Theorem 3.4 indicates that the computed B̂k equals to the Ritz-Galerkin projection
of QL on the subspace span(Ûk) and span(V̂k) with the error O(δ). Therefore, if
we use the SVD of B̂k to approximate some generalized singular values {A, L}, the
singular values of B̂k are identical to those ones of the true projection matrix within
the level of O(δ), which is not far from machine precision, as long as ‖B̂−1

k ‖ does not
become too large.

4 The JBD process with partial reorthogonalization

In order to implement the semiorthogonalization strategy, we need to decide when
to reorthogonalize, and which Lanczos vectors are necessary to be included in the
reorthogonalization step. By the analysis in the previous section, the process of com-
puting Uk+1, Vk , and Bk can be treated as the lower Lanczos bidiagonalization of
QA, so our reorthogonalization strategy can be based on the partial reorthogonaliza-
tion of ui and νi ; see [14, 25]. The central idea is that the levels of orthogonality of
ui and νi satisfy the following coupled recurrences [14, Theorem 6].

Theorem 4.1 Let μji = uT
j ui , νji = νT

j νi , and μj0 ≡ 0, νj0 ≡ 0. Then μjj = 1
for 1 ≤ j ≤ i + 1 and νjj = 1 for 1 ≤ j ≤ i, and

βi+1μj,i+1 = αjνji + βjνj−1,i − αiμji − uT
j fi + νT

i gj (4.1)

for 1 ≤ j ≤ i and

αiνji = βj+1μj+1,i + αjμji − βiνj,i−1 + uT
i fj − νT

j gi (4.2)

for 1 ≤ j ≤ i − 1.

Theorem 4.1 shows that the inner products uT
j ui+1 and νT

j νi are simply linear
combinations of the inner products formed by the previous Lanczos vectors. Thus,
we can estimate quantities μj,i+1 and νji if we have proper estimations of |uT

i fj −
νT
j gi | and |uT

j fi − νT
i gj |. The two quantities |uT

i fj − νT
j gi | and |uT

j fi − νT
i gj | are

about O(ε) and their accurate estimates have been discussed in detail in [14]. Since
ν̃T
i ν̃j ≈ νT

i νj , the estimated νji is also a good estimate of ν̃T
j ν̃i . Therefore, using

these estimates, we can monitor the loss of orthogonality of Lanczos vectors ui and
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ν̃i directly without forming inner products, which enables us to determine when and
against which of the previous Lanczos vectors to reorthogonalize.

On the other hand, it has been shown in [10] that the orthogonality level of Ûk is
affected not only by those of Uk+1 and Ṽk , but also by a factor ‖B̂−1

k ‖. Therefore,
if B̂k is not very ill-conditioned, the orthogonality of Ûk will not be too bad even
if we only reorthogonalize ui and ν̃i but not ûi . From the above discussions, we
finally obtain the JBD process with partial reorthogonalization, which is described in
Algorithm 2.

In Algorithm 2, we need to determine two sets Ti and Si at each iteration. The
methods of choosing which previous Lanczos vectors to reorthogonalize have been
discussed in detail by Simon [25] and Larsen [14], for the symmetric Lanczos process
and Lanczos bidiagonalization, respectively. They introduce the η-criterion. Here, we
use the reorthogonalization of ui+1 to explain it. At the i-th iteration, we only need
to reorthogonalize against the vectors where μji+1 is larger than some constant η

satisfying ε < η < ω0. It is sufficient to choose the vectors where μji+1 exceeds ω0
and their neighbors exceed η to be included in the reorthogonalization step, while a
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few isolated components that exceeding η are quite harmless [14, 25]. Therefore, the
index sets Ti and Si can be described by the formulas:

Ti = ⋃
μj,i+1>ω0

{l|1 ≤ j − r ≤ l ≤ j + s ≤ i − 1, μli+1 > η}, (4.3)

Si = ⋃
νj,i+1>ω0

{l|1 ≤ j − r ≤ l ≤ j + s ≤ i − 1, νli+1 > η}. (4.4)

Simon [25] demonstrates that using the η-criterion in partial reorthogonalization
could significantly reduce the amount of extra reorthogonalization work. Experi-
mentally, he finds that η = ε3/4 is the value that minimizes the total amount of
reorthogonalization work for the symmetric Lanczos process. In Algorithm 2, we
also choose η = ε3/4 to implement the partial reorthogonalization.

For the JBDPRO algorithm with the η-criterion, the orthogonality levels of ui and
ν̃i will be O(η). By using the same method as in the proof of Lemma 3.2, we can
prove that Dk = O(η) and Ck = O(η). Notice that we do not reorthogonalize ν̂i ,
which can save a big amount of reorthogonalization work. The following theorem
states that if B̂k is not very ill-conditioned, then the orthogonality of Ûk will be at a
desired level.

Theorem 4.2 For the k-step JBDPRO algorithm, the orthogonality level of Ûk

satisfies

ξ(Ûk) = O(‖B̂−1
k ‖2η). (4.5)

Proof Since we do not reorthogonalize any ν̂i , which means that Ĉk = 0, by (3.10)
we have

B̂T
k ÛT

k ÛkB̂k = (QLν̂k − F̂k)
T (QLν̂k − F̂k),

and

B̂T
k (Ik − ÛT

k Ûk)B̂k = B̂T
k B̂k − (QLV̂k − F̂ )T (QLV̂k − F̂k)

=Ik − PBT
k BkP + Hk − V̂ T

k QT
LQLV̂k + V̂ T

k QT
LF̂k + F̂ T

k QLV̂k − F̂ T
k F̂k (4.6)

=Ik−PBT
k BkP −PV T

k (Ik−QT
AQA)VkP +V̂ T

k QT
LF̂k+F̂ T

k QLV̂k − F̂ T
k F̂k+Hk .

By (3.8), we have

V T
k QT

AQAVk = [Uk+1(Bk + Dk) + Fk]T [Uk+1(Bk + Dk) + Fk]
= BT

k UT
k+1Uk+1Bk + Ē3,

(4.7)

where

Ē3 = DT
k UT

k+1Uk+1Bk + BT
k UT

k+1Uk+1Dk + (Bk + Dk)
T UT

k+1Fk +
FT

k Uk+1(Bk + Dk) + DT
k UT

k+1Uk+1Dk + FT
k Fk .

Since Dk = O(η), by a simple calculation, we can obtain

‖Ē3‖ = O(η).

Substituting (4.7) into (4.6), we have

B̂T
k (Ik − ÛT

k Ûk)B̂k = (Ik − V̂ T
k V̂k) − PBT

k (Ik+1 − UT
k+1Uk+1)BkP +

V̂ T
k QT

LF̂k + F̂ T
k QLV̂k − F̂ T

k F̂k + Hk + P Ē3P .
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By a simple manipulation, we can obtain

‖V̂ T
k QT

LF̂k + F̂ T
k QLV̂k − F̂ T

k F̂k + Hk‖ = O(c3(m, n, p)ε).

Therefore,

B̂T
k (Ik − ÛT

k Ûk)B̂k = (Ik − V̂ T
k V̂k) − PBT

k (Ik+1 − UT
k+1Uk+1)BkP + O(η).

Notice that, in the JBDPRO algorithm, we have ξ(V̂k) = ‖Ik − V̂ T
k V̂k‖ = O(η)

and ξ(Uk+1) = ‖Ik+1 − UT
k+1Uk+1‖ = O(η). We finally obtain

ξ(Ûk) = ‖Ik − ÛT
k Ûk‖ ≤ ‖B̂−1

k ‖2[‖Bk‖2O(η) + O(η)] = O(‖B̂−1
k ‖2η),

which is the desired result.

Since the orthogonality level of ν̂i is O(η), which is below
√

δ/(2k + 1), by The-
orem 3.4, the relation (3.20) holds as long as κ(Ûk) is below

√
δ/(2k + 1), i.e., the

following condition should be satisfied:

‖B̂−1
k ‖2ε3/4 �

√
δ/(2k + 1),

which leads to

‖B̂−1
k ‖3 � c4(m, n, p)

(2k + 1)
√

ε
. (4.8)

Therefore, for the JBDPRO algorithm, if we use some of the singular values of B̂k

to approximate the desired generalized singular values of {A, L}, the ghosts can be
prevented from appearing as long as the growth of ‖B̂−1

k ‖ can be controlled by (4.8).

5 Numerical experiments

In this section, we provide several numerical examples to illustrate our theory about
the properties of the JBD process with the semiorthogonalization strategy and the
JBDPRO algorithm. The matrices are constructed by ourselves or chosen from the
University of Florida Sparse Matrix Collection [3]. For the first pair, the matrices A

and L, which are denoted by Ac and Ls , respectively, are constructed by ourselves.

Let n = 800 and C = diag(c), where c = (
3n

2
,

3n

2
− 1, . . . ,

n

2
+ 1)/2n. Then, let

s = ((1 − c2
1)

1/2, . . . , (1 − c2
n)

1/2) and S = diag(s). Let D be the matrix generated
by the MATLAB built-in function D=gallery(‘orthog’,n,2), which means
that D is a symmetric orthogonal matrix. Finally, let A = CD and L = SD. For
the second pair, A and L are the square matrices dw2048 and rdb2048 from electro-
magnetics problems and computational fluid dynamics problems, respectively. For
the third pair, A is the square matrix ex31 from computational fluid dynamics prob-
lems, Lm = diag(l), where l = (3m, 3m − 1, . . . , 2m + 1)/4000 and m is the row
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number of A. For the fourth pair, A is the square matrix rdb5000 from computational
fluid dynamics problems and L = L1, which is the discrete approximation of the
first-order derivative operator. The properties of our test matrices are described in
Table 1, where cond(·) means the condition number of a matrix.

L1 =

⎛
⎜⎜⎜⎝

1 −1
1 −1

. . .
. . .
1 −1

⎞
⎟⎟⎟⎠ ∈ R

(n−1)×n, (5.1)

The numerical experiments are performed on an Intel (R) Core (TM) i7-7700 CPU
3.60GHz with the main memory 8GB using the Matlab R2017b with the machine
precision ε = 2.22×10−16 under the Windows 10 operating system. For each matrix
pair {A, L}, we use b = (1, . . . , 1)T ∈ R

m as the starting vector of the JBD pro-
cess, where m is the row number of A. We mention that our results are based on the
assumption that the inner least squares problem (2.1) is solved accurately at each step.
Therefore, for the JBD process in the numerical experiments, the QR factorization

of

(
A

L

)
is computed, and QQT ũi is computed explicitly using Q at each step.

In the JBD process, in order to ensure that Ṽk does not deviate far from the col-
umn space of Q, the position of the matrices in the matrix pair {A, L} may need
to be adjusted; see (2.14) and Remark 2.1. Especially, in the four test examples, we
implement the JBD process of {Lm,ex31} instead of {ex31,Lm}.

Figure 1 depicts ‖Hk‖ = ‖Ik − BT
k Bk − P B̂T

k B̂kP ‖ and its upper bound in (3.13)
as the iteration number k increases from 1 to 200. Notice (3.18). We use 100ε as
the upper bound of ‖Hk‖. From the four examples, we find that as the matrix orders
become bigger, ‖Hk‖ grows very slightly as the iteration number k increases, due to
the fact that ‖Hk‖ is dependent on the orders of matrices A and L.

Figures 2 and 3 depict the orthogonality levels of ui , ν̃i , and ûi computed by the
JBDPRO algorithm. We use the matrix pairs {Lm,ex31} and {rdb5000,L1} to illustrate
the results; the results on {Ac, Ls} and {rdb2048,dw2048} are similar and we omit
them. The η-criterion is used and η = ε3/4 ≈ 10−12. From the figures we find that
in the first few iteration steps, the orthogonality of ui and ν̃i lose gradually. Then,
the partial reorthogonalization is applied to ui and ν̃i , making the orthogonality is
suddenly recovered, and then the reorthogonalization is not used in a few later steps
until the orthogonality levels exceed η again. The algorithm continues in this way

Table 1 Properties of the test matrices

A m × n cond(A) L p × n cond(L)

Ac 800 × 800 2.99 Ls 800 × 800 1.46

rdb2048 2048 × 2048 2026.80 dw2048 2048 × 2048 5301.50

ex31 3909 × 3909 1.01 × 106 Lm 3909 × 3909 1.50

rdb5000 5000 × 5000 4304.90 L1 4999 × 5000 3183.1
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Fig. 1 ‖Hk‖ and its upper bound: a {Ac,Ls}; b {rdb2048,dw2048}; c {Lm,ex31}; d {rdb5000,L1}

and the orthogonality levels of ui and ν̃i fluctuate around η as the iteration number k

continues increasing. We also depict the orthogonality levels of νi , and we can find
that the orthogonality levels of ui and ν̃i are almost equal. From Fig. 3, we find that
the orthogonality level of ν̂i is mainly affected by the growth of ‖B̂−1

k ‖. If ‖B̂−1
k ‖

does not become too large, then the orthogonality of ûi will be at a desired level
although we do not reorthogonalize any ν̂i in the JBDPRO algorithm.
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Fig. 2 Orthogonality levels of ui , ν̃i , and νi : a {Lm,ex31}; b {rdb5000,L1}
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Fig. 3 Orthogonality levels of ν̂i : a {Lm,ex31}; b {rdb5000,L1}

Now, we compare the JBDPRO algorithm with the JBD with full reorthogonaliza-
tion (JBDFRO). The JBDFRO algorithm uses the full reorthogonalization strategy
for ui , ν̃i , and ûi at each step, and the computed Uk+1, Ṽk , and Ûk are orthogonalized
to machine precision ε. Figures 4 and 5 depict the curves of ‖Ek‖ and ‖Êk‖ com-
puted by JBDPRO and JBDFRO, respectively. From these figures, we can observe
that both ‖Ek‖ and ‖Êk‖ computed by JBDPRO and JBDFRO are almost the same.
For each of the four examples, the quantity ‖Ek‖ does not deviate far from ε and
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Fig. 4 Comparison of ‖Ek‖ computed by JBDPRO and JBDFRO: a {Ac,Ls}; b {rdb2048,dw2048}; c
{Lm,ex31}; d {rdb5000,L1}
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Fig. 5 Comparison of ‖Êk‖ computed by JBDPRO and JBDFRO: a {Ac,Ls}; b {rdb2048,dw2048}; c
{Lm,ex31}; d {rdb5000,L1}

100ε is an upper bound, while ‖Êk‖ grows slightly and the growth speed is mainly
affected by the size of ‖B̂−1

k ‖.
We show the convergence of the singular values of Bk or B̂k computed by the

JBD process with and without the semiorthogonalization strategy, respectively. The
matrix pair {A, L} is constructed as follows. Let m = n = p = 800. First, construct
a vector c such that c(1) = 0.90, c(2) = c(3) = 0.86, c(4) = 0.82, c(5) = 0.78,
c(796) = 0.22, c(797) = 0.20, c(798) = c(799) = 0.15, c(800) = 0.10 and
c(6:795)=linspace(0.80,0.30,790) generated by the MATLAB built-in
function linspace(). Then, let s = ((1 − c2

1)
1/2, . . . , (1 − c2

n)
1/2) and take

C = diag(c), S = diag(s) and D = gallery(‘orthog’,n,2), which means
that D is a symmetric orthogonal matrix. Finally, let A = CD and L = SD.
By the construction, we know that the i-th generalized singular value of {A, L} is
{ci, si}, and the multiplicities of the generated singular values {0.86,

√
1 − 0.862}

and {0.15,
√

1 − 0.152} are 2.
Figure 6 depicts the convergence of the first five largest and smallest Ritz values,

which are the singular values of Bk computed by the JBD and JBDPRO algorithms,
respectively. The right horizontal line indicates the values of ci for i = 1, . . . , 800.
In the left part, which shows the convergence behavior without reorthogonalization,
we see the phenomenon that some of the converged Ritz values suddenly “jump”
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Fig. 6 Convergence of Ritz values from the SVD of Bk : a the first five largest Ritz values, computed
by JBD; b the first five largest Ritz values, computed by JBDPRO; c the first five smallest Ritz values,
computed by JBD; d the first five smallest Ritz values, computed by JBDPRO

and become “ghosts” and then converge to the next larger or smaller singular values
after a few iterations, which results in many unwanted spurious copies of generalized
singular values and makes it difficult to determine whether these spurious copies are
genuine multiple generalized singular values. In the right part, where Bk is computed
by the JBDPRO algorithm, the convergence behavior is much simpler and it is similar
to the ideal case in exact arithmetic. It can be found from subfigures (b) and (d) that a
simple generalized singular value can be approximated by Ritz values with no ghost
appearing, while a multiple generalized singular value can be approximated one by
one by the Ritz values.

Figure 7 depicts the convergence of the first five largest and smallest Ritz values
from the SVD of B̂k , where the right horizontal line indicates the value of si for
i = 1, . . . , 800. The convergence behavior of the Ritz values from the SVD of B̂k is
very similar to that from the SVD of Bk . From subfigures (a) and (c), which show
the convergence of Ritz values without reorthogonalization, we find the “ghosts”
phenomenon that some converged Ritz values suddenly “jump” and then converge to
the next larger or smaller singular values after a few iterations. In subfigures (b) and
(d), where B̂k is computed by the JBDPRO algorithm, there are no spurious copies,
and the multiplicities of the generalized singular values can be determined correctly
from the convergence of Ritz values.
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Fig. 7 Convergence of Ritz values from the SVD of B̂k : a the first five largest Ritz values, com-
puted by JBD; b the first five largest Ritz values, computed by JBDPRO; c the first five smallest Ritz
values,computed by JBD; d the first five smallest Ritz values, computed by JBDPRO

Finally, we compare the efficiency of the JBDPRO and JBDFRO. Table 2 shows
the running time of 200-step JBD, JBDPRO, and JBDFRO for the four test examples.
We also compute the ratio of the running times of JBDPRO and JBDFRO. For each
case, we run the algorithms 10 times and take the average over all 10 running times.
From the table, we find that the running time of JBDPRO is only about 70–80% of
that of JBDFRO. Therefore, the JBDPRO is more efficient than JBDFRO, but can
prevent “ghosts” from appearing.

Table 2 Running time comparison (measured in seconds)

A L JBD JBDPRO JBDFRO Ratio (%)

Ac Ls 0.2528 0.2639 0.4801 54.98

rdb2048 dw2048 2.0048 2.2476 2.7790 80.88

Lm ex31 6.8089 7.0218 9.4157 74.58

rdb5000 L1 10.4968 10.7883 14.2574 75.67
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6 Conclusion

We have proposed a semiorthogonalization strategy for the JBD process to maintain
some level of orthogonality of the Lanczos vectors. Our rounding error analy-
sis establishes connections between the JBD process with the semiorthonalization
strategy and the Lanczos bidiagonalization process. We have proved that if the Lanc-
zos vectors are kept semiorthogonal, then the computed B̂k is the Ritz-Galerkin
projection of QL on the subspaces span(Ûk) and span(V̂k) within error δ =
O(c4(m, n, p)‖B̂−1

k ‖ε). Therefore, the convergence of Ritz values computed from
B̂k will not be affected by rounding errors and the final accuracy of computed
quantities is high enough as long as ‖B̂−1

k ‖ does not become too large.
Based on the semiorthogonalization strategy, we have developed the JBDPRO

algorithm. The JBDPRO algorithm can keep the orthogonality of Lanczos vectors
and saves much unnecessary reorthogonalization work compared with the JBDFRO
algorithm. Several numerical examples have been used to confirm our theory and the
algorithmic behavior in finite precision arithmetic.

Funding This work was supported in part by the National Science Foundation of China (No. 11771249).

Appendix 1: Proofs of Lemma 3.1 and Lemma 3.2

Proof of Lemma 3.1 We prove (3.11) by mathematical induction. For i = 1, from
(3.9) and (3.10), we have

α̂1Q
T
Lû1 = QT

LQLν̂1 − QT
Lf̂1

= (In − QT
AQA)ν̂1 − QT

Lf̂1

= ν̂1 − QT
A(α1u1 + β2u2 + f1) − QT

Lf̂1

= ν̂1 − α1(α1ν1 + g1) − β2(α2ν2 + β2ν1 + g2) − QT
Af1 − QT

Lf̂1

= (1 − α2
1 − β2

2 )ν̂1 + α2β2v̂2 + O(q̄(m, n, p)ε).

Next, suppose (3.11) is true for the indices up to i. For i + 1, we have

α̂i+1Q
T
Lûi+1 = QT

LQLν̂i+1 − β̂iQ
T
Lûi −

i−1∑
j=1

ξ̂j i+1Q
T
Lûj − QT

Lf̂i+1.

Since (β̂iQ
T
Lûi − ∑i−1

j=1 ξ̂j i+1Q
T
Lûj ) ∈ span{ν̂1, . . . , ν̂i+1} + O(q̄(m, n, p)ε), we

only need to prove QT
LQLν̂i+1 ∈ span{ν̂1, . . . , ν̂i+2} + O(q̄(m, n, p)ε). Notice that

QT
LQLν̂i+1 = (In − QT

AQA)ν̂i+1

= ν̂i+1 + (−1)i+1QT
A(αi+1ui+1 + βi+1ui+2 +

i∑
j=1

ξji+1uj + fi+1)
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= ν̂i+1 + (−1)i+1(αi+1Q
T
Aui+1 + βi+1Q

T
Aui+2 +

i∑
j=1

ξji+1Q
T
Auj )

+(−1)i+1QT
Afi+1.

From (3.9), we have

(αi+1Q
T
Aui+1 + βi+1Q

T
Aui+2 +

i∑
j=1

ξji+1Q
T
Auj ) ∈ span{ν̂1, . . . , ν̂i+2}

+ O(q̄(m, n, p)ε),

which completes the proof of the induction step.
By the mathematical induction principle, (3.11) holds for all i = 1, 2, . . . , k.

Proof of Lemma 3.2 By (3.8) and (3.9), the process of computing Uk+1 and Vk

can be treated as the Lanczos bidiagonalization of QA with the semiorthogonal-
ization strategy. Since the k-step Lanczos bidiagonalization process is equivalent to
the (2k + 1)-step symmetric Lanczos process [2, §7.6.1], the bounds for Ck and
Dk can be deduced from the property of the symmetric Lanczos process with the
semiorthogonalization strategy; see [26, Lemma 4] and its proof.

Now, we give the bound of Ĉk . At the (i − 1)-th step, from (3.10), we can write
the reorthogonalization step of ûi as

α̂′
i û

′
i = QLν̂i − β̂i−1ûi−1 − f̂ ′

i , (A.1)

α̂i ûi = α̂′
i û

′
i − ∑i−2

j=1 ξ̂j i ûj − f̂ ′′
i , (A.2)

where ‖f̂ ′
i ‖, ‖f̂ ′′

i ‖ = O(q3(p, n)ε). Thus, for l = 1, . . . , i − 2, we have

α̂′
i û

T
l û′

i = ûT
l QLν̂i − β̂i−1û

T
l ûi−1 − ûT

l f̂ ′
i .

From (3.11) and its proof, we know that

QT
Lûl =

l+1∑
j=1

λj v̂j + O(q̄(m, n, p)ε)

with modest constants λj for j = 1, . . . , l + 1. Notice that
∣∣∣ûT

l ûi−1, ν̂
T
j ν̂i

∣∣∣ ≤√
ε/(2k + 1) for l = 1, . . . , i − 2 and j = 1, . . . , l + 1. We obtain

α̂′
i û

T
l û′

i =
l+1∑
j=1

λj ν̂
T
j ν̂i − β̂i−1û

T
l ûi−1 + O(q̄(m, n, p)ε) = O(

√
ε).

Then, we prove M = max1≤j≤i−1 |ξ̂j i | = O(
√

ε). Premultiplying (A.1) by ûT
l

and making some arrangement, we obtain

ξ̂li = α̂′
i û

T
l û′

i − α̂i û
T
l ûi −

i−2∑
j=1,j �=l

ξ̂j i û
T
l ûj − ûT

l f̂ ′′
i .
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Notice that ûT
l ûi = O(

√
ε) and we have proved α̂′

i û
T
l û′

i = O(
√

ε) for l = 1, . . . , i−
2. We obtain

|ξ̂li | ≤ O(
√

ε) + O(
√

ε) + iM
√

ε + O(q̄(m, n, p)ε).

The above right-hand side does not depend on l anymore, and we finally obtain by
taking the maximum on the the left-hand side:

(1 − i
√

ε)M ≤ O(
√

ε) + O(q̄(m, n, p)ε).

Therefore, we have M = O(
√

ε).
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